
GAVO DaCHS: File Processing

Author: Markus Demleitner
Email: gavo@ari.uni-heidelberg.de

Contents

Processors 2

Processor Command line . 3

Auxiliaries . 3

Parallel Execution . 4

Gathering Data . 5

Processor Report Generation . 5

Overriding the Sources . 5

Utility Methods . 7

Precomputing previews 7

api.PreviewMaker . 7

Making Previews for Spectra . 10

Basic FITS Manipulation 10

Header Selection 13

Scanned Plates 14

1

mailto:gavo@ari.uni-heidelberg.de

Astrometry.net 15

Calibration using Astrometry.net . 15

Analyzing calibration failures . 17

What to Try . 19

This is a manual on how to use DaCHS’ helpers to preprocess data before
ingesting it and do other things based on iterating over lots of sources.

Sometimes you want to change something on the input files you are receiving.
While usually we recommend coping with the input through grammars, rowmak-
ers, and the like since this helps maitaining consistency with what the scientists
intended and also stability when new data arrives, there are cases when you
deliver data to users, most frequently, with FITS files. There, you may need to
add or change headers.

However, sometimes you just want to traverse all sources, maybe to validate
them, maybe to compute something from them; the prime example for the latter
is pre-computing previews.

Processors
The basic infrastructure for manipulating sources is the FileProcessor class,
available from gavo.helpers.

Here is an example checking whether the sizes of files match what an (externally
defined) function _getExpectedSize(fName) -> int returns:

import os

from gavo import api

class SizeChecker(api.FileProcessor):

def process(self, srcName):
found = os.path.getsize(srcName)
expected = _getExpectedSize(srcName)
if found!=expected:

print "%s: is %s, should be %s"%(srcName, found, expected)

if __name__=="__main__":
api.procmain(SizeChecker, "potsdam/q", "import")

The call to procmain arranges for the command line to be parsed and expects,
in addition to the processor class, an id for the resource descriptor for the data
it should process, and the id of the data descriptor that ingests the files.

2

As usual, you can raise base.SkipThis() to pretend process had never been called
for a certain srcName.

Processor Command line

The processors can define command line options of their own. You could, for
example, read the expected sizes from some sort of catalogue. To do that,
define an addOptions static method, like this:

class Processor(api.FileProcessor):
@staticmethod
addOptions(optParser):

api.FileProcessor.addOptions(optParser)
optParser.add_option("--cat-name", help="Resdir-relative path to"

" the plate catalogue", action="store", type="str",
dest="catPath", default="res/plates.cat")

Make sure you always do the upward call. Cf. the optparse documentation for
what you can do. The options object returned by optParser is available as the
opts attribute on your processor. To keep the chance of name clashes in this
sort of inheritance low, always use long options only.

Simple FileProcessors support the following options:

--filter It takes a value, a substring that has to be in
the source’s name for it to be processed. This
is for when you want to try out new code on
just one file or a small subset of files.

--bail Rather than going on when a process method
lets an exception escape, abort the processing
at the first error and dump a traceback. Use
this to figure out bugs in your (or our) code.

--report More on this in Processor Report Generation

-j Number of processes to run in parallel (Parallel
Execution)

Auxiliaries

Once you have the catalogue name, you will want to read it and make it avail-
able to the process method. To allow you to do this, you can override the
_createAuxiliaries(dd) method. It receives the data descriptor of the data to be
processed. Here’s an example:

3

class Processor(api.FileProcessor):
def _createAuxiliaries(self, dd):

self.catEntriesUsed = 0
catPath = os.path.join(dd.rd.resdir, self.opts.catPath)
self.catalogue = {}
for ln in open(catPath):

id, val = ln.split()
self.catalogue[id] = val

As you can see, you can access the options given on the command line as
self.opts here.

Parallel Execution

Processors in principle can be executed in parallel processes (using the -j flag
as with make), provided they are written to support this – which means no
temporary files that could have name clashes, no other shared mutable resources
without synchronization, and so on.

The main problem with when forking out workers are database connections –
in short, if you want to run your processors in parallel, you must make sure
you’re not using shared database connections. In particular, you cannot use the
familiar with base.getTableConn() as conn: pattern.

