GAVO DC Software Reference Documentation

Author: Markus Demleitner

Email: gavoQ@ari.uni-heidelberg.de
Date: 2018-10-02

Contents

Resource Descriptor Element Reference 14
Element apply 16
Element bind 17
Element column 18
Element columnRef 20
Element condDesc oo 21
Element coverage 22
Element customDFo 23
Element customRF 23
Elementdata 24
Element DEFAULTS 26
Elementdm 26
Element EDIT 26
Element events 27
Element execute 27
Element foreignKeyo 28

mailto:gavo@ari.uni-heidelberg.de

Element group 29

Element httpUpload L 30
Element ignoreOn 31
Element ignoreSources 31
Elementindex 32
Element inputKey 33
Elementjob 36
Element lateEvents 38
Element macDef 38
Element make 38
Elementmap 39
Element mixinDef 40
Element mixinParo 42
Element option 42
Element outputFieldo 43
Element outputTable 45
Element par 48
Element param 49
Element paramRef 51
Element phraseMaker o oo oL 52
Element procDefo 53
Element processEarly 54
Element processLate 55
Element PRUNE 56
Element publish (data) 57
Element publish 57

Element regSuite 58

Element regTest 59
Element resource 60
ElementresRec 62
Element rowmaker oL 63
Element script 64
Element service 65
Elementsetup 67
Element sources 68
Elementstc 69
Elementtable 69
Element updater 71
Element url 72
Elementvalues. 73
Elementvar 75
Active Tags 75
Element FEED 75
Element LFEED 76
Element LOOP 77
Element NXSTREAM 78
Element STREAM 79

Grammars Available 79

Element binaryGrammar L 79
Element binaryRecordDef 0L 80
Element cdfHeaderGrammar 81
Element columnGrammar oL 82
Element contextGrammar 84
Element csvGrammar 85
Element customGrammaro 87
Element dictlistGrammar L 88
Element directGrammar 89
Element embeddedGrammar oL 90
Element fitsProdGrammar 92
Element fitsTableGrammar 94
Element freeREGrammar 95
Element iterator 96
Element keyValueGrammar L 97
Element mapKeys 99
Element mySQLDumpGrammar. 99
Element nullGrammar 101
Element odbcGrammar 102
Element pargetter L 103
Element pdsGrammar L 104
Element reGrammar 106
Element rowfiltero 108
Element rowsetGrammar 109
Element sourceFields L 110
Element transparentGrammar L. 112
Element voTableGrammar 113

Cores Available 114

Element adqlCore 114
Element coreProco 114
Element customCore 115
Element dataFormatter oL 116
Element dataFunctiono 118
Element datalinkCore 119
Element dbCore 121
Element debugCore L 122
Element descriptorGenerator 123
Element fancyQueryCore 124
Element fixedQueryCore 125
Element inputTable 126
Element metaMakero 127
Element nullCore 129
Element productCore 130
Element pythonCore 131
Element registryCore 132
Element scsCore 133
Element siapCutoutCore 134
Element ssapCore 135
Element tapCore 137
Element uploadCore 137

Predefined Macros 138

Macro RSTecO o 138
Macro RSTecby 139
Macro RSTecbysa 139
Macro RSTservicelink, 139
Macro RSTtable 140
Macro colNames 140
Macro curtable 140
Macro decapitalize 141
Macro dIMetaURI oo 141
Macro docField 141
Macro fullDLURL 142
Macro fullPath 142
Macro getConfig 142
Macro getParam Lo 143
Macro inputRelativePath o000 143
Macro inputSize 144
Macro internallink 144
Macro lastSourceElements L 144
Macro magicEmptyo o 145
Macro metaString 145
Macro nameForUCD 146
Macro nameForUCDs 146
Macro property 146
MacrogName 147
Macro quote 147

Macro rdld 147

Macro rdldDotted 148
Macro rootlessPath o 148
MacrorowsMade 148
Macro rowsProcessed 149
Macro schema 149
Macro sourceCDate 149
Macro sourceDate 150
Macro splitPreviewPath 0L 150
Macro sqlquote L 151
Macro srcstem L. 151
Macro standardPreviewPath 151
Macro standardPubDIDo 152
Macro tablename 152
Macro tablesForTAP 153
Macro test L 153
Macrotoday 153
Macro upper 154
Macro urlquote L 154
Mixins 154
The //epntap2#tlocalfile-2_0 Mixin 155
The //epntap2#table-2_0 Mixin 155
The //obscore#publish Mixin 156
The //obscore#publishSIAP Mixin 158
The //obscore#publishSSAPHCD Mixin 161
The //obscore#publishSSAPMIXC Mixin 164

The //products#table Mixin 167

The //scs#positions Mixino L 167
The //scs#q3cindex Mixin 168
The //siap#pgs Mixin 168
The //slap#tbasic Mixin Lo L 169
The //ssap#hcd Mixino 169
The //ssap#mixc Mixino 171
The //ssap#sdm-instance Mixin 172
The //ssap#simpleCoverage Mixin 173
Triggers 173
Elementand 173
Element keyls L 174
Element keyMissing L 174
Element keyNull o 175
Element keyPresent 175
Elementnot 175
Renderers Available 176
The admin Renderer 176
The api Renderer 176
The availability Renderer 177
The capabilities Renderer 177
The coverage Renderer L. 177
The custom Renderer 177
The dlasync Renderer 178
The dlget Renderer 178

The dlmeta Renderer 178

The docform Renderer 178
The edition Renderero 179
The examples Renderer 179
The external Renderer 180
The fixed Renderer 180
The form Renderer 180
The get Renderer 181
The howtocite Renderero 181
The info Renderer 181
The logout Renderer 181
The mimg.jpeg Renderer 181
The mupload Renderero 182
The pubreg.xml Renderer L. 182
Thegp Renderer. 182
The rdinfo Renderero 182
The scs.xml Renderer 183
The siap.xml Renderer 183
The siap2.xml Renderer 184
The slap.xml Renderer oL 184
The soap Renderer 184
The ssap.xml Renderer L. 185
The static Renderero 185
The tableMetadata Renderer 186
The tableinfo Renderero 186
The tablenote Renderer 186

The tap Renderer
The upload Renderer
The uws.xml Renderer

The volatile Renderer

Predefined Procedures
Procedures available for rowmaker/parmaker apply
Procedures available for grammar rowfilters

Procedures available for datalink cores

Predefined Streams
Datalink-related Streams

Other Streams

Data Descriptors

Updating Data Descriptors

Metadata
Inputing Metadata
Meta inheritance
Meta formats
Macros in Meta Elements L
Typed Meta Elementso
Metadata in Standard Renderers
RMI-Style Metadata

Coverage Metadata

Display Hints

10

187
187
200

202

206
206

208

209

210

212

Data Model Annotation
Annotation Using SIL

GeoJSON annotation

DaCHS’ Service Interface
Core Args
Table-based cores

Output tables

Writing Custom Cores
Defining a Custom Core
Giving the Core Functionality
Database Options

Python Cores instead of Custom Cores

Regression Testing
Introduction L
Writing Regression Tests
RegTest URLs o
RegTest Tests
Running Tests

Examples.

Datalink and SODA
Integrating Datalink Services
Making Datalinks o
Defining Processing Services

General Notes on Processing Services

11

234
234
236

238
239
240

245

246
247
249
252
252

253
253
254
255
258
260

261

Descriptor Generators
Meta Makers
Metadata Error Messages
Data Functions
Data Formatters
Registry Matters
Datalinks as Product URLs

SDM compliant tables

Product Previews

Custom UWSes

Custom Pages

Manufacturing Spectra

Making SDM Tables

Echelle Spectra

Supporting getData

Adapting Obscore

Writing Custom Grammars

Dispatching Grammars

Functions Available for Row Makers

12

283

285

286

289

289

291

291

291

292

294
296

297

Scripting 304

SQL scriptso 304
Python scripts 304
Script types 305
Examples. 305
ReStructuredText 306
Code in DaCHS 307
Importing modules oo 307
The DaCHS API. 308
System Tables 337
dc.authors L 337
dc.datalinkjobso 338
de.groups 339
deinterfaces 339
demetastore L. 340
de.products 340
dc.res_dependencies 341
deresources 341
dc.resources_join Lo 342
dessets . . . L 343
dcsubjects 344
dc.subjects_joino Lo 344
detablemetao 345
dousers 346
ivoa.ObsCore 346

ivoa._obscoresources Lo 348

ivoa.emptyobscore 348
tap_schema.columnso 350
tap_schema.groups 351
tap_schema.key_columns L. 351
tap_schema.keys 352
tap_schema.schemas 352
tap_schema.supportedmodels 352
tap_schema.tables 353
tap_schema.tapjobs 353
uws.userjobs L L 354

Resource Descriptor Element Reference

The following (XML) elements are defined for resource descriptors. Some el-
ements are polymorous (Grammars, Cores). See below for a reference on the
respective real elements known to the software.

Each element description gives a general introduction to the element’s use (com-
plain if it's too technical; it's not unlikely that it is since these texts are actually
the defining classes’ docstrings).

Within RDs, element properties that can (but need not) be written in XML
attributes, i.e., as a single string, are called "atomic". Their types are given in
parentheses after the attribute name along with a default value.

In general, items defaulted to Undefined are mandatory. Failing to give a value
will result in an error at RD parse time.

Within RD XML documents, you can (almost always) give atomic children either
as XML attribute (att="abc") or as child elements (<att>abc</abc>). Some of the
"atomic" attributes actually contain lists of items. For those, you should nor-
mally write multiple child elements (<att>vali</att><att>val2</att>), although
sometimes it's allowed to mash together the individual list items using a variety
of separators.

Here are some short words about the types you may encounter, together with
valid literals:

14

e boolean — these allow quite a number of literals; use True and False or
yes and no and stick to your choice.

e unicode string — there may be additional syntactical limitations on those.
See the explanation

e integer — only decimal integer literals are allowed

e id reference — these are references to items within XML documents; all
elements within RDs can have an id attribute, which can then be used as
an id reference. Additionally, you can reference elements in different RDs
using <rd-id>#<id>. Note that DaCHS does not support forward refer-
ences (i.e., references to items lexically behind the referencing element).

e list of id references — Lists of id references. The values could be mashed
together with commas, but prefer multiple child elements.

There are also "Dict-like" attributes. These are built from XML like:

<d key="ab">valil</d>
<d key="cd">val2</d>

In addition to key, other (possibly more descriptive) attributes for the key within
these mappings may also be allowed. In special circumstances (in particular with
properties) it may be useful to add to a value:

<property key="brokencols">ab,cd</property>
<property key="brokencols" cumulative="True">,x</property>

will leave ab,cd,x in brokencols.

Many elements can also have "structure children". These correspond to com-
pound things with attributes and possibly children of their own. The name given
at the start of each description is irrelevant to the pure user; it's the attribute
name you'd use when you have the corresponding python objects. For authoring
XML, you use the name in the following link; thus, the phrase "colRefs (contains
Element columnRef..." means you'd write <columnRef...>.

Here are some guidelines as to the naming of the attributes:
e Attributes giving keys into dictionaries or similar (e.g., column names)
should always be named key

e Attributes giving references to some source of events or data should always
be named source, never "src" or similar

15

e Attributes referencing generic things should always be called ref; of
course, references to specific things like tables or services should indicate
in their names what they are supposed to reference.

Also note that examples for the usage of almost everything mentioned here can
be found in in the GAVO datacenter element reference.

Element apply

A code fragment to manipulate the result row (and possibly more).
Apply elements allow embedding python code in rowmakers.

The current input fields from the grammar (including the rowmaker's vars) are
available in the vars dictionary and can be changed there. You can also add
new keys.

You can add new keys for shipping out in the result dictionary.
The active rowmaker is available as parent. It is also used to expand macros.

The table that the rowmaker feeds to can be accessed as targetTable. You
probably only want to change meta information here (e.g., warnings or infos).

As always in procApps, you can get the embedding RD as rd; this is useful to,
e.g., resolve references using rd.getByRD, and specify resdir-relative file names
using rd.getAbsPath.

May occur in Element rowmaker.
Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

16

http://docs.g-vo.org/DaCHS/elemref.html

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element bind

A binding of a procedure definition parameter to a concrete value.

The value to set is contained in the binding body in the form of a python
expression. The body must not be empty.

May occur in Element iterator, Element rowfilter, Element apply, Element job,
Element processLate, Element dataFormatter, Element regTest, Element core-
Proc, Element dataFunction, Element sourceFields, Element metaMaker, El-
ement phraseMaker, Element descriptorGenerator, Element processEarly, Ele-
ment pargetter.

Atomic Children

e Character content of the element (defaulting to <Not given/empty>)
-- The default for the parameter. The special value ___NULL___ indi-
cates a NULL (python None) as usual. An empty content means a non-
preset parameter, which must be filled in applications. The magic value
_ EMPTY___ allows presetting an empty string.

e description (whitespace normalized unicode string; defaults to None) --
Some human-readable description of what the parameter is about

17

e key (unicode string; defaults to <Undefined>) -- The name of the pa-
rameter

e late (boolean; defaults to 'False’) -- Bind the name not at setup time but
at applying time. In rowmaker procedures, for example, this allows you
to refer to variables like vars or rowlter in the bindings.

Element column

A database column.

Columns contain almost all metadata to describe a column in a database table
or a VOTable (the exceptions are for column properties that may span several
columns, most notably indices).

Note that the type system adopted by the DC software is a subset of postgres’
type system. Thus when defining types, you have to specify basically SQL
types. Types for other type systems (like VOTable, XSD, or the software-internal
representation in python values) are inferred from them.

Columns can have delimited identifiers as names. Don't do this, it's no end of
trouble. For this reason, however, you should not use name but rather key to
programmatially obtain field's values from rows.

Properties evaluated:

e std -- set to 1 to tell the tap schema importer to have the column's std
column in TAP_SCHEMA 1 (it's 0 otherwise).

e statisticsTarget -- an integer to be set as this column’s statistics-gathering
target. Set this to something between 100 and 10000 on postgres if you
have large tables and columns with strongly non-uniform distributions.
Set to -1 to revert to the system default. gavo imp -m will apply changes
here.

e targetType -- for a column containing a URL, the media type of the
resource pointed at. This is for producing extra annotation for Aladin

and friends as per http://mail.ivoa.net/pipermail /dal /2018-May,/008017.
html

e targetTitle - if you give targetType, use this to set the link title (defaults
to "Link").

May occur in Element table.

18

http://mail.ivoa.net/pipermail/dal/2018-May/008017.html
http://mail.ivoa.net/pipermail/dal/2018-May/008017.html

Atomic Children

e description (whitespace normalized unicode string; defaults to ") -- A
short (one-line) description of the values in this column.

e displayHint (Display hint; defaults to ") -- Suggested presentation; the
format is <kw>=<value>{,<kw>=<value>}, where what is interpreted
depends on the output format. See, e.g., documentation on HTML ren-
derers and the formatter child of outputFields.

e fixup (unicode string; defaults to None) -- A python expression the
value of which will replace this column’s value on database reads.

