The GAVO ADQL Library

Author: Markus Demleitner
Email: gavoQ@ari.uni-heidelberg.de
Date: 2024-02-14

Copyright: Waived under CC-0

A library to deal with ADQL and have it executed by postgres

Author: Markus Demleitner

Email: gavoQari.uni-heidelberg.de
This library tries to provide glue between a service eating ADQL and delivering VO Tables
on the one side and concrete DBMSes (currently only postgres) on the other.
To do this, it parses ADQL, tries to infer types, units, systems, and UCDs for the result
columns ("annotation"), and rewrites ("morphs") queries so they can be executed on
postgres.

Basic Usage

The standard way to access the package is:

from gavo import adql

The adqgl namespace contains the functions documented below. To see if things work
at least to some degree, try:

In [1]:from gavo import adql
In [2]:from pprint import pprint

In [3]:t = adql.parseToTree("SELECT * FROM t WHERE 1=CONTAINS("
Lo "CIRCLE(’ICRS’, 4, 4, 2), POINT(’’, ra, dec))")

In [4]:pprint t.asTree()
—————— >pprint (t.asTree())
(’querySpecification’,
(’fromClause’, (’possiblyAliasedTable’, (’tableName’,))),
(’selectlist’,),
(’whereClause’,
(’comparisonPredicate’,
(’factor’,),
(’predicateGeometryFunction’,
(’circle’, (’factor’,), (’factor’,), (’factor’,)),
(’point’, (’columnReference’, ’ra’), (’columnReference’, ’dec’))))))


mailto:gavo@ari.uni-heidelberg.de
http://creativecommons.org/publicdomain/zero/1.0
mailto:gavo@ari.uni-heidelberg.de

Annotations

One central task of the ADQL library is the inference of column metadata from queries.
To receive an annotated tree, use code like:

adql.parseAnnotated(query, getFieldInfo)

query is the ADQL input, getFieldInfo a function described below. This is the main
entry point into the library.

FieldInfo objects have the following attributes:

= type -- an SQL type name (see below for the type system). Use lower case.
= ucd, unit

= tainted -- a boolean specifying whether the library had to guess anything (a simple
scalar multiplication is enough; see below)

» userData -- a sequence of opaque data passed in by the host application (see
below)

= stc -- None or an AST from DaCHS STC.

The source for these annotations is the metadata of the input columns. These are
communicated to the library through the getFieldInfo callback passed to annotate. It
has the signature:

getFieldInfo(tableName) -> list of info pairs,

where an info pair consists of the column’s name and quintuple of:

(type, unit, ucd, userdata, stc)

userdata is a tuple of application specific column descriptions; on input, these should
always be tuples of length 1. The library will collect those, and all userdata objects that
went into a particular FieldInfo can be retrieved under its userdata attribute. stc is a
DaCHS STC AST.

A tableName passed to getFieldInfo is an object with schema and name attributes. Tables
from TAP_UPLOADS appear with an empty schema here.

The Type System

TBD. See the tree in adql.fieldinfo for the names currently understood.
User Functions

TBD.

Morphing

TBD

Note that parseAnnotated applies a standard morphing, mapping INTERSECTS calls
having a POINT as one argument to a corresponding CONTAINS call as per 2.4.11 of
the ADQL spec. We hope this makes mapping the function calls to efficient database
operations easier.



Custom Region Specifications

The ADQL library always accepts STC-S for regions. It will raise an error if the STC
specifies no or more than one region.

To enable more region specifications, define region makers. Region makers are functions
taking the argument to REGION and trying to do something with it. They should return
either some kind of FieldInfoedNode that will then replace the REGION or None, in which
case the next function will be tried. Anything not derived from a FieldInfoedNode is not
suitable as a return value in general since Regions might be annotated.

As a convention, region specifiers here should always start with an identifier (like simbad,
siapBbox, etc, basically [A-Za-z]+). The rest is up to the region maker, but whitespace
should separate this rest from the identifier.

Here's an example of a region looking up a Simbad identifier (using some DaCHS code
for the actual Simbad interface):

def _getRegionId(regionSpec, pat=re.compile("[A-Za-z_]+")):
mat = pat.match(regionSpec)
if mat:
return mat.group()

def _makeSimbadRegion(regionSpec):
if not _getRegionId(regionSpec)=="simbad":
return
object = "".join(regionSpec.split()[1:])
resolver = base.caches.getSesame("web")
try:
alpha, delta = resolver.getPositionFor(object)
except KeyError:
raise adql.RegionError("No simbad position for ’Y%s’"Jobject)
return adql.getSymbols() ["point"].parseString("POINT(’ICRS’,"
"%.10f, %.10f)"%(alpha, delta))
adql.registerRegionMaker (_makeSimbadRegion)



	A library to deal with ADQL and have it executed by postgres
	Basic Usage
	Annotations
	The Type System
	User Functions
	Morphing
	Custom Region Specifications