The preferred way to deal with things is to create a database connection in
createAuxiliaries and call it conn (yes, DaCHS looks at the name), like this:

class FooProcessor(FileProcessor):
def _createAuxiliaries(self, dd):

self.conn = base.getDBConnection("trustedquery")
FileProcessor._createAuxiliaries(self, dd)

Based on the name conn, DaCHS will close the connection and reopen it when
forking. If all queries go through this connection, all should be well for mul-
tiprocessing. Since processors should normally have no business writing to the
database, the connection is for the trustedquery profile. If you absolutely have
to write, use the feed profile, but note that you will have to manually commit
then.

Note that some processor classes (PreviewMaker, in particular) already open such
a connection for you so you don’t have to do anything for these.

4

Gathering Data

If you want your processor to gather data, you can use the fact that procmain
returns the processor it created. Here is a version of the simple size checker
above that outputs a sorted list of bad files:

class SizeChecker(api.FileProcessor):

def _createAuxiliaries(self, dd):
self.mess = []

def process(self, srcName):
found = os.path.getsize(srcName)
expected = _getExpectedSize(srcName)
if found!=expected:

self.mess.append((srcName, expected, found))

if __name__=="__main__":
res = api.procmain(SizeChecker, "potsdam/q", "import")
res.mess.sort(key=lambda rec: abs(rec[1]-rec[2]))
for name, expected, found in res.mess:

print "%10d %10d %8d %s"%(expected, found, expected-found, name)

Processor Report Generation

Most of the time, when gathering data (or otherwise), what you are doing is
basically generate a report of some sort. For such simple cases, you will usually
want to use the --report option. This causes the processor to skip process and
instead call a method that will in turn call the classify(sourceName) method. It
must return a string that will serve as a class label. At the end of the run, the
processor will print a summary of the class frequencies.

Here’s what such a classify method could look like:

def classify(self, srcName):
hdr = self.getPrimaryHeader(srcName)
try:

ignored = "FILTER_A" in hdr
return "ok"

except ValueError: # botched cards on board
return "botched"

Overriding the Sources

By default, processors iterate over all the sources returned by the referenced
data element’s sources element. Sometimes that is not what you want, typically

5

because some rowfilter adds things or because the data is completely virtual and
the input files only have a very loose relation to what is published through the
service.

In these cases, override the processor’s iterIdentifiers method. It has to yield
things suitable as the parameter for process. It is a good idea to have these be
strings, though you might get away with other objects if you accept that some
error messages may look funny.

The classical case is getting accrefs from a table, like this:

from gavo import api
...

def iterIdentifiers(self):
tableId = self.dd.makes[0].table.getQName()
with api.getTableConn() as conn:

for r in conn.queryToDicts("select accref from %s"%tableId):
yield r["accref"]

A very typical case is when an "artificial" format generated on the fly gets added
to the SDM table to return something for FORMAT=compliant queries. In the
RD, this could look like this:

<rowfilter procDef="//products#define">
<bind name="table">"\schema.data"</bind>
<bind name="mime">"image/fits"</bind>
<bind name="preview_mime">"image/png"</bind>
<bind name="preview">\standardPreviewPath</bind>

</rowfilter>
<rowfilter name="addSDM">

<code>
yield row
baseAccref = os.path.splitext(row["prodtblPath"])[0]
row["prodtblAccref"] = baseAccref+".vot"
row["prodtblPath"] = "dcc://\rdIdDotted/mksdm?"+urllib.quote(

row["prodtblPath"])
row["prodtblMime"] = "application/x-votable+xml"
yield row

</code>
</rowfilter>

Note that the preview path and mime are the same for both versions, which
means that previews should only be computed for the first kind of data. To
effect that, write your PreviewMaker like this:

class PreviewMaker(api.SpectralPreviewMaker):
sdmId = "build_sdm_data"

6

def iterIdentifiers(self):
for id in api.SpectralPreviewMaker.iterIdentifiers(self):

if not id.endswith(".vot"):
yield id

Utility Methods

FileProcessor instances have some utility methods handy when processing files
for DaCHS:

∙ getProductKey(fName) -> str returns the "product key" fName would have;
this currently is just fName’s path relative to the inputsDir (or an ex-
ception if fName is not below inputsDir). This method lets you easily
interchange data between your file processor and ignore elements or the
inputRelativePath macro in RDs.