Write a to access the original value. You can use macros
for the embedding table. This is for, e.g., simple URL generation
(fixup=""internallink{/this/svc}'+ "). It will only kick in when tu-

ples are deserialized from the database, i.e., not for values taken from
tables in memory.

e name (a column name within an SQL table. These have to match the
SQL regular_identifier production. In a desperate pinch, you can generate
delimited identifiers (that can contain anything) by prefixing the name
with 'quoted/’; defaults to <Undefined>) -- Name of the column

e note (unicode string; defaults to None) -- Reference to a note meta on
this table explaining more about this column

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e required (boolean; defaults to 'False’) -- Record becomes invalid when
this column is NULL

e tablehead (unicode string; defaults to None) -- Terse phrase to put into
table headers for this column

e type (a type name; the internal type system is similar to SQL's with some
restrictions and extensions. The known atomic types include: unicode,
pql-float, text, spoly, char, raw, vexpr-mjd, boolean, file, smallint, vexpr-
string, scircle, vexpr-float, vexpr- date, pql-string, smoc, real, spoint, pql-
int, timestamp, pql-date, int4range, date, integer, box, pgl-upload, double
precision, sbox, bigint, time, bytea; defaults to 'real’) -- datatype for the
column (SQL-like type system)

e ucd (unicode string; defaults to ") -- UCD of the column

e unit (unicode string; defaults to ") -- Unit of the values

19

e utype (unicode string; defaults to None) -- utype for this column

e verbLevel (integer; defaults to '20") -- Minimal verbosity level at which
to include this column

e xtype (unicode string; defaults to None) -- VOTable xtype giving the
serialization form; you usually do not want to set this, as the xtypes
actually used are computed from database type. DaCHS xtypes are only
used for a few unsavoury, hopefully temporary, hacks

Structure Children

e values (contains Element values) -- Specification of legal values

Other Children

e dmRoles (read-only list of roles played by this column in DMs; defaults
to []) -- Roles played by this column; cannot be asigned to.

e meta - a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-

ment.

e stc (non-settable internally used value; defaults to None) -- Internally
used STC information for this column (do not assign to unless instructed
to do so)

e stcUtype (non-settable internally used value; defaults to None) -- Inter-
nally used STC information for this column (do not assign to)

Element columnRef

A reference from a group to a column within a table.

ColumnReferences do not support qualified references, i.e., you can only give
simple names.

May occur in Element group.

20

Atomic Children

e key (unicode string; defaults to <Undefined>) -- The key (i.e., name) of
the referenced column or param.

e ucd (unicode string; defaults to None) -- The UCD of the group

e utype (unicode string; defaults to None) -- A utype for the group

Element condDesc

A query specification for cores talking to the database.

CondDescs define inputs as a sequence of InputKeys (see Element InputKey).
Internally, the values in the InputKeys can be translated to SQL.

May occur in Element scsCore, Element siapCutoutCore, Element resource, El-
ement productCore, Element dbCore, Element fancyQueryCore, Element ssap-
Core.

Atomic Children

e buildFrom (id reference; defaults to None) -- A reference to a column or
an InputKey to define this CondDesc

e combining (boolean; defaults to 'False’) -- Allow some input keys to be
missing when others are given? (you want this for pseudo- condDescs just
collecting random input keys)

e fixedSQL (unicode string; defaults to None) -- Always insert this SQL
statement into the query. Deprecated.

e joiner (unicode string; defaults to 'OR’) -- When yielding multiple frag-
ments, join them using this operator (probably the only thing besides OR
is AND).

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e required (boolean; defaults to 'False’) -- Reject queries not filling the
InputKeys of this CondDesc

e silent (boolean; defaults to 'False’) -- Do not produce SQL from this
CondDesc. This can be used to convey meta information to the core.
However, in general, a service is a more appropriate place to deal with
such information, and thus you should prefer service InputKeys to silent
CondDescs.

21

Structure Children

e group (contains Element group) -- Group child input keys in the input
table (primarily interesting for web forms, where this grouping is shown
graphically; Set the style property to compact to have a one-line group
there)

e inputKeys (contains Element inputKey and may be repeated zero or more
times) -- One or more InputKeys defining the condition’s input.

e phraseMaker (contains Element phraseMaker) -- Code to generate custom
SQL from the input keys

Element coverage

The coverage of a resource.

For now, this is attached to the complete resource rather than the table, since
this is where it sits in VOResource. DaCHS could be a bit more flexible, allowing
different coverages per publish element. It is not right now, though.

Note: Technically, this will introduce or amend the coverage meta element.
The information given here will be masked if you define a coverage meta on the
service or table level. Just do not do that.

May occur in Element resource.
Atomic Children

e spatial (unicode string; defaults to <Not given/empty>) -- A MOC in
ASCII representation giving the ICRS coverage of the resource

e spectral (A sequence of intervals (a space-separated pair of floats; de-
faults to u'[]") -- Interval(s) of spectral coverage, in meters of BARYCEN-
TER vacuum wavelength.

e temporal (A sequence of intervals (a space-separated pair of floats;
defaults to u'[]') -- Interval(s) of temporal coverage, in MJD (for TT
BARYCENTER).

Structure Children

e updater (contains Element updater) -- Rules for automatic computation
or updating of coverage information.

22

Element customDF

A custom data function for a service.

Custom data functions can be used to expose certain aspects of a service to
Nevow templates. Thus, their definition usually only makes sense with custom
templates, though you could, in principle, override built-in render functions.

In the data functions, you have the names ctx for nevow's context and data for
whatever data the template passes to the renderer.

You can access the embedding service as service, the embedding RD as ser-
vice.rd.

You can return arbitrary python objects -- whatever the render functions can
deal with. You could, e.g., write:

<customDF name="now">
return datetime.datetime.utcnow()
</customDF>

You also see a nevow context within the function. You can use that to access
a query paramter order like this:

args = inevow.IRequest(ctx).args
sortOrder = args.get("order", ["authors"l)

May occur in Element service.
Atomic Children

e Character content of the element (defaulting to ") -- Function body of
the renderer; the arguments are named ctx and data.

e name (unicode string; defaults to <Undefined>) -- Name of the render
function (use this in the n:render or n:data attribute in custom templates).

Element customRF

A custom render function for a service.

Custom render functions can be used to expose certain aspects of a service to
Nevow templates. Thus, their definition usually only makes sense with custom
templates, though you could, in principle, override built-in render functions.

23

In the render functions, you have the names ctx for nevow's context and data
for whatever data the template passes to the renderer.

You can return anything that can be in a stan DOM. Usually, this will be a
string. To return HTML, use the stan DOM available under the T namespace.

As an example, the following code returns the current data as a link:

return ctx.tagl[T.a(href=data) [datall
You can access the embedding service as service, the embedding RD as ser-
vice.rd.

May occur in Element service.
Atomic Children

e Character content of the element (defaulting to ") -- Function body of
the renderer; the arguments are named ctx and data.

e name (unicode string; defaults to <Undefined>) -- Name of the render
function (use this in the n:render or n:data attribute in custom templates).

Element data

A description of how to process data from a given set of sources.

Data descriptors bring together a grammar, a source specification and "makes",
each giving a table and a rowmaker to feed the table from the grammar output.

They are the "executable" parts of a resource descriptor. Their ids are used as
arguments to gavoimp for partial imports.

May occur in Element resource.
Atomic Children

e auto (boolean; defaults to 'True') -- Import this data set if not explicitly
mentioned on the command line?

e dependents (Zero or more unicode string-typed recreateAfter elements;
defaults to u'[]') -- A data ID to recreate when this resource is remade;
use # syntax to reference in other RDs.

24

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e updating (boolean; defaults to 'False’) -- Keep existing tables on im-
port? You usually want this False unless you have some kind of sources
management, e.g., via a sources ignore specification.

Structure Children

e grammar (contains one of keyValueGrammar, cdfHeaderGrammar, direct-
Grammar, dictlistGrammar, freeREGrammar, voTableGrammar, custom-
Grammar, rowsetGrammar, fitsTableGrammar, csvGrammar, nullGram-
mar, odbcGrammar, fitsProdGrammar, contextGrammar, transparent-
Grammar, columnGrammar, embeddedGrammar, binaryGrammar, pds-
Grammar, reGrammar, mySQLDumpGrammar) -- Grammar used to parse
this data set.

e makes (contains Element make and may be repeated zero or more times)
-- Specification of a target table and the rowmaker to feed them.

e params (contains Element param and may be repeated zero or more times)
-- Param ("global columns") for this data (mostly for VOTable serializa-
tion).

e registration (contains Element publish (data)) -- A registration (to the
VO registry) of this table or data collection.

e rowmakers (contains Element rowmaker and may be repeated zero or
more times) -- Embedded build rules (preferably put rowmakers directly
into make elements)

e sources (contains Element sources) -- Specification of sources that should
be fed to the grammar.

e tables (contains Element table and may be repeated zero or more times)
-- Embedded table definitions (usually, tables are defined toplevel)

Other Children

e meta - a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

25

Element DEFAULTS

Defaults for macros.

In STREAMs and NXSTREAMs, DEFAULTS let you specify values filled into
macros when a FEED doesn’t given them. Macro names are attribute names
(or element names, if you insist), defaults are their values.

May occur in Element NXSTREAM, Element EDIT, Element STREAM, Ele-
ment lateEvents, Element events.

Element dm

an annotation of a table in terms of data models.
The content of this element is a Simple Instance Language clause.

May occur in Element outputTable, Element table.
Atomic Children

e Character content of the element (defaulting to ") -- SIL (simple instance
language) annotation.

Element EDIT

an event stream targeted at editing other structures.

When replaying a stream in the presence of EDITs, the elements are are con-
tinually checked against ref. If an element matches, the children of edit will be
played back into it.

May occur in Element LFEED, Element LOOP, Element mixinDef, Element
FEED.

Atomic Children

e doc (unicode string; defaults to None) -- A description of this stream
(should be restructured text).

e passivate (unicode string; defaults to None) -- If set to True, do not
expand active elements immediately in the body of these events (as in an
NXSTREAM)

e ref (unicode string; defaults to <Undefined>) -- Destination of the edits,
in the form elementName[<name or id>]

26

Structure Children

e DEFAULTS (contains Element DEFAULTS) -- A mapping giving defaults
for macros expanded in this stream. Macros not defaulted will fail when
not given in a FEED's attributes.

Element events

An event stream as a child of another element.

May occur in Element LFEED, Element LOOP, Element mixinDef, Element
FEED.

Atomic Children

e doc (unicode string; defaults to None) -- A description of this stream
(should be restructured text).

e passivate (unicode string; defaults to None) -- If set to True, do not
expand active elements immediately in the body of these events (as in an
NXSTREAM)

Structure Children

e DEFAULTS (contains Element DEFAULTS) -- A mapping giving defaults
for macros expanded in this stream. Macros not defaulted will fail when
not given in a FEED's attributes.

Element execute

a container for calling code.

This is a cron-like functionality. The jobs are run in separate threads, so they
need to be thread-safe with respect to the rest of DaCHS. DaCHS serializes
calls, though, so that your code should never run twice at the same time.

At least on CPython, you must make sure your code does not block with the
GIL held; this is still in the server process. If you do daring things, fork off (note
that you must not use any database connections you may have after forking,
which means you can't safely use the RD passed in). See the docs on Element
job.

Then testing/debugging such code, use gavo admin execute rd#id to immedi-
ately run the jobs.

May occur in Element resource.

27

Atomic Children

e at (Comma-separated list of strings; defaults to <Not given/empty>)
-- One or more hour:minute pairs at which to run the code each day.
This conflicts with every. Optionally, you can prefix each time by one of
m<dom> or w<dow> for jobs only to be exectued at some day of the
month or week, both counted from 1. So, 'm22 7:30, w3 15:02" would
execute on the 22nd of each month at 7:30 UTC and on every wednesday
at 15:02.

debug (boolean; defaults to 'False’) -- If true, on execution of external
processes (span or spawnPython), the output will be accumulated and
mailed to the administrator. Note that output of the actual cron job
itself is not caught (it might turn up in serverStderr). You could use
execDef.outputAccum.append(<stuff>) to have information from within
the code included.

every (integer; defaults to <Not given/empty>) -- Run the job roughly
every this many seconds. This conflicts with at. Note that the first
execution of such a job is after every/10 seconds, and that the timers
start anew at every server restart. So, if you restart often, these jobs may
run much more frequently or not at all if the interval is large. If every is
smaller than zero, the job will be executed immediately when the RD is
being loaded and is then run every abs(every) seconds

title (unicode string; defaults to <Undefined>) -- Some descriptive title
for the job; this is used in diagnostics.

Structure Children

e job (contains Element job) -- The code to run.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-

ment.

Element foreignKey

A description of a foreign key relation between this table and another one.

May occur in Element outputTable, Element table.

28

Atomic Children

e dest (unicode string; defaults to <Not given/empty>) -- Comma- sepa-
rated list of columns in the target table belonging to its key. No checks
for their existence, uniqueness, etc. are done here. If not given, defaults
to source.

e inTable (id reference; defaults to <Undefined>) -- Reference to the table
the foreign key points to.

e metaOnly (boolean; defaults to 'False’) -- Do not tell the database to
actually create the foreign key, just declare it in the metadata. This is
for when you want to document a relationship but don't want the DB to
actually enforce this. This is typically a wise thing to do when you have,
say a gigarecord of flux/density pairs and only several thousand metadata
records -- you may want to update the latter without having to tear down
the former.

e source (unicode string; defaults to <Undefined>) -- Comma- separated
list of local columns corresponding to the foreign key. No sanity checks
are performed here.

Element group

A group is a collection of columns, parameters and other groups with a dash of
metadata.

Within a group, you can refer to columns or params of the enclosing table by
their names. Nothing outside of the enclosing table can be part of a group.

Rather than referring to params, you can also embed them into a group; they
will then not be present in the embedding table.

Groups may contain groups.

One application for this is grouping input keys for the form renderer. For such
groups, you probably want to give the label property (and possibly cssClass).

May occur in Element inputTable, Element outputTable, Element table, Element
condDesc.

Atomic Children

e description (whitespace normalized unicode string; defaults to None) --
A short (one-line) description of the group

29

e name (A name for a table or service parameter. These have to match
[A-Za-z_] [A-Za-z0-9_]1*$.; defaults to None) -- Name of the column (must
be SQL-valid for onDisk tables)

e ucd (unicode string; defaults to None) -- The UCD of the group

e utype (unicode string; defaults to None) -- A utype for the group
Structure Children

e columnRefs (contains Element columnRef and may be repeated zero or
more times) -- References to table columns belonging to this group

e groups (contains an instance of the embedding element and may be re-
peated zero or more times) -- Sub-groups of this group (names are still
referenced from the enclosing table)

e paramRefs (contains Element paramRef and may be repeated zero or more
times) -- Names of table parameters belonging to this group

e params (contains Element param and may be repeated zero or more times)
-- Immediate param elements for this group (use paramref to reference
params defined in the parent table)

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element httpUpload

An upload going with a URL.

May occur in Element url.
Atomic Children

e Character content of the element (defaulting to ") -- Inline data to be
uploaded (conflicts with source)

e fileName (unicode string; defaults to None) -- Remote file name for the
uploaded file.

e name (unicode string; defaults to <Undefined>) -- Name of the upload
parameter

e source (unicode string; defaults to <Not given/empty>) -- Path to a file
containing the data to be uploaded.

30

Element ignoreOn

A condition on a row that, if true, causes the row to be dropped.

Here, you can set bail to abort an import when the condition is met rather than
just dropping the row.

