
NAME
dachs - data publishing infrastructure for the Virtual Observatory (VO)

SYNOPSIS
dachs [global-options] <subcommand> [options] function-argument ...

DESCRIPTION
dachs provides support for data ingestion and publishing, for metadata handling, and for a variety of

VO protocols and standards, e.g. the Table Access Protocol (TAP) or the Simple Cone Search (SCS).

There are numerous sub-commands covering the various tasks (importing, controlling the server,

running tests, etc).

Subcommand names can be abbreviated to the shortest unique prefix.

A centeral concept of DaCHS is the Resource Descriptor (RD), and XML description of a data

collection including metadata, ingestion rules, service definitions, and regression tests. They are

usually referenced through their RD ids, which are the relative paths from DaCHS’ inputs directory to

the file containing the RD, with the conventional extension .rd stripped. For instance, in a default

install, the file /var/gavo/inputs/myrsc/q.rd would have myrsc/q as RD id.

Most commands dealing with RD ids will also pick up RDs if referenced by path; in the example

above, if you are in /var/gavo/inputs/myrsc, you could also reference the RD as either q or q.rd.

Several commands take references to RD elements (table definitions, exec items, direct grammar, etc).

These consist of an RD id as just discussed, a hash mark, and the XML id of the target element. Tables

have an id automatically, for other elements you may have to add an artificial id.

GLOBAL OPTIONS
Global options are given before the subcommand name.

--debug
produce debug info as appropriate

--enable-pdb
run pdb on all errors

-h, --help
show this help message and exit

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

--hints
if there are hints on an error, display them

--profile-to=PROFILEPATH

enable profiling and write a profile to PROFILEPATH

--suppress-log
suppress logging of exceptions to the dachs-specific log files

--version
shows the versions of the software, of the database schema expected by the software and of the

database schema actually on disk (if the latter two disagree, run dachs upgrade).

THE ADMIN SUBCOMMAND
Synopsis:

dachs admin [-h] subsubfunction [subfunction-arguments ...]

This is a somewhat random collection of commands related to administering a data center. In particular,

this is where you create and edit accounts.

subsubcommands can be abbreviated as long as the abbreviation is unique. For instance dachs adm xsd will

do an XSD validation.

For more information on the subsubfunctions, pass a -h flag.

Subsubcommands

+o addtogroup user group -- adds a user to a group

+o adduser user password [remarks] -- add a user/password pair to the DaCHS user table. Note that as

of DaCHS 1.0 the password is stored in clear text and also transmitted in clear text since DaCHS

only supports HTTP basic authentication. Do not use valuable passwords here

+o delfromgroup user group -- remove a user from a group

+o deluser user -- remove a DaCHS user from the user table.

+o listusers -- dump the user table

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

+o changeuser user password [remarks] -- change remarks and/or password for a DC user. See adduser

for details.

+o cleantap -- remove expired Universal Worker Service (UWS) jobs

+o tapabort jobId helpMsg -- manually abort a TAP job and return helpMsg to the requesting user as

error message.

+o updateTAPSchema -- Update the TAP_SCHEMA metadata for all RDs mentioned in

TAP_SCHEMA.

+o declaredel -- declare an identifier as deleted (for when you’ve removed the RD but the identifier still

floats on some registries.

+o indexStatements tableRef -- show the statements to create the indices on a table. The tableRef has

the format RD-id#table-id; it is not a database table reference.

+o dumpDF path -- Dumps the source of a file included with the DaCHS distribution. The argument is

a package resource path. (like /inputs/__system__/scs.rd); for system RDs, the special //rd-id syntax

is supported.

+o execute exec-id -- Execute the contents of an RD execute element. You must give that element an

explicit id in order to make this work; then exec-id is rd-id#exec-id

+o xsdValidate path -- Validate a file against built-in VO schemas and with built-in schema validator.

+o suggestucds tableId -- Make suggestions for UCDs of the columns of the referenced table

(rd-id#table-id format) not having one. This is based on their descriptions and uses a GAVO web

service.

THE CONFIG SUBCOMMAND
Synopsis:

dachs config [section-name] config-key

This outputs values of DaCHS’ configuration to stdout. section-name defaults to general. This is most

commonly used to make external components aware of DaCHS’ file locations, e.g., through

inputs_dir=$(dachs config inputsDir).

See the operator’s guide for a documentation on DaCHS’ configuration options.

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

THE DROP SUBCOMMAND
Synopsis:

drop [-h] [-s] [--all] rd-id [dd-id ...]

This is the reverse of import: Tables created by a dachs imp with identical arguments are being torn down

by dachs drop. This will not work reliably if the RD has been modified between the imp and the drop, in

particular if the RD has been deleted. In such situations, you can use the -f flag, which unconditionally

tears down everything DaCHS has recorded as coming from the referenced RD.