Precomputing previews
While DaCHS can compute previews of 2D FITS images on the fly, in many cases
there are good reasons to precompute previews. If you follow some conventions
when doing this, the process becomes much smoother.

When making previews, it is usually much more convenient to work with accrefs
rather than actual file paths. That is particularly true with spectra, which in
DaCHS frequently are virtual data, such that an accref doesn’t correspond to
an actual file.

Where there are actual files and you didn’t do any magic
with the accrefs, you can retrieve the full path by computing
os.path.join(api.getConfig("inputsDir"), accref).

api.PreviewMaker

The DaCHS API contains a PreviewMaker class with some convenience methods.
To use it, give the data descriptor a previewDir property, like this:

<data id="import">
<property key="previewDir">previews</property>
...

– the value is the resdir-relative name of the directory that will contain the
preview files.

7

This previewDir property is evaluated by the preview name generators (and
only there; if you set up a naming policy of your own, there’s no need to set
previewDir). DaCHS currently has two of those, both available as macros for
use in products#define. Here’s how to use them:

<rowfilter procDef="//products#define">
<bind name="table">"\schema.data"</bind>
<bind name="mime">"image/fits"</bind>
<bind name="preview_mime">"image/png"</bind>
<bind name="preview">\standardPreviewPath</bind>

</rowfilter>

The standardPreviewPath macro arranges things such that all previews are in
one directory with base64 encoded names. This is fairly low overhead and is
recommended for smallish data collections up to, say, a few thousand datasets.

For larger data collections, it is recommended to use the
splitPreviewPath{extension} macro. It arranges the previews in a hierar-
chy analogous to the data files themselves. In order to avoid confusion, it is
recommended to set the extension according to the file type generated (i.e.,
typically “.png” or “.jpeg”), like this: \splitPreviewPath{.png}.

To generate the previews, all you have to do is inherit from PreviewMaker and
implement getPreviewData(srcName) -> imageData. PIL, stuff from utils.imgtools
or something similar usually is your friend here. Here’s a full example that would
compute 200x100 one-channel jpegs for some image format understood by PIL:

import os
from cStringIO import StringIO

import Image

from gavo import api

class PreviewMaker(api.PreviewMaker):
def getPreviewData(self, accref):

srcName = os.path.join(api.getConfig("inputsDir"), accref)

im = Image.open(srcName)
scale = max(im.size)/200.
resized = im.resize((

int(im.size[0]/scale),
int(im.size[1]/scale)))

rendered = StringIO()
resized.save(rendered, format="jpeg")
return rendered.getvalue()

8

http://docs.g-vo.org/DaCHS/apidoc/gavo.utils.imgtools-module.html

if __name__=="__main__":
api.procmain(PreviewMaker, "example/q", "import")

If this were in bin/mkpreview.py, you could then say:

python bin/mkpreview.py

to compute previews for all files that don’t have one yet, and you can call:

python bin/mkpreview.py --report

to see if previews are missing.

As another example, here’s how you can statically generate the previews that
DaCHS would make for FITS images; the classic case when you want this when
the service has datalinks as accrefs (which, at least for now, DaCHS doesn’t
handle automatically):

import os

import numpy

from gavo import api
from gavo.utils import fitstools, imgtools

PREVIEW_SIZE = 200

class PreviewMaker(api.PreviewMaker):
def getPreviewData(self, srcName):

with open(os.path.join(api.getConfig("inputsDir"), srcName)) as inFile:
pixels = numpy.array([row

for row in fitstools.iterScaledRows(inFile,
destSize=PREVIEW_SIZE)])

return imgtools.jpegFromNumpyArray(pixels)

if __name__=="__main__":
api.procmain(PreviewMaker, "plts/q", "import")