May occur in Element voTableGrammar, Element rowmaker, Element reGram-
mar, Element contextGrammar, Element columnGrammar, Element cdfHeader-
Grammar, Element fitsTableGrammar, Element rowsetGrammar, Element bina-
ryGrammar, Element fitsProdGrammar, Element pdsGrammar, Element cus-
tomGrammar, Element odbcGrammar, Element mySQLDumpGrammar, Ele-
ment freeREGrammar, Element dictlistGrammar, Element keyValueGrammar,
Element csvGrammar, Element embeddedGrammar, Element transparentGram-
mar, Element nullGrammar.

Atomic Children

e bail (boolean; defaults to 'False’) -- Abort when condition is met?
e name (unicode string; defaults to 'unnamed’) -- A name that should help

the user figure out what trigger caused some condition to fire.

Structure Children

e triggers (contains any of and,keyPresent,keyNull,keyls, keyMissing,not and
may be repeated zero or more times) -- One or more conditions joined
by an implicit logical or. See Triggers for information on what can stand
here.

Element ignoreSources

A specification of sources to ignore.

Sources mentioned here are compared against the inputsDir-relative path of
sources generated by sources (cf. Element sources). If there is a match, the
corresponding source will not be processed.

You can get ignored files from various sources. If you give more than one source,
the set of ignored files is the union of the the individual sets.

fromdbUpdating is a bit special in that the query must return UTC timestamps
of the file’s mtime during the last ingest in addition to the accrefs (see the
tutorial for an example).

Macros are expanded in the RD.

May occur in Element sources.

31

Atomic Children

e fromdb (unicode string; defaults to None) -- A DB query to obtain a
set of sources to ignore; the select clause must select exactly one column
containing the source key. See also Using fromdb on ignoreSources

e fromdbUpdating (unicode string; defaults to None) -- A DB query to
obtain a set of sources to ignore unless they the timestamp on disk is
newer than what's returned. The query given must return pairs of accrefs
and UTC timestamps of the last ingest. See also Using fromdbUpdating
on ignoreSources

e fromfile (unicode string; defaults to None) -- A name of a file containing
blacklisted source paths, one per line. Empty lines and lines beginning
with a hash are ignored.

e patterns (Zero or more unicode string-typed pattern elements; defaults
to u'[]') -- Shell patterns to ignore. Slashes are treated like any other
character, i.e., patterns do not know about paths.

Element index

A description of an index in the database.

In real databases, indices may be fairly complex things; still, the most common
usage here will be to just index a single column:

<index columns="my_col"/>

To index over functions, use the character content; parentheses are added by
DaCHS, so don't have them in the content. An explicit specification of the
index expression is also necessary to allow RE pattern matches using indices in
character columns (outside of the C locale). That would be:

<index columns="uri">uri text_pattern_ops</index>

(you still want to give columns so the metadata engine is aware of the index).
See section "Operator Classes and Operator Families" in the Postgres documen-
tation for details.

For pgsphere-valued columns, you at the time of writing need to specify the
method:

<index columns="coverage" method="GIST"/>

32

To define q3c indices, use the //scs#q3cindex mixin; if you're devious enough to
require something more flexible, have a look at that mixin’s definition.

If indexed columns take part in a DaCHS-defined view, DaCHS will not notice.
You should still declare the indices so users will see them in the metadata;
writing:

<index columns="coll, col2, col3"/>

is sufficent for that.

May occur in Element outputTable, Element table.
Atomic Children

e cluster (boolean; defaults to 'False’) -- Cluster the table according to this
index?

e columns (Comma-separated list of strings; defaults to ") -- Table columns
taking part in the index (must be given even if there is an expression build-
ing the index and mention all columns taking part in the index generated
by it

e Character content of the element (defaulting to ") -- Raw SQL specifying
an expression the table should be indexed for. If not given, the expression
will be generated from columns (which is what you usually want).

e method (unicode string; defaults to None) -- The indexing method, like
an index type. In the 8.x, series of postgres, you need to set method=GIST
for indices over pgsphere columns; otherwise, you should not need to worry
about this.

e name (unicode string; defaults to <Undefined>) -- Name of the index.
Defaults to something computed from columns; the name of the parent
table will be prepended in the DB. The default will not work if you have
multiple indices on one set of columns.

Element inputKey

A description of a piece of input.

Think of inputKeys as abstractions for input fields in forms, though they are
used for services not actually exposing HTML forms as well.

Some of the DDL-type attributes (e.g., references) only make sense here if
columns are being defined from the InputKey.

Properties evaluated:

33

e defaultForForm -- a value entered into form fields by default (be stingy
with those; while it's nice to not have to set things presumably right for
almost everyone, having to delete stuff you don't want over and over is
really annoying).

e adaptToRenderer -- a true boolean literal here causes the param to be
adapted for the renderer (e.g., float could become vizierexpr-float). You'll
usually not want this, because the expressions are generally evaluated by
the database, and the condDescs do the adaptation themselves. This is
mainly for rare situations like file uploads in custom cores.

e notForRenderer -- a renderer name for which this inputKey is suppressed

e onlyForRenderer -- a renderer name for which this inputKey will be pre-
served; it will be dropped for all others.

May occur in Element inputTable, Element contextGrammar, Element cond-
Desc, Element service, Element datalinkCore.

Atomic Children

e Character content of the element (defaulting to <Not given/empty>) --
The value of parameter. It is parsed according to the param’s type using
the default parser for the type VOTable tabledata.

e description (whitespace normalized unicode string; defaults to ") - A
short (one-line) description of the values in this column.

e displayHint (Display hint; defaults to ") -- Suggested presentation; the
format is <kw>=<value>{,<kw>=<value>}, where what is interpreted
depends on the output format. See, e.g., documentation on HTML ren-
derers and the formatter child of outputFields.

e fixup (unicode string; defaults to None) -- A python expression the
value of which will replace this column’s value on database reads.

Write a to access the original value. You can use macros
for the embedding table. This is for, e.g., simple URL generation
(fixup=""internallink{ /this/svc}'+ "). It will only kick in when tu-

ples are deserialized from the database, i.e., not for values taken from
tables in memory.

e inputUnit (unicode string; defaults to None) -- Override unit of the table
column with this.

e multiplicity (unicode string; defaults to None) -- Set this to single to have
an atomic value (chosen at random if multiple input values are given),

34

forced-single to have an atomic value and raise an exception if multiple
values come in, or multiple to receive lists. On the form renderer, this is
ignored, and the values are what nevow formal passes in. If not given, it
is single unless there is a values element with options, in which case it's
multiple.

name (A name for a table or service parameter. These have to match
[A-Za-z_] [A-Za-z0-9_]*$.; defaults to <Undefined>) -- Name of the param

note (unicode string; defaults to None) -- Reference to a note meta on
this table explaining more about this column

original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

required (boolean; defaults to 'False’) -- Record becomes invalid when
this column is NULL

showltems (integer; defaults to '3") -- Number of items to show at one
time on selection widgets.

std (boolean; defaults to 'False’) - Is this input key part of a standard
interface for registry purposes?

tablehead (unicode string; defaults to None) -- Terse phrase to put into
table headers for this column

type (a type name; the internal type system is similar to SQL's with some
restrictions and extensions. The known atomic types include: unicode,
pql-float, text, spoly, char, raw, vexpr-mjd, boolean, file, smallint, vexpr-
string, scircle, vexpr-float, vexpr- date, pql-string, smoc, real, spoint, pql-
int, timestamp, pql-date, int4range, date, integer, box, pgl-upload, double
precision, sbox, bigint, time, bytea; defaults to 'real’) -- datatype for the
column (SQL-like type system)

ucd (unicode string; defaults to ") -- UCD of the column
unit (unicode string; defaults to ") -- Unit of the values
utype (unicode string; defaults to None) -- utype for this column

verbLevel (integer; defaults to '20") -- Minimal verbosity level at which
to include this column

widgetFactory (unicode string; defaults to None) -- A python expression
for a custom widget factory for this input, e.g., 'Hidden’ or 'widgetFac-
tory(TextArea, rows=15, cols=30)’

35

e xtype (unicode string; defaults to None) -- VOTable xtype giving the
serialization form; you usually do not want to set this, as the xtypes
actually used are computed from database type. DaCHS xtypes are only
used for a few unsavoury, hopefully temporary, hacks

Structure Children

e values (contains Element values) -- Specification of legal values

Other Children

e dmRoles (read-only list of roles played by this column in DMs; defaults
to []) -- Roles played by this column; cannot be asigned to.

e meta - a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-

ment.

e stc (non-settable internally used value; defaults to None) -- Internally
used STC information for this column (do not assign to unless instructed
to do so)

e stcUtype (non-settable internally used value; defaults to None) -- Inter-
nally used STC information for this column (do not assign to)

Element job

Python code for use within execute.

The resource descriptor this runs at is available as rd, the execute definition
(having such attributes as title, job, plus any properties given in the RD) as
execDef.

Note that no |/O capturing takes place (that's impossible since in general the
jobs run within the server). To have actual cron jobs, use execDef .spawn(["cnd",
"argi"...]1). This will send a mail on failed execution and also raise a Re-
portableError in that case.

In the frequent use case of a resdir-relative python program, you can use the
execDef . spawnPython (modulePath) function.

If you must stay within the server process, you can do something like:

36

mod, _ = utils.loadPythonModule(rd.getAbsPath("bin/coverageplot.py"))
mod.makePlot ()

-- in that way, your code can sit safely within the resource directory and you
still don't have to manipulate the module path.

May occur in Element execute.
Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

37

Element lateEvents

An event stream played back by a mixin when the substrate is being finalised
(but before the early processing).

May occur in Element mixinDef.
Atomic Children

e doc (unicode string; defaults to None) -- A description of this stream
(should be restructured text).

e passivate (unicode string; defaults to None) -- If set to True, do not

expand active elements immediately in the body of these events (as in an
NXSTREAM)

Structure Children

e DEFAULTS (contains Element DEFAULTS) -- A mapping giving defaults
for macros expanded in this stream. Macros not defaulted will fail when
not given in a FEED's attributes.

Element macDef

A macro definition within an RD.

The macro defined is available on the parent; macros are expanded within the
parent (behaviour is undefined if you try a recursive expansion).

May occur in Element resource.
Atomic Children

e Character content of the element (defaulting to ") -- Replacement text of
the macro

e name (unicode string; defaults to <Undefined>) -- Name the macro will

be available as

Element make

A build recipe for tables belonging to a data descriptor.

All makes belonging to a DD will be processed in the order in which they appear
in the file.

May occur in Element data.

38

Atomic Children

e parmaker (id reference; defaults to <Not given/empty>) -- The parmaker
(i.e., mapping rules from grammar parameters to table parameters) for the
table being made. You will usually not give a parmaker.

e role (unicode string; defaults to None) -- The role of the embedded table
within the data set

e rowSource (One of: rows, parameters; defaults to 'rows’) -- Source for
the raw rows processed by this rowmaker.

e rowmaker (id reference; defaults to <Not given/empty>) -- The row-
maker (i.e., mapping rules from grammar keys to table columns) for the
table being made.

e table (id reference; defaults to <Undefined>) -- Reference to the table
to be embedded

Structure Children

e scripts (contains Element script and may be repeated zero or more times)
-- Code snippets attached to this object. See Scripting .

Element map

A mapping rule.
To specify the source of a mapping, you can either
e grab a value from what's emitted by the grammar or defined using var via

the source attribute. The value given for source is converted to a python
value and stored.

e or give a python expression in the body. In that case, no further type
conversion will be attempted.
If neither source or a body is given, map uses the key attribute as its source
attribute.

The map rule generates a key/value pair in the result record.

May occur in Element rowmaker.

39

Atomic Children

e Character content of the element (defaulting to ") -- A python expression
giving the value for key.

e key (unicode string; defaults to <Undefined>) -- Name of the column
the value is to end up in.

¢ nullExcs (unicode string; defaults to <Not given/empty>) -- Exceptions
that should be caught and cause the value to be NULL, separated by
commas.

e nullExpr (unicode string; defaults to <Not given/empty>) -- A python
expression for a value that is mapped to NULL (None). Equality is checked
after building the value, so this expression has to be of the column type.
Use map with the parseWithNull function to catch null values before type
conversion.

e source (unicode string; defaults to None) -- Source key name to convert
to column value (either a grammar key or a var).

Element mixinDef

A definition for a resource mixin.

Resource mixins are resource descriptor fragments typically rooted in tables
(though it's conceivable that other structures could grow mixin attributes as
well).

They are used to define and implement certain behaviours components of the
DC software want to see:

e products want to be added into their table, and certain fields are required

within tables describing products

e tables containing positions need some basic machinery to support scs.

e siap needs quite a bunch of fields
Mixins consist of events that are played back on the structure mixing in before
anything else happens (much like original) and two procedure definitions, viz,

processEarly and processLate. These can access the structure that has the mixin
as substrate.

processEarly is called as part of the substrate’'s completeElement method. pro-
cessLate is executed just before the parser exits. This is the place to fix up

40

anything that uses the table mixed in. Note, however, that you should be as
conservative as possible here -- you should think of DC structures as immutable
as long as possible.

Programmatically, you can check if a certain table mixes in something by calling
its mixesIn method.

Recursive application of mixins, even to seperate objects, will deadlock.

May occur in Element resource.
Atomic Children

e doc (unicode string; defaults to None) -- Documentation for this mixin

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e reexpand (boolean; defaults to 'False’) -- Force re-expansion of macros;
usually, when replaying, each string is only expanded once, mainly to avoid
overly long backslash-fences. Set this to true to force further expansion.

e source (id reference; defaults to None) -- id of a stream to replay

Structure Children

e edits (contains Element EDIT and may be repeated zero or more times)
-- Changes to be performed on the events played back.

e events (contains Element events) -- Events to be played back into the
structure mixing this in at mixin time.

e lateEvents (contains Element lateEvents) -- Events to be played back into
the structure mixing this in at completion time.

e pars (contains Element mixinPar and may be repeated zero or more times)
-- Parameters available for this mixin.

e processEarly (contains Element processEarly) -- Code executed at element
fixup.

e processLate (contains Element processLate) -- Code executed resource
fixup.

e prunes (contains Element PRUNE and may be repeated zero or more
times) -- Conditions for removing items from the playback stream.

41

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdld, Macro rdldDotted, Macro schema, Macro
sqlquote, Macro test, Macro today, Macro upper, Macro urlquote

Element mixinPar

A parameter definition for mixins.
The (optional) body provides a default for the parameter.

May occur in Element mixinDef.
Atomic Children

e Character content of the element (defaulting to <Not given/empty>) --
The default for the parameter. A __ NULL___ here does not directly mean
None/NULL, but since the content will frequently end up in attributes,
it will ususally work as presetting None. An empty content means a non-
preset parameter, which must be filled in applications. The magic value
__ _EMPTY___ allows presetting an empty string.

e description (whitespace normalized unicode string; defaults to None) --
Some human-readable description of what the parameter is about

e key (unicode string; defaults to <Undefined>) -- The name of the pa-
rameter

e late (boolean; defaults to 'False’) -- Bind the name not at setup time but
at applying time. In rowmaker procedures, for example, this allows you
to refer to variables like vars or rowlter in the bindings.

Element option

A value for enumerated columns.

For presentation purposes, an option can have a title, defaulting to the option's
value.