Arguments

rd-id
RD path or ID to drop

dd-id
optional data descriptor (DD) ID(s) if you do not want to drop the entire RD; note that no service

publications will be undone if you give DD IDs

Options

--all
drop all DDs in the RD, not only the auto ones (overrides manual selection)

-s, --system
drop tables even if they are system tables

THE IMPORT SUBCOMMAND
Synopsis:

import [option] rd-name [data-id]

This subcommand is used to ingest data described by an RD. For special applications, ingestion can be

restricted to specific data items within an RD.

Options

-h, --help
show this help message and exit

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

-n, --updateRows
Deprecated. Use updating data items instead.

-d, --dumpRows
Dump raw rows as they are emitted by the grammar.

-D, --dumpIngestees
Dump processed rows as emitted by the row makers.

-R, --redoIndex
Drop indices before updating a table and recreate them when done

-m, --meta-only
just update table meta (privileges, column descriptions,...).

-I, --meta-and-index
do not import, but update table meta (privileges, column descriptions,...) and recreate the indices

-u, --update
update mode -- don’t drop tables before writing.

-s, --system
(re-)create system tables, too

-v, --verbose
talk a lot while working

-r, --reckless
Do not validate rows before ingestion

-M MAX, --stop-after=MAX

Stop after having parsed MAX rows

-b N, --batch-size=N

deliver N rows at a time to the database.

-c, --continue-bad
do not bail out after an error, just skip the current source and continue with the next one.

-L, --commit-after-meta

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

commit the importing transaction after updating the meta tables. Use this when loading large

(hence -L) data sets to avoid keeping a lock on the meta tables for the duration of the input, i.e.,

potentially days. The price is that users will see empty tables during the import.

THE INFO SUBCOMMAND
Synopsis:

dachs info [-h] table-id

This displays column statistics about the table referred to in the argument (which must be a fully qualified

table name resolvable by the database system).

Argument

table-id
table ID (of the form rdId#tableId)

THE INIT SUBCOMMAND
Synopsis:

dachs init [-h] [-d DSN] [--nodb]

This initialises DaCHS’ file system and database environment. Calling dachs init on an existing site should

not damage anything. It might, however, fix things if, for instance, permissions on some directories went

funny.

Options

-d <DSN>, --dsn <DSN>

data source name (DSN) to use to connect to the future DaCHS database; the DSN must let

DaCHS connect to the database as an administrator; dbname, host, and port get copied to the

profile, if given; if you followed the installation instructions, you do not need this option

--nodb
inhibit initialization of the database (you may want to use this when refreshing the file system

hierarchy)

THE LIMITS SUBCOMMAND
Synopsis:

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

dachs limits [-h] item-id

This subcommand updates existing values/min or values/max items in the referenced table or RD from a

database query (thus it may run for quite a while on large tables). Note that this will rewrite the RD

containing the definitions (but it takes great care to preserve not only the remaining contents but also its

formatting).

Arguments

item-id
either an RD id or a table reference in the from rd-id#table-id

THE MKBOOST SUBCOMMAND
Synopsis:

dachs mkboost [option] <id-of-directGrammar>

This writes a C source skeleton for using the direct grammar referenced to fill a database table. See the

Guide to Write Booster Grammars in the DaCHS documentation for how to use this command.

Options

-b, --binary
generate a skeleton for a binary parser

-s <SPLITTER>, --splitter=<SPLITTER>

generate a split skeleton with split string <SPLITTER>

THE MKRD SUBCOMMAND
Synopsis:

dachs mkrd [option] sample

Rudimentary support for generating RDs from data. This is probably not terribly useful in its current state.

Options

-f <SRCFORM>, --format=<SRCFORM>

source format: FITS or VOT; default: detected from file name

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

-t <TABLENAME>, --table-name=<TABLENAME>

name of the generated table

THE PUBLISH SUBCOMMAND
Synopsis:

dachs publish [option] rd-name

This marks data and/or services contained in an RD as published; this will make them displayed in DaCHS’

portal page or pushed to the VO registry through DaCHS’ OAI-PMH endpoint. See the Operator’s Guide

for details.

Options

-a, --all
search everything below inputsDir for publications

-k, --keep-timestamps
preserve the time stamp of the last record modification; this may sometimes be desirable with

minor updates on an RD that don’t justify a re-publication to the VO.

THE PURGE SUBCOMMAND
Synopsis:

dachs purge [-h] tablename [tablename...]

This will delete tables in the database and also remove their metadata from DaCHS’ internal tables (e.g.,

TAP_SCHEMA, table of published records). Use this if dachs drop fails for to remove some table for one

reason or another.

Argument

tablename
(SQL) name of the table to drop, including the schema name

THE SERVE SUBCOMMAND
Synopsis:

dachs serve [-h] {debug | reload | restart | start | stop}

This exposes various functionality for managing DaCHS’ server component. While these usually are being

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

called through init scripts or systemd components, the debug subfunction is very convenient during service

development off the production environment.