Finally, here’s how you could compute color previews when you have images in
three filters in the FITS extensions 2, 3, and 4:

import numpy

from gavo.utils import fitstools
from gavo.utils import imgtools

9

from gavo.utils import pyfits

def _getArrayFor(srcName, extInd):
return numpy.array(list(

fitstools.iterScaledRows(srcName, destSize=200, extInd=extInd)))

class PreviewMaker(api.PreviewMaker):
def getPreviewData(self, srcName):

return imgtools.colorJpegFromNumpyArrays(
_getArrayFor(srcName, 1),
_getArrayFor(srcName, 2),
_getArrayFor(srcName, 1))

if __name__=="__main__":
api.procmain(PreviewMaker, "lmu/q", "import_imgs")

Making Previews for Spectra

If you already have a datalink service defined for making SDM-compliant spec-
tra, you can easily re-use that to generate spectral previews. For that, there’s
api.SpectralPreviewMaker. All it needs is the id of data element making the
SDM instances in the sdmId class attribute. The following would do in a typical
case:

from gavo import api

class PreviewMaker(api.SpectralPreviewMaker):
sdmId = "build_sdm_data"

if __name__=="__main__":
api.procmain(PreviewMaker, "flashheros/q", "import")

By default, this produces spectra that are logscaled on the flux axis. You can
set the class attribute linearFluxes = True to have linear scaling instead if that
works better for your data.

On noisy spectra, presentation might be improved by setting a class attribute
connectPoints = False.

Basic FITS Manipulation
For manipulating FITS headers, there are the ImmediateHeaderProcessor and
HeaderProcessor classes. The difference is that the full HeaderProcessor first
writes detached headers and only applies them in a second step. That’s usually
advisable for major surgery, in particular with largish files.

10

Both are FileProcessors, so everything said there applies here as well, except
that you usually do not want to override the process method.

With the simple ImmdiateHeaderProcessors, you simply override
_isProcessed(srcName, hdr) that should return False whenever the action
still is necessary (the default always returns False, so it’s (overly) safe to just
let it stand), and _changeHeader(hdr) -> ignored, which is expected to change
the primary header passed to it in place. The changed header will then be
written back to disk, if possible without touching the data part.

Here’s an example for a simple ImmediateHeaderProcessor:

import os

from gavo import api

class LinkAdder(api.ImmediateHeaderProcessor):
def _createAuxiliaries(self, dd):

self.staticBase = dd.rd.getById("dl").getURL("static")

def _isProcessed(self, srcName, hdr):
return hdr.get("FN-PRE", "").startswith("http")

def _changeHeader(self, srcName, hdr):
baseName = os.path.splitext(os.path.basename(srcName))[0]
hdr.set("FN-WEDGE", "%s/wedges/%sw.fits"%(self.staticBase, baseName),

after="FILENAME")
hdr.set("FN-PRE", "%s/jpegs/%s.jpg"%(self.staticBase, baseName),

after="FN-WEDGE")

if __name__=="__main__":
res = api.procmain(LinkAdder, "kapteyn/q", "import")

With HeaderProcessors, you will rather to override the _isProcessed(srcName)

-> boolean method and one of

∙ _mungeHeader(srcName, header) -> pyfits hdr or

∙ _getHeader(srcName) -> pyfits hdr.

_isProcessed must return True if you think the name file already has your new
headers, False otherwise. Files for which _isProcessed returns True are not
touched.

_getHeader is the method called by process to obtain a new header. It must
return the complete new header for the file named in the argument. Since it

11

is very common to base this on the file’s existing header, there is _mungeHeader

that receives the current header.

_mungeHeader should in general raise a api.CannotComputeHeader exception
if it cannot generate a header (e.g., missing catalogue entry, nonsensical input
data). If you return None from either _mungeHeader or _getHeader, a generic
CannotComputeHeader exception will be raised.

Note again that you have to return a complete header, i.e., including all cards
you want to keep from the original header (but see Header Selection).