May occur in Element values.
Atomic Children

e Character content of the element (defaulting to ") -- The value of the
option; this is what is used in, e.g., queries and the like.

e title (unicode string; defaults to <Not given/empty>) -- A Label for
presentation purposes; defaults to val.

42

Element outputField

A column for defining the output of a service.

It adds some attributes useful for rendering results, plus functionality specific to
certain cores.

The optional formatter overrides the standard formatting code in HTML (which
is based on units, ucds, and displayHints). You receive the item from the
database as data and must return a string or nevow stan. In addition to the
standard Functions available for row makers you have queryMeta and nevow's
tagsin T.

Here's an example for generating a link to another service using this facility:

<outputField name="more"
select="array[centerAlpha,centerDelta] as more" tablehead="More"
description="More exposures near the center of this plate">
<formatter><! [CDATA[
return T.a(href=base.makeSitePath("/lswscans/res/positions/q/form?"
"POS=Ys, %s&SIZE=1&INTERSECT=0VERLAPS&cutoutSize=0.5"
"&__nevow_form__=genForm"/tuple(data)
)) ["More"] 11>
</formatter>
</outputField>

Within the code, in addition do data, you see rd and queryMeta.

May occur in Element outputTable.
Atomic Children

e description (whitespace normalized unicode string; defaults to ") - A
short (one-line) description of the values in this column.

e displayHint (Display hint; defaults to ") -- Suggested presentation; the
format is <kw>=<value>{,<kw>=<value>}, where what is interpreted
depends on the output format. See, e.g., documentation on HTML ren-
derers and the formatter child of outputFields.

e fixup (unicode string; defaults to None) -- A python expression the
value of which will replace this column’s value on database reads.
Write a ___ to access the original value. You can use macros
for the embedding table. This is for, e.g., simple URL generation
(fixup=""internallink{ /this/svc}'+___"). It will only kick in when tu-
ples are deserialized from the database, i.e., not for values taken from
tables in memory.

43

formatter (unicode string; defaults to None) -- Function body to render
this item to HTML.

name (a column name within an SQL table. These have to match the
SQL regular_identifier production. In a desperate pinch, you can generate
delimited identifiers (that can contain anything) by prefixing the name
with 'quoted/’; defaults to <Undefined>) -- Name of the column

note (unicode string; defaults to None) -- Reference to a note meta on
this table explaining more about this column

original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

required (boolean; defaults to 'False’) -- Record becomes invalid when
this column is NULL

select (unicode string; defaults to <Undefined>) -- Use this SQL frag-
ment rather than field name in the select list of a DB based core.

sets (Comma-separated list of strings; defaults to ") -- Output sets this
field should be included in; ALL includes the field in all output sets.

tablehead (unicode string; defaults to None) -- Terse phrase to put into
table headers for this column

type (a type name; the internal type system is similar to SQL's with some
restrictions and extensions. The known atomic types include: unicode,
pqgl-float, text, spoly, char, raw, vexpr-mjd, boolean, file, smallint, vexpr-
string, scircle, vexpr-float, vexpr- date, pgl-string, smoc, real, spoint, pql-
int, timestamp, pql-date, int4range, date, integer, box, pqgl-upload, double
precision, sbox, bigint, time, bytea; defaults to 'real’) -- datatype for the
column (SQL-like type system)

ucd (unicode string; defaults to ") -- UCD of the column
unit (unicode string; defaults to ") -- Unit of the values
utype (unicode string; defaults to None) -- utype for this column

verbLevel (integer; defaults to '20") -- Minimal verbosity level at which
to include this column

wantsRow (boolean; defaults to None) -- Does formatter expect the
entire row rather than the colum value only?

44

e xtype (unicode string; defaults to None) -- VOTable xtype giving the
serialization form; you usually do not want to set this, as the xtypes
actually used are computed from database type. DaCHS xtypes are only
used for a few unsavoury, hopefully temporary, hacks

Structure Children

e values (contains Element values) -- Specification of legal values

Other Children

e dmRoles (read-only list of roles played by this column in DMs; defaults
to []) -- Roles played by this column; cannot be asigned to.

e meta - a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-

ment.

e stc (non-settable internally used value; defaults to None) -- Internally
used STC information for this column (do not assign to unless instructed
to do so)

e stcUtype (non-settable internally used value; defaults to None) -- Inter-
nally used STC information for this column (do not assign to)

Element outputTable

A table that has outputFields for columns.

Cores always have one of these, but they are implicitly defined by the underlying
database tables in case of dbCores and such.

Services may define output tables to modify what is coming back fromt the
core. Note that this usually only affects the output to web browsers. To use the
output table also through VO protocols (and when producing VOTables, FITS
files, and the like), you need to set the service's votableRespectsOutputTable
property to True.

May occur in Element resource, Element service.

45

Atomic Children

e adql (boolean or 'hidden’; defaults to 'False') -- Should this table be
available for ADQL queries? In addition to True/False, this can also be
'hidden’ for tables readable from the TAP machinery but not published
in the metadata; this is useful for, e.g., tables contributing to a published
view. Warning: adql=hidden is incompatible with setting readProfiles
manually.

e allProfiles (Comma separated list of profile names.; defaults to u’admin,
msdemlei’) -- A (comma separated) list of profile names through which
the object can be written or administred (oh, and the default is not admin,
msdemlei but is the value of [db]maintainers)

e autoCols (Comma-separated list of strings; defaults to ") -- Column
names obtained from fromTable; you can use shell patterns into the out-
put table's parent table (in a table core, that's the queried table; in a
service, it's the core's output table) here.

e dupePolicy (One of: drop, check, overwrite, dropOld; defaults to 'check’)
-- Handle duplicate rows with identical primary keys manually by raising
an error if existing and new rows are not identical (check), dropping the
new one (drop), updating the old one (overwrite), or dropping the old
one and inserting the new one (dropOld)?

e forceUnique (boolean; defaults to 'False’) -- Enforce dupe policy for
primary key (see dupePolicy)?

e A mixin reference, typically to support certain protocol. See Mixins.

e namePath (id reference; defaults to None) -- Reference to an element
tried to satisfy requests for names in id references of this element’s chil-
dren.

e nrows (integer; defaults to None) -- Approximate number of rows in
this table (usually, you want to use dachs limits to fill this out; write
<nrows>0</nrows> to enable that).

e onDisk (boolean; defaults to 'False’) -- Table in the database rather than
in memory?

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e primary (Comma-separated list of strings; defaults to ") -- Comma sep-
arated names of columns making up the primary key.

46

e readProfiles (Comma separated list of profile names.; defaults to
u'trustedquery’) - A (comma separated) list of profile names through
which the object can be read.

e system (boolean; defaults to 'False’) -- Is this a system table? If it is,
it will not be dropped on normal imports, and accesses to it will not be
logged.

e temporary (boolean; defaults to 'False’) -- If this is an onDisk table,
make it temporary? This is mostly useful for custom cores and such.

e verbLevel (integer; defaults to None) -- Copy over columns from
fromTable not more verbose than this.

e viewStatement (unicode string; defaults to None) -- A single SQL state-
ment to create a view. Setting this makes this table a view. The statement
will typically be something like CREATE VIEW \curtable AS (SELECT
\colNames FROM...).

Structure Children

e columns (contains Element outputField and may be repeated zero or more
times) -- Output fields for this table.

e dm (contains Element dm and may be repeated zero or more times) --
Annotations for data models.

e foreignKeys (contains Element foreignKey and may be repeated zero or
more times) -- Foreign keys used in this table

e groups (contains Element group and may be repeated zero or more times)
-- Groups for columns and params of this table

e indices (contains Element index and may be repeated zero or more times)
-- Indices defined on this table

e params (contains Element param and may be repeated zero or more times)
-- Param ("global columns") for this table.

e registration (contains Element publish (data)) -- A registration (to the
VO registry) of this table or data collection.

e stc (contains Element stc and may be repeated zero or more times) --
STC-S definitions of coordinate systems.

47

Other Children

e meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro curtable, Macro decapitalize, Macro getConfig, Macro get-
Param, Macro internallink, Macro magicEmpty, Macro metaString, Macro
nameForUCD, Macro nameForUCDs, Macro gName, Macro quote, Macro rdld,
Macro rdldDotted, Macro schema, Macro sqlquote, Macro tablename, Macro
test, Macro today, Macro upper, Macro urlquote

Element par

A parameter of a procedure definition.

Bodies of ProcPars are interpreted as python expressions, in which macros are
expanded in the context of the procedure application’s parent. If a body is
empty, the parameter has no default and has to be filled by the procedure
application.

May occur in Element setup.
Atomic Children

e Character content of the element (defaulting to <Not given/empty>)
-- The default for the parameter. The special value ___NULL___ indi-
cates a NULL (python None) as usual. An empty content means a non-
preset parameter, which must be filled in applications. The magic value
_ EMPTY___ allows presetting an empty string.

e description (whitespace normalized unicode string; defaults to None) --
Some human-readable description of what the parameter is about

e key (unicode string; defaults to <Undefined>) -- The name of the pa-
rameter

e late (boolean; defaults to 'False’) -- Bind the name not at setup time but
at applying time. In rowmaker procedures, for example, this allows you
to refer to variables like vars or rowlter in the bindings.

48

Element param

A table parameter.

This is like a column, except that it conceptually applies to all rows in the table.
In VOTables, params will be rendered as PARAMs.

While we validate the values passed using the DC default parsers, at least the
VOTable params will be literal copies of the string passed in.

You can obtain a parsed value from the value attribute.

Null value handling is a bit tricky with params. An empty param (like <param
name="x"/>) is always NULL (None in python). In order to allow setting NULL
even where syntactially something has to stand, we also turn any __ NULL___
to None.

For floats, NaN will also yield NULLs. For integers, you can also use

<param name="x" type="integer"><values nullLiteral="-1"/>-
1</params>

For arrays, floats, and strings, the interpretation of values is undefined. Fol-
lowing VOTable practice, we do not tell empty strings and NULLs apart; for
internal usage, there is a little hack: __EMPTY___ as literal does set an empty
string. This is to allow defaulting of empty strings -- in VOTables, these cannot
be distinguished from "true" NULLs.

May occur in Element group, Element outputTable, Element table, Element
data.

Atomic Children

e Character content of the element (defaulting to <Not given/empty>) --
The value of parameter. It is parsed according to the param’s type using
the default parser for the type VOTable tabledata.

e description (whitespace normalized unicode string; defaults to ") - A
short (one-line) description of the values in this column.

e displayHint (Display hint; defaults to ") -- Suggested presentation; the
format is <kw>=<value>{,<kw>=<value>}, where what is interpreted
depends on the output format. See, e.g., documentation on HTML ren-
derers and the formatter child of outputFields.

49

e fixup (unicode string; defaults to None) -- A python expression the
value of which will replace this column’s value on database reads.

Write a to access the original value. You can use macros
for the embedding table. This is for, e.g., simple URL generation
(fixup=""internallink{ /this/svc}'+ "). It will only kick in when tu-

ples are deserialized from the database, i.e., not for values taken from
tables in memory.

e name (A name for a table or service parameter. These have to match
[A-Za-z_] [A-Za-20-9_]x$.; defaults to <Undefined>) -- Name of the param

e note (unicode string; defaults to None) -- Reference to a note meta on
this table explaining more about this column

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e required (boolean; defaults to 'False’) -- Record becomes invalid when
this column is NULL

e tablehead (unicode string; defaults to None) -- Terse phrase to put into
table headers for this column

e type (a type name; the internal type system is similar to SQL's with some
restrictions and extensions. The known atomic types include: unicode,
pql-float, text, spoly, char, raw, vexpr-mjd, boolean, file, smallint, vexpr-
string, scircle, vexpr-float, vexpr- date, pql-string, smoc, real, spoint, pql-
int, timestamp, pql-date, int4range, date, integer, box, pgl-upload, double
precision, sbox, bigint, time, bytea; defaults to 'real’) -- datatype for the
column (SQL-like type system)

e ucd (unicode string; defaults to ") -- UCD of the column
e unit (unicode string; defaults to ") -- Unit of the values
e utype (unicode string; defaults to None) -- utype for this column

e verbLevel (integer; defaults to '20") -- Minimal verbosity level at which
to include this column

e xtype (unicode string; defaults to None) -- VOTable xtype giving the
serialization form; you usually do not want to set this, as the xtypes
actually used are computed from database type. DaCHS xtypes are only
used for a few unsavoury, hopefully temporary, hacks

Structure Children

e values (contains Element values) -- Specification of legal values

50

Other Children

e dmRoles (read-only list of roles played by this column in DMs; defaults
to []) -- Roles played by this column; cannot be asigned to.

e meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

e stc (non-settable internally used value; defaults to None) -- Internally
used STC information for this column (do not assign to unless instructed
to do so)

e stcUtype (non-settable internally used value; defaults to None) -- Inter-
nally used STC information for this column (do not assign to)

Element paramRef

A reference from a group to a parameter within a table.

ParamReferences do not support qualified references, i.e., you can only give
simple names.

Also note that programmatically, you usually want to resolve ParamReferences
within the Table instance, not the table definition.

May occur in Element group.
Atomic Children

e key (unicode string; defaults to <Undefined>) -- The key (i.e., name) of
the referenced column or param.

e ucd (unicode string; defaults to None) -- The UCD of the group

e utype (unicode string; defaults to None) -- A utype for the group

51

Element phraseMaker

A procedure application for generating SQL expressions from input keys.

PhraseMaker code must yield SQL fragments that can occur in WHERE clauses,
i.e., boolean expressions (thus, they must be generator bodies). The clauses
yielded by a single condDesc are combined with the joiner set in the containing
CondDesc (default=OR).

The following names are available to them:

e inputKeys -- the list of input keys for the parent CondDesc

e inPars -- a dictionary mapping inputKey names to the values
provided by the user

e outPars -- a dictionary that is later used as the parameter
dictionary to the query.

e core -- the core to which this phrase maker’s condDesc belongs

To get the standard SQL a single key would generate, say:

yield base.getSQLForField(inputKeys[0], inPars, outPars)

To insert some value into outPars, do not simply use some key into outParse,
since, e.g., the condDesc might be used multiple times. Instead, use getSQLKey,
maybe like this:

ik = inputKeys[0]

yield "%s BETWEEN %%(%s)s AND %%(%s)s"%(ik.name,
base.getSQLKey(ik.name, inPars[ik.name]-10, outPars),
base.getSQLKey(ik.name, inPars[ik.name]+10, outPars))

getSQLKey will make sure unique names in outPars are chosen and enters the
values there.

May occur in Element condDesc.
Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

52

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)

-- Setup of the namespace the function will run in

Element procDef

An embedded procedure.

Embedded procedures are python code fragments with some interface defined
by their type. They can occur at various places (which is called procedure appli-
cation generically), e.g., as row generators in grammars, as applys in rowmakers,
or as SQL phrase makers in condDescs.

They consist of the actual actual code and, optionally, definitions like the names-
pace setup, configuration parameters, or a documentation.

The procedure applications compile into python functions with special global
namespaces. The signatures of the functions are determined by the type at-
tribute.

ProcDefs are referred to by procedure applications using their id.

May occur in Element resource.

53

Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element processEarly

A code fragment run by the mixin machinery when the structure being worked
on is being finished.