Subsubcommands

+o debug -- run a server and remain in the foreground, dumping all kinds of stuff to the terminal

+o reload -- reload server configuration (incomplete)

+o restart -- restart the server

+o start -- start the server and put it in the background

+o stop -- stop a running server

THE TEST SUBCOMMAND
Synopsis:

dachs test [-h] [-v] [-V] [-d] [-t TAG] [-R N] [-T SECONDS] [-D FILE]

[-w SECONDS] [-u SERVERURL] [-n NTHREADS]

[--seed RANDOMSEED] [-k KEYWORDS]

id

This runs regression tests embedded in the whatever is reference by id (can be an RD, a regression suite, or

a single regression test). For details, see the chapter on regression testing in the DaCHS Reference Manual.

Argument

id RD id or cross-RD identifier for a testable thing.

Options

-h, --help
show this help message and exit

-v, --verbose
Talk while working

-d, --dump-negative
Dump the content of failing tests to stdout

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

-t TAG, --tag TAG

Also run tests tagged with TAG.

-R N, --n-repeat N

Run each test N times

-T SECONDS, --timeout SECONDS

Abort and fail requests after inactivity of SECONDS

-D FILE, --dump-to FILE

Dump the content of last failing test to FILE

-w SECONDS, --wait SECONDS

Wait SECONDS before executing a request

-u SERVERURL, --serverURL SERVERURL

URL of the DaCHS root at the server to test

-n NTHREADS, --number-par NTHREADS

Number of requests to be run in parallel

-k KEYWORDS, --keywords KEYWORDS

Only run tests with descriptions containing all (whitespace-separated) keywords. Sequential tests

will be run in full, nevertheless, if their head test matches.

THE VALIDATE SUBCOMMAND
Synopsis:

dachs validate [-h] [-x] [-v] rd [rd...]

This checks RDs for well-formedness and some aspects of VO-friendliness

Arguments

rd RD path or ID to validate

Options

-h, --help
show this help message and exit

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

-p, --pre-publication
Validate as if all services were IVOA published even if they are not (this may produce spurious

errors if unpublished services are in the RD).

-v, --verbose
Talk while working

-t, --run-tests
Run regression tests embedded in the checked RDs

-T SECONDS, --timeout SECONDS

When running tests, abort and fail requests after inactivity of SECONDS

-c, --compare-db
Also make sure that tables that are on disk (somewhat) match the definition in the RD.

-u, --accept-free-units
Do not warn against units not listed in VOUnits.

THE UPGRADE SUBCOMMAND
Synopsis:

dachs upgrade

Each DaCHS version has an associated database schema version, encoding the structure of DaCHS’ (and

the impemented protocol versions’) ideas of how system and user tables should look like. dachs upgrade
attempts to work out how to change the database to match the expectations of the current version and

executes the respective code. It will not touch its data structures if it decrees that the installation is up to

date.

Operating system packages will usually try to run dachs upgrade as part of their management operation. In

case dachs upgrade requires manual intervention, this may fail, in which case operators may need to call

dachs upgrade manually.

Operators keeping a manually installed DaCHS should run dachs upgrade after each svn update or update

from tar.

dachs upgrade cannot perform actions requiring superuser privileges, since none of its roles have those.

Currently, this is mainly updating postgres extensions DaCHS uses (if you use extra ones, you can

configure DaCHS’ watch list in [db]managedExtensions). dachs upgrade -e will attempt to figure out the

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

instructions necessary to update extensions and write them to stdout. Hence, operators should execute

something like dachs upgrade -e | psql gavo from a database superuser account after upgrading postgres

extensions.

Options

--force-dbversion FORCEDBVERSION

assume this as the database’s schema version. If you don’t develop DaCHS, you almost

certainly should stay clear of this flag

-e, --get-extension-script
Dump a script to update DaCHS-managed extensions (will print nothing if no extensions need

updating). This will return 0 if material was written, 1 otherwise.

THE ADQL SUBCOMMAND
Synopsis:

dachs adql query

This subcommand executes ADQL queries locally and writes the resulting VOTable to stdout. We consider

removing it.

INTERNAL OR DEPRECATED SUBCOMMANDS
The subcommands show, stc are deprecated and not documented here. They may disappear without

further notice.

the subcommands taprun, dlrun, uwsrun, gendoc, raise are used internally and should not be directly

used by DaCHS operators.

REPORTING BUGS
To report bugs and request support, please use our support mailing list

http://lists.g-vo.org/cgi-bin/mailman/listinfo/dachs-support.

SEE ALSO
Comprehensive, if always incomplete documentation on DaCHS is available in several documents

available at http://docs.g-vo.org/DaCHS/ (upstream site with PDF downloads and the formatted

reference documentation) and http://dachs-doc.readthedocs.io/en/latest/index.html (with facilities for

updating the documents).

COPYRIGHT
Copyright (C) 2017 The GAVO project. License GPLv3+: GNU GPL version 3 or later

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

<http://gnu.org/licenses/gpl.html>. This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

AUTHOR
Markus Demleitner <gavo@ari.uni-heidelberg.de>

DACHS(1) DACHS(1)

1.0 2017-01-18 DACHS(1)