A somewhat silly example could look like this:

from gavo import api

class SillyProcessor(api.HeaderProcessor):
def _isProcessed(self, srcName):

return self.getPrimaryHeader(srcName).has_key("NUMPIXELS")

def _mungeHeader(self, srcName, hdr):
hdr.set("NUMPIXELS", hdr["NAXIS1"]*hdr["NAXIS2"])
return hdr

if __name__=="__main__":
api.procmain(SillyProcessor, "testdata/theRD", "sillyData")

Processors are expected to have an addOptions static method receiving an opt-
parser.OptionParser instance and adding options it wants to see. Call --help on
the program above to see FileProcessor’s options. Things are arranged like this
(check out the process and _makeCache methods in the source code), where
proc stands of the name of the ingesting program:

∙ proc computes headers for all input files not yet having
"cached" headers. Cached headers live alongside the fits files
and have ".hdr" attached to them. The headers are not ap-
plied to the original files.

∙ proc --apply --no-compute applies cached headers to the input
files that do not yet have headers. In particular when process-
ing is lengthy (e.g., astrometrical calibration), it is probably a
good idea to keep processing and header application a two-step
process.

∙ proc --apply in addition tries to compute header caches and
applies them. This could be the default operation when header
computation is fast

12

∙ proc --reprocess recreates caches (without this option, cached
headers are never touched). You want this option if you found
a bug in your _getHeader method and need to to recompute
all the headers.

∙ proc --reheader --apply replaces processed headers on the
source files. This is necessary when you want to apply re-
processed headers. Without --reheader, to header that looks
like it is "fixed" (according to your _isProcessed code) is ever
touched.

Admittedly, this logic is a bit convolved, but the fine-grained manipulation in-
tensity is nice when your operations are expensive.

By default, files for which the processing code raises exceptions are ignored; the
number of files ignored is shown when procmain is finished.

If you want to run more than one processor over a given dataset, you will have
to override the headerExt class attribute of your processors so all are distinct.
By default, the attribute contains ".hdr". Without overriding it, your processors
would overwrite the other’s cached headers. However, that’s usually not enough
since on --apply only one header would win. One way of coping is by always
applying one processor before running the next. Another could be the use of
keepKeys (see below).

By the way, if the original FITS header is badly broken or you don’t want to use
it anyway, you can override the _getHeader(srcName) -> header method. Its
default implementation is something like:

def _getHeader(self, srcName):
return self._mungeHeader(srcName, self.getPrimaryHeader(srcName))

The getPrimaryHeader(srcName) -> pyfits header method is a convenience
method of FITSProcessors with obvious functionality.

Header Selection
Due to the way pyfits manipulates header fields without data, certain headers
must be taken from the original file, overwriting values in the cached headers.
These are the headers actually describing the data format, available in the
processor’s keepKeys attribute. Right now, this is:

keepKeys = set(["SIMPLE", "BITPIX", "NAXIS", "NAXIS1", "NAXIS2",
"EXTEND", "BZERO", "BSCALE"])

13

You can amend this list as necessary in your _createAuxiliaries method, most
likely like this:

self.keepKeys = self.keepKeys.copy()
self.keepKeys.add("EXPTIME")

You will have to do this if you have more than one processor (using headerExt)
and want to be able to apply them in any sequence. This, however, is not
usually worth the effort.

Since these operations may mess up the sequence of header cards in a way
that violates the FITS standard, after this the new headers are sorted. This is
done via fitstools.sortHeaders. This function can take two additional functions
commentFilter and historyFilter, both receiving the card value and returning
True to keep the card and False to discard it.

Processors take these from like-named methods that you can override. The
default implementation keeps all comments and history items. For example, to
nuke all comment cards not containing "IMPORTANT", you could define:

def commentFilter(self, comment):
return "IMPORTANT" in comment

Scanned Plates
For scanned plates, the plate archive standard proposes a fairly large and stan-
dardised set of headers. DaCHS supports you in generating those with its FITS
header template system; this lacks proper documentation right now – see the
docstrings in gavo.helpers.fitstricks in the meantime.

For scanned plates, there is the canned WFPDB_TEMPLATE. In usage, it is
fairly simple; essentially, you say:

from gavo.helpers import fitstricks
hdr = fitstricks.makeHeaderFromTemplate(fitstricks.WFPDB_TEMPLATE,

OBJECT = "some star",
SITELAT = 0.0,
...