Within processEarly, you can access:

e Access the structure the mixin is applied to as "substrate"
e The mixin parameters as "mixinPars"

e The parse context as "context"

(the context is particularly handy for context.resolveld)

May occur in Element mixinDef.

54

Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)

-- Setup of the namespace the function will run in

Element processLate

A code fragment run by the mixin machinery when the parser parsing everything
exits.

Access the structure mixed in as "substrate", the root structure of the whole
parse tree as root, and the context that is just about finishing as context.

May occur in Element mixinDef.

55

Atomic Children

code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element PRUNE

An active tag that lets you selectively delete children of the current object.

You give it regular expression-valued attributes; on the replay of the stream,

matching items and their children will not be replayed.

56

If you give more than one attribute, the result will be a conjunction of the
specified conditions.

This only works if the items to be matched are true XML attributes (i.e., not
written as children).

May occur in Element LFEED, Element LOOP, Element mixinDef, Element
FEED.

Element publish (data)

A request for registration of a data or table item.

This is much like publish for services, just for data and tables; since they have
no renderers, you can only have one register element per such element.

Data registrations may refer to published services that make their data available.

May occur in Element outputTable, Element table, Element data.
Atomic Children

e services (list of id references (comma separated or in distinct elements);
defaults to []) -- A DC-internal reference to a service that lets users query
that within the data collection; tables with adql=True are automatically
declared to be servedBy the TAP service.

e sets (Comma-separated list of strings; defaults to 'ivo_managed') -- A
comma-separated list of sets this data will be published in. To publish
data to the VO registry, just say ivo_managed here. Other sets probably
don’'t make much sense right now. ivo_managed also is the default.

Other Children

e meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

Element publish

A specification of how a service should be published.
This contains most of the metadata for what is an interface in registry speak.

May occur in Element service, Element resRec.

57

Atomic Children

e auxiliary (boolean; defaults to 'False’) -- Auxiliary publications are for
capabilities not intended to be picked up for all-VO queries, typically
because they are already registered with other services. This is mostly
used internally; you probably have no reason to touch it.

e render (unicode string; defaults to <Undefined>) -- The renderer the
publication will point at.

e service (id reference; defaults to <Not given/empty>) -- Reference for a
service actually implementing the capability corresponding to this publica-
tion. This is mainly when there is a vs:\WWebBrowser service accompanying
a VO protocol service, and this other service should be published in the
same resource record. See also the operator’s guide.

e sets (Comma-separated list of strings; defaults to) -- Comma- separated
list of sets this service will be published in. Predefined are: local=publish
on front page, ivo_managed=register with the VO registry. If you leave
it empty, 'local” publication is assumed.

Other Children

e meta - a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

Element regSuite

A suite of regression tests.

May occur in Element resource.
Atomic Children

e sequential (boolean; defaults to 'False’) -- Set to true if the individual
tests need to be run in sequence.

e title (whitespace normalized unicode string; defaults to None) -- A short,
human-readable phrase describing what this suite is about.

Structure Children

e tests (contains Element regTest and may be repeated zero or more times)
-- Tests making up this suite

58

Element regTest

A regression test.

May occur in Element regSuite.
Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e tags (Comma-separated list of strings; defaults to ") -- A list of (free-
form) tags for this test. Tagged tests are only run when the runner
is constructed with at least one of the tags given. This is mainly for
restricting tags to production or development servers.

e title (whitespace normalized unicode string; defaults to <Undefined>) --
A short, human-readable phrase describing what this test is exercising.

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

59

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

e url (contains Element url) -- The source from which to fetch the test data.

Element resource

A resource descriptor.

RDs collect all information about how to parse a particular source (like a col-
lection of FITS images, a catalogue, or whatever), about the database tables
the data ends up in, and the services used to access them.

In DaCHS' RD XML serialisation, they correspond to the root element.
Atomic Children

e allProfiles (Comma separated list of profile names.; defaults to u’admin,
msdemlei’) -- A (comma separated) list of profile names through which
the object can be written or administred (oh, and the default is not admin,
msdemlei but is the value of [db]maintainers)

e readProfiles (Comma separated list of profile names.; defaults to
u'trustedquery’) -- A (comma separated) list of profile names through
which the object can be read.

e require (unicode string; defaults to None) -- Import the named gavo
module (for when you need something registred)

e resdir (unicode string; defaults to None) -- Base directory for source files
and everything else belonging to the resource.

e schema (unicode string; defaults to <Undefined>) -- Database schema
for tables defined here. Follow the rule 'one schema, one RD' if at all
possible. If two RDs share the same schema, the must generate exactly
the same permissions for that schema; this means, in particular, that if
one has an ADQL-published table, so must the other. In a nutshell: one
schema, one RD.

60

Structure Children

e condDescs (contains Element condDesc and may be repeated zero or more
times) -- Global condition descriptors for later reference

e cores (contains any of siapCutoutCore,scsCore,pythonCore,registryCor
e,dbCore,fancyQueryCore,fixedQueryCore,adqlCore,debugCore,datalinkCo
re,uploadCore,productCore,tapCore,customCore,ssapCore,nullCore and
may be repeated zero or more times) -- Cores available in this resource.

e coverage (contains Element coverage) -- STC coverage of this resource.

e dds (contains Element data and may be repeated zero or more times) --
Descriptors for the data generated and/or published within this resource.

e jobs (contains Element execute and may be repeated zero or more times)
-- Jobs to be run while this RD is active.

e macDefs (contains Element macDef and may be repeated zero or more
times) -- User-defined macros available on this RD

e mixdefs (contains Element mixinDef and may be repeated zero or more
times) -- Mixin definitions (usually not for users)

e outputTables (contains Element outputTable and may be repeated zero
or more times) -- Canned output tables for later reference.

e procDefs (contains Element procDef and may be repeated zero or more
times) -- Procedure definintions (rowgens, rowmaker applys)

e resRecs (contains Element resRec and may be repeated zero or more
times) -- Non-service resources for the IVOA registry. They will be pub-
lished when gavo publish is run on the RD.

e rowmakers (contains Element rowmaker and may be repeated zero or more
times) -- Transformations for going from grammars to tables. If specified
in the RD, they must be referenced from make elements to become active.

e scripts (contains Element script and may be repeated zero or more times)
-- Code snippets attached to this object. See Scripting .

e services (contains Element service and may be repeated zero or more
times) -- Services exposing data from this resource.

e tables (contains Element table and may be repeated zero or more times)
-- A table used or created by this resource

e tests (contains Element regSuite and may be repeated zero or more times)
-- Suites of regression tests connected to this RD.

61

Other Children

e meta - a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTccO, Macro RSTecby, Macro RSTccbysa,
Macro RSTservicelink, Macro RSTtable, Macro decapitalize, Macro getCon-
fig, Macro internallink, Macro magicEmpty, Macro metaString, Macro quote,
Macro rdld, Macro rdldDotted, Macro schema, Macro sqlquote, Macro test,
Macro today, Macro upper, Macro urlquote

Element resRec

A resource for pure registration purposes.

A Resource without DaCHS defined behaviour. This can be Organizations or
Instruments, but possibly also external services

All resources must either have an id (which is used in the construction of their
IVOID), or you must give an identifier meta item.

You must further set the following meta items:

e resType specifying the kind of resource record. You should
not use this element to build resource records for services or
tables (use the normal elements, even if the actual resrouces
are external to DaCHS). resType can be registry, organization,
authority, deleted, or anything else for which registry.builders
has a handling class.

o title

e subject(s)

e description

e referenceURL

e creationDate

Additional meta keys (e.g., accessURL for a registry) may be required depending
on resType. See the registry section in the operator’s guide.

ResRecs can also have publication children. These will be turned into the
appropriate capabilities depending on the value of the render attribute.

May occur in Element resource.

62

Structure Children

e publications (contains Element publish and may be repeated zero or more
times) -- Capabilities the record should have (this is empty for standards,
organisations, instruments, etc.)

Other Children

e meta - a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdld, Macro rdldDotted, Macro schema, Macro
sqlquote, Macro test, Macro today, Macro upper, Macro urlquote

Element rowmaker

A definition of the mapping between grammar input and finished rows ready for
shipout.

Rowmakers consist of variables, procedures and mappings. They result in a
python callable doing the mapping.

RowmakerDefs double as macro packages for the expansion of various macros.
The standard macros will need to be quoted, the rowmaker macros above yield
python expressions.

Within map and var bodies as well as late apply pars and apply bodies, you can
refer to the grammar input as vars["name"] or, shorter @name.

To add output keys, use map or, in apply bodies, add keys to the result dictio-
nary.

May occur in Element resource, Element data.
Atomic Children

e idmaps (Comma-separated list of strings; defaults to ") -- List of column
names that are just "mapped through" (like map with key only); you can
use shell patterns to select multiple colums at once.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

63

e simplemaps (Comma-separated list of <identifer>:<identifier> pairs;
defaults to None) -- Abbreviated notation for <map source>; each pair
is destination:source

Structure Children

e apps (contains Element apply and may be repeated zero or more times)
-- Procedure applications.

e ignoreOn (contains Element ignoreOn) -- Conditions on the input record
coming from the grammar to cause the input record to be dropped by the
rowmaker, i.e., for this specific table. If you need to drop a row for all
tables being fed, use a trigger on the grammar.

e maps (contains Element map and may be repeated zero or more times)
-- Mapping rules.

e vars (contains Element var and may be repeated zero or more times) --
Definitions of intermediate variables.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro de-
capitalize, Macro dIMetaURI, Macro docField, Macro fullPath, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro gName, Macro quote, Macro rdld, Macro rdldDotted, Macro rootless-
Path, Macro rowsMade, Macro rowsProcessed, Macro schema, Macro sourceC-
Date, Macro sourceDate, Macro sqlquote, Macro srcstem, Macro standardPub-
DID, Macro test, Macro today, Macro upper, Macro urlquote

Element script

A script, i.e., some executable item within a resource descriptor.

The content of scripts is given by their type -- usually, they are either python
scripts or SQL with special rules for breaking the script into individual statements
(which are basically like python'’s).

The special language AC_SQL is like SQL, but execution errors are ignored.
This is not what you want for most data RDs (it's intended for housekeeping
scripts).

See Scripting.

May occur in Element resource, Element make.

64

Atomic Children

e Character content of the element (defaulting to ") -- The script body.

e lang (One of: python, AC_SQL, SQL; defaults to <Undefined>) -- Lan-
guage of the script.

e name (unicode string; defaults to 'anonymous’) -- A human- consumable
designation of the script.

e notify (boolean; defaults to 'True’) -- Send out a notification when run-
ning this script.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e type (One of: postCreation, newSource, beforeDrop, sourceDone, preCre-
ation, prelmport, prelndex; defaults to <Undefined>) -- Point of time at
which script is to run.

Element service

A service definition.

A service is a combination of a core and one or more renderers. They can be
published, and they carry the metadata published into the VO.

You can set the defaultSort property on the service to a name of an output
column to preselect a sort order. Note again that this will slow down responses
for all but the smallest tables unless there is an index on the corresponding
column.

Properties evaluated:

e defaultSort -- a key to sort on by default with the form renderer. This
differs from the dbCore's sortKey in that this does not suppress the widget
itself, it just sets a default for its value. Don’t use this unless you have
to; the combination of sort and limit can have disastrous effects on the
run time of queries.

e votableRespectsOutputTable -- usually, VOTable output puts in all
columns from the underlying database table with low enough verbLevel
(essentially). When this property is "True" (case-sensitive), that's not
done and only the service's output table is evaluated.

May occur in Element resource.

65

Atomic Children

e allowed (Comma-separated list of strings; defaults to ") -- Names of
renderers allowed on this service; leave emtpy to allow the form renderer
only.

e core (id reference; defaults to <Undefined>) -- The core that does the
computations for this service. Instead of a reference, you can use an
immediate element of some registred core.

e customPage (unicode string; defaults to None) -- resdir-relative path to
custom page code. It is used by the 'custom’ renderer

e defaultRenderer (unicode string; defaults to None) -- A name of a ren-
derer used when none is provided in the URL (lets you have shorter URLs).

e limitTo (unicode string; defaults to None) -- Limit access to the group
given; the empty default disables access control.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e customDFs (contains Element customDF and may be repeated zero or
more times) -- Custom data functions for use in custom templates.

e customRFs (contains Element customRF and may be repeated zero or
more times) -- Custom render functions for use in custom templates.

e outputTable (contains Element outputTable) -- The output fields of this
service.

e publications (contains Element publish and may be repeated zero or more
times) -- Sets and renderers this service is published with.

e serviceKeys (contains Element inputKey and may be repeated zero or
more times) -- Input widgets for processing by the service, e.g. output
sets.

Other Children

e meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

66

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

e template (mapping; the value is the element content, the key is in the
'key’ (or, equivalently, key) attribute) -- Custom nevow templates for this
service; use key "form" to replace the Form renderer’s standard template.
Start the path with two slashes to access system templates.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdld, Macro rdldDotted, Macro schema, Macro
sqlquote, Macro tablesForTAP, Macro test, Macro today, Macro upper, Macro
urlquote

Element setup

Prescriptions for setting up a namespace for a procedure application.

You can add names to this namespace you using par(ameter)s. If a parameter
has no default and an procedure application does not provide them, an error is
raised.

You can also add names by providing a code attribute containing a python
function body in code. Within, the parameters are available. The procedure
application’s parent can be accessed as parent. All names you define in the code
are available as globals to the procedure body.

Caution: Macros are expanded within the code; this means you need double
backslashes if you want a single backslash in python code.

May occur in Element iterator, Element rowfilter, Element apply, Element
procDef, Element job, Element processLate, Element dataFormatter, Element
reg Test, Element coreProc, Element dataFunction, Element sourceFields, Ele-
ment metaMaker, Element phraseMaker, Element descriptorGenerator, Element
processEarly, Element pargetter.

Atomic Children

e codeFrags (Zero or more unicode string-typed code elements; defaults to
u'[]") -- Python function bodies setting globals for the function application.
Macros are expanded in the context of the procedure's parent.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

67

Structure Children

e pars (contains Element par and may be repeated zero or more times) --
Names to add to the procedure’s global namespace.

Element sources

A Specification of a data descriptor’s inputs.

This will typcially be files taken from a file system. If so, DaCHS will, in each
directory, process the files in alphabetical order. No guarantees are made as to
the sequence directories are processed in.

Multiple patterns are processed in the order given in the RD.

May occur in Element data.
Atomic Children

e Character content of the element (defaulting to ") -- A single file name
(this is for convenience)

e items (Zero or more unicode string-typed item elements; defaults to u'[]")
-- String literals to pass to grammars. In contrast to patterns, they are not
interpreted as file names but passed to the grammar verbatim. Normal
grammars do not like this. It is mainly intended for use with custom or
null grammars.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e patterns (Zero or more unicode string-typed pattern elements; defaults
to u'[]") -- Paths to the source files. You can use shell patterns here.

e recurse (boolean; defaults to 'False’) -- Search for pattern(s) recursively
in their directory part(s)?

Structure Children
e ignoredSources (contains Element ignoreSources) -- Specification of

sources that should not be processed although they match patterns. Typ-
ically used in update-type data descriptors.

68

Element stc

A definition of a space-time coordinate system using STC-S.

May occur in Element outputTable, Element table.
Atomic Children

e Character content of the element (defaulting to ") -- An STC-S string
with column references (using quote syntax) instead of values

Element table

A definition of a table, both on-disk and internal.
Some attributes are ignored for in-memory tables, e.g., roles or adql.

Properties for tables:

e supportsModel -- a short name of a data model supported through this
table (for TAPRegExt dataModel); you can give multiple names separated
by commas.

e supportsModelURI -- a URI of a data model supported through this table.
You can give multiple URIs separated by blanks.

If you give multiple data model names or URIs, the sequences of names and
URIs must be identical (in particular, each name needs a URI).

May occur in Element resource, Element data.
Atomic Children

e adqgl (boolean or 'hidden’; defaults to 'False') -- Should this table be
available for ADQL queries? In addition to True/False, this can also be
'hidden’ for tables readable from the TAP machinery but not published
in the metadata; this is useful for, e.g., tables contributing to a published
view. Warning: adql=hidden is incompatible with setting readProfiles
manually.

e allProfiles (Comma separated list of profile names.; defaults to u’admin,
msdemlei’) -- A (comma separated) list of profile names through which
the object can be written or administred (oh, and the default is not admin,
msdemlei but is the value of [db]maintainers)

69

dupePolicy (One of: drop, check, overwrite, dropOld; defaults to 'check’)
-- Handle duplicate rows with identical primary keys manually by raising
an error if existing and new rows are not identical (check), dropping the
new one (drop), updating the old one (overwrite), or dropping the old
one and inserting the new one (dropOld)?

forceUnique (boolean; defaults to 'False’) -- Enforce dupe policy for
primary key (see dupePolicy)?

A mixin reference, typically to support certain protocol. See Mixins.

namePath (id reference; defaults to None) -- Reference to an element
tried to satisfy requests for names in id references of this element’s chil-
dren.

nrows (integer; defaults to None) -- Approximate number of rows in
this table (usually, you want to use dachs limits to fill this out; write
<nrows>0</nrows> to enable that).

onDisk (boolean; defaults to 'False’) -- Table in the database rather than
in memory?

original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

primary (Comma-separated list of strings; defaults to ") -- Comma sep-
arated names of columns making up the primary key.

readProfiles (Comma separated list of profile names.; defaults to
u'trustedquery’) -- A (comma separated) list of profile names through
which the object can be read.

system (boolean; defaults to 'False’) -- Is this a system table? If it is,
it will not be dropped on normal imports, and accesses to it will not be
logged.

temporary (boolean; defaults to 'False’) -- If this is an onDisk table,
make it temporary? This is mostly useful for custom cores and such.

viewStatement (unicode string; defaults to None) -- A single SQL state-
ment to create a view. Setting this makes this table a view. The statement
will typically be something like CREATE VIEW \curtable AS (SELECT
\colNames FROM...).

70

Structure Children

e columns (contains Element column and may be repeated zero or more
times) -- Columns making up this table.

e dm (contains Element dm and may be repeated zero or more times) --
Annotations for data models.

e foreignKeys (contains Element foreignKey and may be repeated zero or
more times) -- Foreign keys used in this table

e groups (contains Element group and may be repeated zero or more times)
-- Groups for columns and params of this table

e indices (contains Element index and may be repeated zero or more times)
-- Indices defined on this table

e params (contains Element param and may be repeated zero or more times)
-- Param ("global columns") for this table.

e registration (contains Element publish (data)) -- A registration (to the
VO registry) of this table or data collection.

e stc (contains Element stc and may be repeated zero or more times) --

STC-S definitions of coordinate systems.

Other Children

e meta - a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro curtable, Macro decapitalize, Macro getConfig, Macro get-
Param, Macro internallink, Macro magicEmpty, Macro metaString, Macro
nameForUCD, Macro nameForUCDs, Macro gName, Macro quote, Macro rdld,
Macro rdldDotted, Macro schema, Macro sqlquote, Macro tablename, Macro
test, Macro today, Macro upper, Macro urlquote

Element updater

Information on where and how to update a piece of coverage information.

May occur in Element coverage.

71

Atomic Children

e mocOrder (integer; defaults to '6') -- Maximal HEALpix order to use
in coverage MOCs (6 is about a degree resolution, each additional point
doubles resolution).

e sourceTable (id reference; defaults to <Not given/empty>) -- A table
from which to compute coverage by default.

e spaceTable (id reference; defaults to <Not given/empty>) -- A table
from which to compute spatial coverage (overrides sourceTable).

e spectralTable (id reference; defaults to <Not given/empty>) -- A table
from which to compute spectral coverage (overrides sourceTable)

o timeTable (id reference; defaults to <Not given/empty>) -- A table from
which to compute temporal coverage (overrides sourceTable)

Element url

A source document for a regression test.

As string URLs, they specify where to get data from, but the additionally let
you specify uploads, authentication, headers and http methods, while at the
same time saving you manual escaping of parameters.

The bodies is the path to run the test against. This is interpreted as relative
to the RD if there's no leading slash, relative to the server if there's a leading
slash, and absolute if there's a scheme.

The attributes are translated to parameters, except for a few pre-defined names.
If you actually need those as URL parameters, should at us and we'll provide
some way of escaping these.

We don't actually parse the URLs coming in here. GET parameters are appended
with a & if there’'s a 7 in the existing URL, with a 7 if not. Again, shout if this
is too dumb for you (but urlparse really isn't all that robust either...)

May occur in Element regTest.
Atomic Children
e Character content of the element (defaulting to ") -- Base for URL gen-

eration; embedded whitespace will be removed, so you're free to break
those whereever you like.

72

e httpAuthKey (unicode string; defaults to <Not given/empty>) -- A key
into ~/.gavo/test.creds to find a user/password pair for this request.

¢ httpHonorRedirects (boolean; defaults to 'False") -- Follow 30x redirects
instead of just using status, headers, and payload of the initial request.

e httpMethod (unicode string; defaults to 'GET") -- Request method; usu-
ally one of GET or POST

e parSet (One of: TAP, form; defaults to <Not given/empty>) -- Preselect
a default parameter set; form gives what our framework adds to form
queries.

e postPayload (unicode string; defaults to <Not given/empty>) -- Path to
a file containing material that should go with a POST request (conflicts
with additional parameters).

Structure Children

e uploads (contains Element httpUpload and may be repeated zero or
more times) -- HTTP uploads to add to request (must have http-
Method="POST")

Other Children

e value (mapping; the value is the element content, the key is in the 'key’
(or, equivalently, key) attribute) -- Additional HTTP headers to pass.

e (ignore)

Element values

Information on a column’s values, in particular its domain.

This is quite like the values element in a VOTable. In particular, to accomodate
VOTable usage, we require nullLiteral to be a valid literal for the parent’s type.

Note that DaCHS does not validate for contraints from values on table import.
This is mainly because before gavo values has run, values may not represent the
new dataset in semiautomatic values.

With HTTP parameters, values validation does take place (but again, that's
mostly not too helpful because there are query languages sitting in between
most of the time).

73

Hence, the main utility of values is metadata declaration, both in the form
render (where they become placeholders) and in datalink (where they are com-
municated as VOTable values).

May occur in Element param, Element column, Element inputKey, Element
outputField.

Atomic Children

e caseless (boolean; defaults to 'False’) -- When validating, ignore the case
of string values. For non-string types, behaviour is undefined (i.e., DaCHS
is going to spit on you).

e default (unicode string; defaults to None) -- A default value (currently
only used for options).

e fromdb (unicode string; defaults to None) -- A query fragment returning
just one column to fill options from (will add to options if some are given).
Do not write SELECT or anything, just the column name and the where
clause.

e max (unicode string; defaults to None) -- Maximum acceptable value as
a datatype literal

e min (unicode string; defaults to None) -- Minimum acceptable value as
a datatype literal

e multiOk (boolean; defaults to 'False’) -- Deprecated, use multiplic-
ity=multiple on input keys instead.

e nullLiteral (unicode string; defaults to None) -- An appropriate value
representing a NULL for this column in VOTables and similar places. You
usually should only set it for integer types and chars. Note that rowmakers
make no use of this nullLiteral, i.e., you can and should choose null values
independently of your source. Again, for reals, floats and (mostly) text
you probably do not want to do this.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e options (contains Element option and may be repeated zero or more times)
-- List of acceptable values (if set)

74

Element var

A definition of a rowmaker variable.

It consists of a name and a python expression, including function calls. The
variables are entered into the input row coming from the grammar.

var elements are evaluated before apply elements, in the sequence they are in
the RD. You can refer to keys defined by vars already evaluated in the usual
@key manner.

May occur in Element rowmaker.
Atomic Children

e Character content of the element (defaulting to ") -- A python expression
giving the value for key.

e key (unicode string; defaults to <Undefined>) -- Name of the column
the value is to end up in.

e nullExcs (unicode string; defaults to <Not given/empty>) -- Exceptions
that should be caught and cause the value to be NULL, separated by
commas.

e nullExpr (unicode string; defaults to <Not given/empty>) -- A python
expression for a value that is mapped to NULL (None). Equality is checked
after building the value, so this expression has to be of the column type.
Use map with the parseWithNull function to catch null values before type
conversion.

e source (unicode string; defaults to None) -- Source key name to convert
to column value (either a grammar key or a var).

Active Tags

The following tags are "active", which means that they do not directly contribute
to the RD parsed. Instead they define, replay, or edit streams of elements.

Element FEED

An active tag that takes an event stream and replays the events, possibly filling
variables.

This element supports arbitrary attributes with unicode values. These values
are available as macros for replayed values.

75

Atomic Children

e reexpand (boolean; defaults to 'False’) -- Force re-expansion of macros;
usually, when replaying, each string is only expanded once, mainly to avoid
overly long backslash-fences. Set this to true to force further expansion.

e source (id reference; defaults to None) -- id of a stream to replay

Structure Children

e edits (contains Element EDIT and may be repeated zero or more times)
-- Changes to be performed on the events played back.

e events (contains Element events) -- Alternatively to source, an XML frag-
ment to be replayed

e prunes (contains Element PRUNE and may be repeated zero or more
times) -- Conditions for removing items from the playback stream.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdld, Macro rdldDotted, Macro schema, Macro
sqlquote, Macro test, Macro today, Macro upper, Macro urlquote

Element LFEED

A ReplayedEventStream that does not expand active tag macros.

You only want this when embedding a stream into another stream that could
want to expand the embedded macros.

Atomic Children
e reexpand (boolean; defaults to 'False') -- Force re-expansion of macros;

usually, when replaying, each string is only expanded once, mainly to avoid
overly long backslash-fences. Set this to true to force further expansion.

e source (id reference; defaults to None) -- id of a stream to replay

76

Structure Children

e edits (contains Element EDIT and may be repeated zero or more times)
-- Changes to be performed on the events played back.

e events (contains Element events) -- Alternatively to source, an XML frag-
ment to be replayed

e prunes (contains Element PRUNE and may be repeated zero or more
times) -- Conditions for removing items from the playback stream.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdld, Macro rdldDotted, Macro schema, Macro
sqlquote, Macro test, Macro today, Macro upper, Macro urlquote

Element LOOP

An active tag that replays a feed several times, each time with different values.
Atomic Children

e codeltems (unicode string; defaults to None) -- A python generator body
that yields dictionaries that are then used as loop items. You can access
the parse context as the context variable in these code snippets.

e csvltems (unicode string; defaults to None) -- The items to loop over, in
CSV-with-labels format.

e listltems (unicode string; defaults to None) -- The items to loop over,
as space-separated single items. Each item will show up once, as 'item’
macro.

e reexpand (boolean; defaults to 'False’) -- Force re-expansion of macros;
usually, when replaying, each string is only expanded once, mainly to avoid
overly long backslash-fences. Set this to true to force further expansion.

e source (id reference; defaults to None) -- id of a stream to replay

Structure Children

e edits (contains Element EDIT and may be repeated zero or more times)
-- Changes to be performed on the events played back.

e events (contains Element events) -- Alternatively to source, an XML frag-
ment to be replayed

7

e prunes (contains Element PRUNE and may be repeated zero or more
times) -- Conditions for removing items from the playback stream.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdld, Macro rdldDotted, Macro schema, Macro
sqlquote, Macro test, Macro today, Macro upper, Macro urlquote

Element NXSTREAM

An event stream that records events, not expanding active tags.

Normal event streams expand embedded active tags in place. This is frequently
what you want, but it means that you cannot, e.g., fill in loop variables through
stream macros.

With non-expanded streams, you can do that:

<NXSTREAM id="cols">
<LOOP listItems="\stuff">
<events>
<column name="\item"/>
</events>
</L00P>
</NXSTREAM>
<table id="foo">
<FEED source="cols" stuff="x y"/>
</table>

Note that the normal innermost-only rule for macro expansions within active tags
does not apply for NXSTREAMS. Macros expanded by a replayed NXSTREAM
will be re-expanded by the next active tag that sees them (this is allow embedded
active tags to use macros; you need to double-escape macros for them, of
course).

Atomic Children

e doc (unicode string; defaults to None) -- A description of this stream
(should be restructured text).

Structure Children
e DEFAULTS (contains Element DEFAULTS) -- A mapping giving defaults

for macros expanded in this stream. Macros not defaulted will fail when
not given in a FEED's attributes.

78

Element STREAM

An active tag that records events as they come in.

Their only direct effect is to leave a trace in the parser's id map. The resulting
event stream can be played back later.

Atomic Children

e doc (unicode string; defaults to None) -- A description of this stream
(should be restructured text).

Structure Children

e DEFAULTS (contains Element DEFAULTS) -- A mapping giving defaults
for macros expanded in this stream. Macros not defaulted will fail when
not given in a FEED's attributes.

Grammars Available

The following elements are all grammar related. All grammar elements can
occur in data descriptors.

Element binaryGrammar

A grammar that builds rowdicts from binary data.

The grammar expects the input to be in fixed-length records. the actual speci-
fication of the fields is done via a binaryRecordDef element.

Atomic Children

e armor (One of: fortran; defaults to None) -- Record armoring; by default
it's None meaning the data was dumped to the file sequentially. Set it to
fortran for fortran unformatted files (4 byte length before and after the
payload).

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e skipBytes (integer; defaults to '0') -- Number of bytes to skip before
parsing records.

79

Structure Children

e fieldDefs (contains Element binaryRecordDef) -- Definition of the record.

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element binaryRecordDef

A definition of a binary record.

A binary records consists of a number of binary fields, each of which is defined
by a name and a format code. The format codes supported here are a subset
of what python's struct module supports. The widths given below are for big,
little, and packed binfmts. For native (which is the default), it depends on your
platform.

e <number>s -- <number> characters making up a string

e b,B -- signed and unsigned byte (8 bit)

e h,H -- signed and unsigned short (16 bit)

80

e il - signed and unsigned int (32 bit)
e q,Q -- signed and unsigned long (64 bit)
e f.d -- float and double.

The content of this element gives the record structure in the format
<name>(<code>){ <whitespace><name>(<code>)} where <name> is a c-
style identifier.

May occur in Element binaryGrammar.
Atomic Children

e binfmt (One of: big, little, packed, native; defaults to 'native’) -- Binary
format of the input data; big and little stand for msb first and Isb first,
and packed is like native except no alignment takes place.

e Character content of the element (defaulting to ") -- The enumeration of
the record fields.