)

– and then use the header as you otherwise would.

14

https://www.plate-archive.org/wiki/index.php/FITS_header_format

Astrometry.net

Calibration using Astrometry.net

If you have uncalibrated (optical) images, you can try to automatically calibrate
them using astrometry.net. The DC software comes with an interface to it in
helpers.anet, and the file processing infrastructure is what you want to use here.

You probably want to inherit from AnetHeaderProcessor, more or less like this:

from gavo import api

class MyProcessor(api.AnetHeaderProcessor):
sp_indices = ["index-4215"],
sp_lower_pix = 0.1
sp_upper_pix = 0.2
sp_endob = 50

def _mungeHeader(self, srcName, hdr):
vals = {

"OBJTYP": "Galaxy",
"OBSERVAT": "HST",
....}

return fitstricks.makeHeaderFromTemplate(
fitstricks.WFPDB_TEMPLATE,
originalHeader=hdr, **vals)

The class attributes starting with sp_ are parameters for the solver. The anet
module docstring explains what is available. The endob parameter is important
on larger images because it instructs anet to give up when no identification has
been possible within the first endob objects. It keeps the solver from wasting
enormous amounts of time on potentially thousands of spurious detections, e.g.,
on photographic plates.

Overriding _mungeHeader lets you add header cards of your own. The default
is again to just return the header. Here, we’re using DaCHS FITS templating
engine (which is generally a good idea and deserves more documentation; please
complain if you’re reading this and missing docs).

Note that the _mungeHeader code can run independently of the (potentially time-
consuming) astrometry.net code. Run the processor with --no-anet --reprocess

to re-create the headers computed there without re-running astrometry.net.

If you want to use SExtractor for source extraction, add a sexControl class
attribute. If it is empty, extraction will be done using some default parameters.
You can add more (refer to the sextractor manual):

15

apidoc/gavo.helpers.anet-module.html
apidoc/gavo.helpers.anet-module.html

sexControl = """
DETECT_MINAREA 100
DETECT_THRESH 8
SEEING_FWHM 1.2
"""

-- do not change CATALOG_TYPE, CATALOG_NAME, and PARAME-
TERS_NAME.

You can even filter what sextractor has obtained. To do that, define and
objectFilter method (in addition to the sexControl attribute):

import numpy
from gavo.utils import pyfits
...

def objectFilter(self, inName):
"""throws out funny-looking objects from inName and throws out objects
near the border.
"""
hdulist = pyfits.open(inName)
data = hdulist[1].data
width = max(data.field("X_IMAGE"))
height = max(data.field("Y_IMAGE"))
badBorder = 0.3
data = data[data.field("ELONGATION")<1.2]
data = data[data.field("X_IMAGE")>width*badBorder]
data = data[data.field("X_IMAGE")<width-width*badBorder]
data = data[data.field("Y_IMAGE")>height*badBorder]
data = data[data.field("Y_IMAGE")<height-height*badBorder]

the extra numpy.array below works around a bug in several versions
of pyfits that would write the full, not the filtered array
hdu = pyfits.new_table(numpy.array(data))
hdu.writeto("foo.xyls")
hdulist.close()
os.rename("foo.xyls", inName)

Just make sure to rename the result you come up with to whatever is passed in
in inName.

Note, incidentally, that we take pyfits from gavo.utils. You should never import
pyfits directly, since this may pull in pyfits in a way incompatible with what the
rest of the DC software expects.

If you need more control over the parameters of astrometry.net, override the
_runAnet method. Its default implementation is:

def _runAnet(self, srcName):

16

return anet.getWCSFieldsFor(srcName, self.solverParameters,
self.sexControl, self.objectFilter, self.opts.copyTo,
self.opts.beVerbose)

So, if you had an attribute sexControl_in containing DETECT_MINAREA %d, you
could do something like:

def _runAnet(self, srcName):
for minArea in [300, 50, 150, 800, 2000, 8000]:

try:
self.sexControl = self.sexControl_in%minArea
res = api.AnetHeaderProcessor._runAnet(self, srcName)
if res is not None:

return res
except ShellCommandFailed: # Ignore failures

pass
raise anet.ShellCommandFailed("No anet parameter worked", None)

Since astrometry.net spews out oodles of headers that may not be of huge inter-
est to later users, the AnetHeaderProcessor implements comment and history
filters. It is probably a good idea to re-use those even when you want filters of
your own. This could look like this:

def historyFilter(self, value):
if "changed" in value:

return True
if "left" in value:

return False
return api.AnetHeaderProcessor.historyFilter(self, value)

To skip computation on some "known bad" cases without overriding _getHeader,
you can override _shouldRunAnet(srcName, hdr). If you return false there, no
astrometric calibration is attempted.

Analyzing calibration failures

If astrometry.net fails to solve fields, you can get a copy of the "sandbox" in
which the helpers.anet runs the software by passing your processing script the
--copy-to=path option. Caution: If the directory path already exists, it will be
deleted. If you run your processor with --bail, it will stop at the first non-solvable
field.

Going to the sandbox directory, you will find at least:

∙ img.fits -- a copy of the input file

17

∙ backend.cfg -- a configuration file for solve-field, in particular
containing the indices to be used.

∙ img.axy -- the extracted source positions in a binary FITS table
∙ lastCommand.log -- A log of what the commands ran spat out.

There may also be sextractor control files, images generated by solve-field, and
more.

To figure out what’s wrong, the first stop should be lastCommand.log. In
particular, it shows the command lines of the programs executed, so you can
modify them to try and figure out things (but the command lines do not include
quoting; this is usually harmless for what the astrometric calibration does, but
you have been warned).

To rerun SExtractor, say:

sextractor -c anet.control img.fits

You should sort the result by magnitude, since that’s what anet’s solver expects.
In the normal case, you can do this like so:

$ANET_PATH/tabsort MAG_ISO img.axy out.axy && mv out.axy img.axy

To get an idea what the source extraction has done, you can try anet’s plotxy.
You could use anet’s solve-field, but this probably will not reflect what is actually
going on within the helper, in particular not if sextractor is in use.

Instead, do something like:

gm convert -flip -scale 6.25% img.fits pnm:- | $ANET_PATH/plotxy -I - -i img.axy -C red -P -w 2 -N50 -s circle -S 0.0625 -X X_IMAGE -Y Y_IMAGE > ws.png

We use gm (from GraphicsMagick) here since netpbm’s fitstopnm has issues
with large files. You will want to use different scales for larger or smaller images
both in gm convert’s scale and plotxy’s -S option, or leave them out altogether,
like this:

gm convert -flip img.fits pnm:- | $ANET_PATH/plotxy -I - -i img.axy -C red -P -w 2 -N50 -s circle -X X_IMAGE -Y Y_IMAGE > ws.png

for smaller images. Also, change the argument to -N if you change endob in
the solverParameters to get an idea which objects are actually looked at.

18

What to Try

In the case of calibration failures you may play around with SExtractor’s param-
eters DETECT_MINAREA and DETECT_THRESH. This is done by running:

calibrate.py --minarea=MINAREA --detectthreshold=DETECTTHRESH

DETECT_THRESH refers to the detection threshold (in sigma) above the local
background. A group (of pixels) is formed by a number of pixels connected to
each other whose values exceed the local threshold. DETECT_MINAREA sets a
lower bound on the number of pixels a group should have to trigger a detection.

The default values used for the calibration are MINAREA = 300 and DETECT-
THRESH = 4. In some cases it is useful to decrease the MINAREA parameter
and to increase the detection reliability by increasing the threshold value, e.g.:

calibrate.py --minarea=10 --detectthreshold=6

19

	Contents
	Processors
	Processor Command line
	Auxiliaries
	Parallel Execution
	Gathering Data
	Processor Report Generation
	Overriding the Sources
	Utility Methods

	Precomputing previews
	api.PreviewMaker
	Making Previews for Spectra

	Basic FITS Manipulation
	Header Selection
	Scanned Plates
	Astrometry.net
	Calibration using Astrometry.net
	Analyzing calibration failures
	What to Try