Element cdfHeaderGrammar

A grammar that returns the header dictionary of a CDF file (global attributes).

This grammar yields a single dictionary per file, which corresponds to the global
attributes. The values in this dictionary may have complex structure; in partic-
ular, sequences are returned as lists.

To use this grammar, additional software is required that (by 2014) is not
packaged for Debian. See https://pythonhosted.org/SpacePy/install.html for
installation instructions. Note that you must install the CDF library itself as
described further down on that page; the default installation instructions do
not install the library in a public place, so if you use these, you'll have to set
CDF_LIB to the right value, too, before running dachs imp.

Atomic Children

e autoAtomize (boolean; defaults to 'False') -- Unpack 1-element lists to
their first value.

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

81

https://pythonhosted.org/SpacePy/install.html

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e mapKeys (contains Element mapKeys) -- Prescription for how to map
labels keys to grammar dictionary keys

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element columnGrammar

A grammar that builds rowdicts out of character index ranges.

This works by using the colRanges attribute like <col key="mag">12-
16</col>, which will take the characters 12 through 16 inclusive from each
input line to build the input column mag.

As a shortcut, you can also use the colDefs attribute; it contains a string of the
form {<key>:<range>}, i.e., a whitespace-separated list of colon-separated
items of key and range as accepted by cols, e.g.:

<colDefs>
a: 3-4
_u: 7

</colDefs>

82

Atomic Children

e colDefs (unicode string; defaults to None) -- Shortcut way of defining
cols

e commentlIntroducer (unicode string; defaults to <Not given/empty>)
-- A character sequence that, when found at the beginning of a line makes
this line ignored

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e gunzip (boolean; defaults to 'False’) -- Unzip sources while reading?
(Deprecated, use preFilter="zcat’)

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e preFilter (unicode string; defaults to None) -- Shell command to pipe the
input through before passing it on to the grammar. Classical examples
include zcat or bzcat, but you can commit arbitrary shell atrocities here.

e toplgnoredLines (integer; defaults to '0") -- Skip this many lines at the
top of each source file.

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e col (mapping; the value is the element content, the key is in the 'key’ (or,
equivalently, key) attribute) -- Mapping of source keys to column ranges.

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

83

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element contextGrammar

A grammar for web inputs.

The source tokens for context grammars are dictionaries; these are either typed
dictionaries from nevow formal, where the values usually are atomic, or, prefer-
ably, the dictionaries of lists from request.args.

ContextGrammars never yield rows, so they're probably fairly useless in normal
cirumstances.

In normal usage, they just yield a single parameter row, corresponding to the
source dictionary possibly completed with defaults, where non-requried input
keys get None defaults where not given. Missing required parameters yield
errors.

This parameter row honors the multiplicity specification, i.e., single or forced-
single are just values, multiple are lists. The content are parsed values (using
the InputKeys' parsers).

Since most VO protocols require case-insensitive matching of parameter names,
matching of input key names and the keys of the input dictionary is attempted
first literally, then disregarding case.

Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e inputTD (id reference; defaults to <Not given/empty>) -- The input
table from which to take the input keys

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

84

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e inputKeys (contains Element inputKey and may be repeated zero or more
times) -- Extra input keys not defined in the inputTD. This is used when
services want extra input processed by them rather than their core.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element csvGrammar

A grammar that uses python's csv module to parse files.

Note that these grammars by default interpret the first line of the input file as
the column names. When your files don't follow that convention, you must give
names (as in names=’raj2000, dej2000, magV’), or you'll lose the first line and
have silly column names.

CSVGrammars currently do not support non-ASCIl inputs. Contact the authors
if you need that.

If data is left after filling the defind keys, it is available under the NOTASSIGNED
key.

85

Atomic Children

e delimiter (unicode string; defaults to ',") -- CSV delimiter

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e gunzip (boolean; defaults to 'False’) -- Unzip sources while reading?
(Deprecated, use preFilter="zcat’)

e names (Comma-separated list of strings; defaults to None) -- Names for
the parsed fields, in sequence of the comma separated values. The default
is to read the field names from the first line of the csv file. You can use
macros here, e.g., \colNames{someTable}.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e preFilter (unicode string; defaults to None) -- Shell command to pipe the
input through before passing it on to the grammar. Classical examples
include zcat or bzcat, but you can commit arbitrary shell atrocities here.

e strip (boolean; defaults to 'False’) -- If True, whitespace immediately
following a delimiter is ignored.

e toplgnoredLines (integer; defaults to '0") -- Skip this many lines at the
top of each source file.

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e mapKeys (contains Element mapKeys) -- Prescription for how to map
header keys to grammar dictionary keys

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

86

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element customGrammar

A Grammar with a user-defined row iterator taken from a module.

See the Writing Custom Grammars (in the reference manual) for details.
Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e isDispatching (boolean; defaults to 'False’) -- Is this a dispatching gram-
mar (i.e., does the row iterator return pairs of role, row rather than only
rows)?

e module (unicode string; defaults to <Undefined>) -- Path to module
containing your row iterator.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

87

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element dictlistGrammar

A grammar that "parses" from lists of dicts.

Actually, it will just return the dicts as they are passed. This is mostly useful
internally, though it might come in handy in custom code.

Atomic Children

e asPars (boolean; defaults to 'False’) -- Just return the first item of the
list as parameters row and exit?

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

88

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element directGrammar

A user-defined external grammar.
See the separate document on user-defined code on more on direct grammars.

You will almost always use these in connection with C code generated by dachs
mkboost.

Atomic Children

e autoNull (unicode string; defaults to None) -- Use this string as general
NULL value (when reading from plain text).

e cBooster (unicode string; defaults to <Undefined>) -- resdir- relative
path to the booster C source.

89

:dachsdoc:booster.html

e customFlags (unicode string; defaults to ") -- Pass these flags to the C
compiler when building the booster.

e extension (integer; defaults to '1") -- For FITS table boosters, get the
table from this extension.

e gzippedlnput (boolean; defaults to 'False’) -- Pipe gzip before booster?
(will not work for FITS)

e ignoreBadRecords (boolean; defaults to 'False’) -- Let booster ignore
invalid records?

e preFilter (unicode string; defaults to None) -- Pipe input through this
program before handing it to the booster; this string is shell-expanded
(will not work for FITS).

e recordSize (integer; defaults to '4000') -- For bin boosters, read this many
bytes to make up a record; for line-based boosters, this is the maximum
length of an input line.

e splitChar (unicode string; defaults to '|") -- For split boosters, use this as
the separator.

e type (One of: bin, fits, col, split; defaults to 'col’) -- Make code for
a booster parsing by column indices (col), by splitting along separators
(split), by reading fixed-length binary records (bin), for from FITS binary
tables (fits).

Structure Children

e mapKeys (contains Element mapKeys) -- For a FITS booster, map DB
table column names to FITS column names (e.g., if the FITS table name
fIx is to end up in the DB column flux, say flux:flx).

Element embeddedGrammar

A Grammar defined by a code application.

To define this grammar, write a ProcApp iterator leading to code yielding row
dictionaries. The grammar input is available as self.sourceToken; for normal
grammars within data elements, that would be a fully qualified file name.

Grammars can also return one "parameter" dictionary per source (the input to a
make's parmaker). In an embedded grammar, you can define a pargetter to do
that. It works like the iterator, except that it returns a single dictionary rather
than yielding several of them.

This could look like this, when the grammar input is some iterable:

90

<embeddedGrammar>
<iterator>
<setup>
<code>
testData = "a"*x1024
</code>
</setup>
<code>
for i in self.sourceToken:
yield {’index’: i, ’data’: testData}
</code>
</iterator>
</embeddedGrammar>

Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e isDispatching (boolean; defaults to 'False’) -- Is this a dispatching gram-
mar (i.e., does the row iterator return pairs of role, row rather than only
rows)?

e notify (boolean; defaults to 'False’) -- Enable notification of begin/end of
processing (as for other grammars; embedded grammars often have odd
source tokens for which you don't want that).

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e iterator (contains Element iterator) -- Code yielding row dictionaries

e pargetter (contains Element pargetter) -- Code returning a parameter
dictionary

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

91

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element fitsProdGrammar

A grammar that returns FITS-headers as dictionaries.

This is the grammar you want when one FITS file corresponds to one row in
the destination table.

The keywords of the grammar record are the cards in the primary header (or
some other hdu using the same-named attribute). "-" in keywords is replaced
with an underscore for easier @-referencing. You can use a mapKeys element
to effect further name cosmetics.

This grammar should handle compressed FITS images transparently if set
gnd="False". This means that you will essentially get the headers from the
second extension for those even if you left hdu="0".

The original header is preserved as the value of the header__ key. This is mainly
intended for use WCS use, as in wcs.WCS(Cheader_).

If you have more complex structures in your FITS files, you can get access to
the pyfits HDU using the hdusField attribute. With hdusField="_H", you could
say things like e_H[1].data[10][0] to get the first data item in the tenth row in
the second HDU.

Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e hdu (integer; defaults to '0") -- Take the header from this HDU. You must
say qnd='"False’ for this to take effect.

92

e hdusField (unicode string; defaults to None) -- If set, the complete pyfits
HDU list for the FITS file is returned in this grammar field.

e maxHeaderBlocks (integer; defaults to '40") -- Stop looking for FITS
END cards and raise an error after this many blocks. You may need to
raise this for people dumping obscene amounts of data or history into
headers.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e qgnd (boolean; defaults to 'True') -- Use a hack to read the FITS header
more quickly. This only works for the primary HDU

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e mapKeys (contains Element mapKeys) -- Prescription for how to map
header keys to grammar dictionary keys

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

93

Element fitsTableGrammar

A grammar parsing from FITS tables.

fitsTableGrammar result in typed records, i.e., values normally come in the types
they are supposed to have. Of course, that won't work for datetimes, STC-S
regions, and the like.

The keys of the result dictionaries are simpily the names given in the FITS.
Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e hdu (integer; defaults to '1") -- Take the data from this extension (pri-
mary=0). Tabular data typically resides in the first extension.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro

94

lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqglquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element freeREGrammar

A grammar allowing "free" regular expressions to parse a document.

Basically, you give a rowProduction to match individual records in the document.
All matches of rowProduction will then be matched with parseRE, which in turn
must have named groups. The dictionary from named groups to their matches
makes up the input row.

For writing the parseRE, we recommend writing an element, using a CDATA con-
struct, and taking advantage of python’s "verbose" regular expressions. Here's
an example:

<parseRE><! [CDATA[(7xsm) "name: : (?P<name>. *)
“query: : (?P<query>.*)
“description:: (?P<description>.*)\.\.
11></parseRE>

Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e ignoreJunk (boolean; defaults to 'False’) -- Ignore everything outside of
the row production

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e parseRE (unicode string; defaults to <Undefined>) -- RE containing
named groups matching a record

e rowProduction (unicode string; defaults to '(?m)".+$\n") -- RE match-
ing a complete record.

e stripTokens (boolean; defaults to 'False’) -- Strip whitespace from result
tokens?

95

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element iterator

A definition of an iterator of a grammar.

The code defined here becomes the _iterRows method of a gram-
mar.common.Rowlterator class. This means that you can access self.grammar
(the parent grammar; you can use this to transmit properties from the RD to
your function) and self.sourceToken (whatever gets passed to parse()).

May occur in Element embeddedGrammar.
Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

96

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element keyValueGrammar

A grammar to parse key-value pairs from files.

The default assumes one pair per line, with # comments and = as separating
character.

yieldPairs makes the grammar return an empty docdict and {"key":, "value":}
rowdicts.

Whitespace around key and value is ignored.

97

Atomic Children

e commentPattern (unicode string; defaults to '(?m)#.*") - A regular
expression describing comments.

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e kvSeparators (unicode string; defaults to ':=") -- Characters accepted as
separators between key and value

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e pairSeparators (unicode string; defaults to 'n’) -- Characters accepted
as separators between pairs

e yieldPairs (boolean; defaults to 'False’) -- Yield key-value pairs instead
of complete records?

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e mapKeys (contains Element mapKeys) -- Mappings to rename the keys
coming from the source files. Use this, in particular, if the keys are not
valid python identifiers.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

98

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element mapKeys

Mapping of names, specified in long or short forms.

mapKeys is necessary in grammars like keyValueGrammar or fitsProdGrammar.
In these, the source files themselves give key names. Within the GAVO DC, keys
are required to be valid python identifiers (i.e., match [A-Za-z_] [A-Za-z_0-91%).
If keys coming in do not have this form, mapping can force proper names.

mapKeys could also be used to make incoming names more suitable for matching
with shell patterns (like in rowmaker idmaps).

May occur in Element cdfHeaderGrammar, Element directGrammar, Element
fitsProdGrammar, Element pdsGrammar, Element keyValueGrammar, Element
csvGrammar.

Atomic Children

e Character content of the element (defaulting to ") -- Simple mappings in
the form<dest>:<src>{,<dest>:<src>}

Other Children
e map (mapping; the key is the element content, the value is in the 'key’

(or, equivalently, dest) attribute) -- Map source names given in content
to the name given in dest.

Element mySQLDumpGrammar

A grammar pulling information from MySQL dump files.

WARNING: This is a quick hack. If you want/need it, please contact the
authors.

99

At this point this is nothing but an ugly RE mess with lots of assumptions about
the dump file that’s easily fooled. Also, the entire dump file will be pulled into
memory.

Since grammar semantics cannot do anything else, this will always only iterate
over a single table. This currently is fixed to the first, but it's conceivable to
make that selectable.

Database NULLs are already translated into Nones.

In other words: It might do for simple cases. If you have something else, improve
this or complain to the authors.

Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e gunzip (boolean; defaults to 'False’) -- Unzip sources while reading?
(Deprecated, use preFilter="zcat’)

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e preFilter (unicode string; defaults to None) -- Shell command to pipe the
input through before passing it on to the grammar. Classical examples
include zcat or bzcat, but you can commit arbitrary shell atrocities here.

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

100

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element nullGrammar
A grammar that never returns any rows.
Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

101

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element odbcGrammar

A grammar that feeds from a remote database.

This works as a sort of poor man's foreign data wrapper: you pull data from
a remote database now and then, mogrifying it into whatever format you want
locally.

This expects files containing pyodbc connection strings as sources, so you'll
normally just have one source. Having the credentials externally helps keeping
RDs using this safe for public version control.

An example for an ODBC connection string:

DRIVER={SQL Server};SERVER=localhost;DATABASE=testdb;UID=me;PWD=pass

See also http://www.connectionstrings.com/

This will only work if pyodbc (debian: python-pyodbc) is installed. Additionally,
you will have to install the odbc driver corresponding to your source database
(e.g., odbc-postgresql).

Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

102

http://www.connectionstrings.com/

e query (unicode string; defaults to None) -- The query to run on the
remote server. The keys of the grammar will be the names of the result
columns.

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element pargetter

A definition of the parameter getter of an embedded grammar.

The code defined here becomes the getParameters method of the generated row
iterator. This means that the dictionary returned here becomes the input to a
parmaker.

If you don't define it, the parameter dict will be empty.

Like the iterators, pargetters see the current source token as self.sourceToken,
and the grammar as self.grammar.

May occur in Element embeddedGrammar.

103

Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element pdsGrammar

A grammar that returns labels of PDS documents as rowdicts.

PDS is the file format of the Planetary Data System; the labels are quite like,
but not quite like FITS headers.

104

Extra care needs to be taken here since the values in the rawdicts can be
complex objects (e.g., other labels). It's likely that you will need constructs like
@IMAGE["KEY"].

Current versions of PyPDS also don't parse the values. This is particularly
insiduous because general strings are marked with " in PDS. When mapping
those, you'll probably want a @KEY .strip(""").

You'll need PyPDS to use this; there's no Debian package for that yet, so you'll
have to do a source install from git://github.com/RyanBalfanz/PyPDS.git

Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e mapKeys (contains Element mapKeys) -- Prescription for how to map
labels keys to grammar dictionary keys

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

105

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element reGrammar

A grammar that builds rowdicts from records and fields specified via REs sepa-
rating them.

There is also a simple facility for "cleaning up" records. This can be used to
remove standard shell-like comments; use recordCleaner="(7:#.%)7(.*)".

Atomic Children

e commentPat (unicode string; defaults to None) -- RE inter-record ma-
terial to be ignored (note: make this match the entire comment, or you'll
get random mess from partly-matched comments. Use '(?m)~#.*$’ for
beginning-of-line hash-comments.

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e fieldSep (unicode string; defaults to "\s+') -- RE for separating two fields
in a record.

e gunzip (boolean; defaults to 'False’) -- Unzip sources while reading?
(Deprecated, use preFilter="zcat’)

e lax (boolean; defaults to 'False’) -- allow more or less fields in source
records than there are names

e names (Comma-separated list of strings; defaults to ") -- Names for
the parsed fields, in matching sequence. You can use macros here, e.g.,
\colNames{someTable}.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e preFilter (unicode string; defaults to None) -- Shell command to pipe the
input through before passing it on to the grammar. Classical examples
include zcat or bzcat, but you can commit arbitrary shell atrocities here.

106

e recordCleaner (unicode string; defaults to None) -- A regular expression
matched against each record. The matched groups in this RE are joined
by blanks and used as the new pattern. This can be used for simple
cleaning jobs; However, records not matching recordCleaner are rejected.

e recordSep (unicode string; defaults to 'n’) -- RE for separating two
records in the source.

e stopPat (unicode string; defaults to None) -- Stop parsing when a record
matches this RE (this is for skipping non-data footers

e toplgnoredLines (integer; defaults to '0") -- Skip this many lines at the
top of each source file.

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

107

Element rowfilter

A generator for rows coming from a grammar.

Rowfilters receive rows (i.e., dictionaries) as yielded by a grammar under the
name row. Additionally, the embedding row iterator is available under the name
rowlter.

Macros are expanded within the embedding grammar.

The procedure definition must result in a generator, i.e., there must be at least
one yield; in general, this will typically be a yield row, but a rowfilter may
swallow or create as many rows as desired.

If you forget to have a yield in the rowfilter source, you'll get a "NoneType is
not iterable" error that’s a bit hard to understand.

Here, you can only access whatever comes from the grammar. You can access
grammar keys in late parameters as row[key]| or, if key is like an identifier, as
Qkey.

May occur in Element voTableGrammar, Element reGrammar, Element con-
textGrammar, Element columnGrammar, Element cdfHeaderGrammar, Element
fitsTableGrammar, Element rowsetGrammar, Element binaryGrammar, Element
fitsProdGrammar, Element pdsGrammar, Element customGrammar, Element
odbcGrammar, Element mySQLDumpGrammar, Element freeREGrammar, El-
ement dictlistGrammar, Element keyValueGrammar, Element csvGrammar, El-
ement embeddedGrammar, Element transparentGrammar, Element nullGram-
mar.

Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

108

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element rowsetGrammar

A grammar handling sequences of tuples.

To add semantics to the field, it must know the "schema" of the data. This is
defined via the table it is supposed to get the input from.

This grammar probably is only useful for internal purposes.
Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e fieldsFrom (id reference; defaults to <Undefined>) -- the table defining
the columns in the tuples.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

109

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

Element sourceFields

A procedure application that returns a dictionary added to all incoming rows.

Use this to programmatically provide information that can be computed once
but that is then added to all rows coming from a single source, usually a file.
This could be useful to add information on the source of a record or the like.

The code must return a dictionary. The source that is about to be parsed is
passed in as sourceToken. When parsing from files, this simply is the file name.
The data the rows will be delivered to is available as "data", which is useful for
adding or retrieving meta information.

May occur in Element voTableGrammar, Element reGrammar, Element con-
textGrammar, Element columnGrammar, Element cdfHeaderGrammar, Element
fitsTableGrammar, Element rowsetGrammar, Element binaryGrammar, Element

110

fitsProdGrammar, Element pdsGrammar, Element customGrammar, Element
odbcGrammar, Element mySQLDumpGrammar, Element freeREGrammar, El-
ement dictlistGrammar, Element keyValueGrammar, Element csvGrammar, El-
ement embeddedGrammar, Element transparentGrammar, Element nullGram-
mar.

Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

111

Element transparentGrammar

A grammar that returns its sourceToken as the row iterator.

This only makes sense in extreme situations and never without custom code. If
you're not sure you need this, you don't want to know about it.

Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

112

Element voTableGrammar

A grammar parsing from VOTables.
Currently, the PARAM fields are ignored, only the data rows are returned.

vo TableGrammars result in typed records, i.e., values normally come in the types
they are supposed to have.

Atomic Children

e enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

e gunzip (boolean; defaults to 'False’) -- Unzip sources while reading?

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

e rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

e sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro dIMetaURI, Macro fullDLURL, Macro get-
Config, Macro inputRelativePath, Macro inputSize, Macro internallink, Macro
lastSourceElements, Macro magicEmpty, Macro metaString, Macro property,
Macro quote, Macro rdld, Macro rdldDotted, Macro rootlessPath, Macro
rowsProcessed, Macro schema, Macro sourceDate, Macro splitPreviewPath,
Macro sqlquote, Macro srcstem, Macro standardPreviewPath, Macro test,
Macro today, Macro upper, Macro urlquote

113

Cores Available

The following elements are related to cores. All cores can only occur toplevel,
i.e. as direct children of resource descriptors. Cores are only useful with an id
to make them referencable from services using that core.

Element adqlCore

A core taking an ADQL query from its query argument and returning the result
of that query in a standard table.

Since the columns returned depend on the query, the outputTable of an ADQL
core must not be defined.

Atomic Children

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e inputTable (contains Element inputTable) -- Description of the input data
e outputTable (contains Element outputTable) -- Table describing what

fields are available from this core

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element coreProc

A definition of a pythonCore's functionalty.

This is a procApp complete with setup and code; you could inherit between
these.

coreProcs see the embedding service, the input table passed, and the query
metadata as service, inputTable, and queryMeta, respectively.

The core itself is available as self.

May occur in Element pythonCore.

114

Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)

-- Setup of the namespace the function will run in

Element customCore

A wrapper around a core defined in a module.
This core lets you write your own cores in modules.

The module must define a class Core. When the custom core is encountered,
this class will be instanciated and will be used instead of the CustomCore, so
your code should probably inherit core.Core.

See Writing Custom Cores for details.

115

Atomic Children

e module (unicode string; defaults to <Undefined>) -- Path to the module
containing the core definition.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element dataFormatter

A procedure application that renders data in a processed service.

These play the role of the renderer, which for datalink is ususally trivial. They
are supposed to take descriptor.data and return a pair of (mime-type, bytes),
which is understood by most renderers.

When no dataFormatter is given for a core, it will return descriptor.data directly.
This can work with the datalink renderer itself if descriptor.data will work as
a nevow resource (i.e., has a renderHT TP method, as our usual products do).
Consider, though, that renderHTTP runs in the main event loop and thus most
not block for extended periods of time.

The following names are available to the code:

e descriptor -- whatever the DescriptorGenerator returned

e args -- all the arguments that came in from the web.

In addition to the usual names available to ProcApps, data formatters have:

116

e Page -- base class for resources with renderHT TP methods.

e |Request -- the nevow interface to make Request objects with.

e File(path, type) -- if you just want to return a file on disk, pass its
path and media type to File and return the result.

e TemporaryFile(path, type) -- as File, but the disk file is unlinked
after use

e soda -- the protocols.soda module

May occur in Element datalinkCore.
Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

117

Element dataFunction

A procedure application that generates or modifies data in a processed data
service.

All these operate on the data attribute of the product descriptor. The first
data function plays a special role: It must set the data attribute (or raise some
appropriate exception), or a server error will be returned to the client.

What is returned depends on the service, but typcially it's going to be a table
or products.*Product instance.

Data functions can shortcut if it's evident that further data functions can only
mess up (i.e., if the do something bad with the data attribute); you should not
shortcut if you just think it makes no sense to further process your output.

To shortcut, raise either of FormatNow (falls though to the formatter, which is
usually less useful) or DeliverNow (directly returns the data attribute; this can
be used to return arbitrary chunks of data).

The following names are available to the code:

e descriptor -- whatever the DescriptorGenerator returned

e args - all the arguments that came in from the web.

In addition to the usual names available to ProcApps, data functions have:

FormatNow -- exception to raise to go directly to the formatter

e DeliverNow -- exception to raise to skip all further formatting and
just deliver what's currently in descriptor.data

e File(path, type) -- if you just want to return a file on disk, pass its
path and media type to File and assign the result to descriptor.data.

e TemporaryFile(path,type) -- as File, but the disk file is unlinked after
use

e makeData -- the rsc.makeData function

e soda -- the protocols.soda module

May occur in Element datalinkCore.

118

Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element datalinkCore

A core for processing datalink and processed data requests.

The input table of this core is dynamically generated from its metaMakers; it
makes no sense at all to try and override it.

See Datalink and SODA for more information.

119

In contrast to "normal" cores, one of these is made (and destroyed) for each
datalink request coming in. This is because the interface of a datalink service
depends on the request’s value(s) of ID.

The datalink core can produce both its own metadata and data generated. It
is the renderer's job to tell them apart.

Atomic Children

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e dataFormatter (contains Element dataFormatter) -- Code that turns de-
scriptor.data into a nevow resource or a mime, content pair. If not given,
the renderer will be returned descriptor.data itself (which will probably
not usually work).

e dataFunctions (contains Element dataFunction and may be repeated zero
or more times) -- Code that generates of processes data for this core. The
first of these plays a special role in that it must set descriptor.data, the
others need not do anything at all.

e descriptorGenerator (contains Element descriptorGenerator) -- Code that
takes a PUBDID and turns it into a product descriptor instance. If not
given, //soda#fromStandardPubDID will be used.

e inputKeys (contains Element inputKey and may be repeated zero or more
times) -- A parameter to one of the proc apps (data functions, formatters)
active in this datalink core; no specific relation between input keys and
procApps is supposed; all procApps are passed all argments. Convention-
ally, you will write the input keys in front of the proc apps that interpret
them.

e inputTable (contains Element inputTable) -- Description of the input data

e metaMakers (contains Element metaMaker and may be repeated zero or
more times) -- Code that takes a data descriptor and either updates input
key options or yields related data.

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

120

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element dbCore

A core performing database queries on one table or view.

DBCores ask the service for the desired output schema and adapt their output.
The DBCore’s output table, on the other hand, lists all fields available from the
queried table.

Atomic Children

e distinct (boolean; defaults to 'False’) -- Add a 'distinct’ modifier to the
query?

e groupBy (unicode string; defaults to None) -- A group by clause. You
shouldn't generally need this, and if you use it, you must give an output-
Table to your core.

e limit (integer; defaults to None) -- A pre-defined match limit (suppresses
DB options widget).

e namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable's
id.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

e sortKey (unicode string; defaults to None) -- A pre-defined sort order
(suppresses DB options widget). The sort key accepts multiple columns,
separated by commas.

121

Structure Children

e condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children
e property (mapping of user-defined keywords in the name attribute to

string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element debugCore

a core that returns its arguments stringified in a table.
You need to provide an external input tables for these.
Atomic Children
e original (id reference; defaults to None) -- An id of an element to base the

current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children
e property (mapping of user-defined keywords in the name attribute to

string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

122

Element descriptorGenerator

A procedure application for making product descriptors for PUBDIDs

Despite the name, a descriptor generator has to return (not yield) a descriptor
instance. While this could be anything, it is recommended to derive custom
classes from prodocols.datalink.ProductDescrpitor, which exposes essentially the
columns from DaCHS’ product table as attributes. This is what you get when
you don't define a descriptor generator in your datalink core.

The following names are available to the code:

e pubDID -- the pubDID to be resolved

e args -- all the arguments that came in from the web (these
should not ususally be necessary for making the descriptor and
are completely unparsed at this point)

e FITSProductDescriptor -- the base class of FITS product de-
scriptors

e DLFITSProductDescriptor -- the same, just for when the prod-
uct table has a datalink.

e ProductDescriptor -- a base class for your own custom descrip-
tors

e DatalinkFault -- use this when flagging failures

e soda -- contents of the soda module for convenience

If you made your pubDID using the getStandardPubDID rowmaker func-
tion, and you need no additional logic within the descriptor, the default
(//soda#fromStandardPubDID) should do.

If you need to derive custom descriptor classes, you can see the base class
under the name ProductDescriptor; there's also FITSProductDescriptor and
DatalinkFault in each proc’s namespace. If your Descriptor does not actually
refer to something in the product table, it is likely that you want to set the
descriptor’s suppresshutoLinks attribute to False. This will stop DaCHS from
attempting to add automatic #this and #preview links.

May occur in Element datalinkCore.
Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

123

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element fancyQueryCore

A core executing a pre-specified query with fancy conditions.

Unless you select *, you must define the outputTable here; Weird things will
happen if you don't.

The queriedTable attribute is ignored.

124

Atomic Children

e namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable's
id.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

e query (unicode string; defaults to <Undefined>) -- The query to execute.
It must contain exactly one %s where the generated where clause is to
be inserted. Do not write WHERE yourself. All other percents must be
escaped by doubling them.

e timeout (float; defaults to '5.0") -- Seconds until the query is aborted

Structure Children

e condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children
e property (mapping of user-defined keywords in the name attribute to

string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element fixedQueryCore

A core executing a predefined query.

This usually is not what you want, unless you want to expose the current results
of a specific query, e.g., for log or event data.

125

Atomic Children

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e query (unicode string; defaults to <Undefined>) -- The query to be
executed. You must define the output fields in the core’s output table.
The query will be macro-expanded in the resource descriptor.

e timeout (float; defaults to '15.0") -- Seconds until the query is aborted

e writable (boolean; defaults to 'False’) -- Use a writable DB connection?

Structure Children

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element inputTable

an input for a core.

These aren’t actually proper tables but actually just collection of the param-
like inputKeys. They serve as input declarations for cores and services (where
services derive their inputTDs from the cores’ ones by adapting them to the
current renderer. Their main use is for the derivation of contextGrammars.

They can carry metadata, though, which is sometimes convenient when trans-
porting information from the parameter parsers to the core.

For the typical dbCores (and friends), these are essentially never explicitly de-
fined but rather derived from condDescs.

Do not read input values by using table.getParam. This will only give you one
value when a parameter has been given multiple times. Instead, use the output

126

of the contextGrammar (inputParams in condDescs). Only there you will have
the correct multiplicities.

May occur in Element scsCore, Element siapCutoutCore, Element custom-
Core, Element nullCore, Element tapCore, Element productCore, Element adql-
Core, Element pythonCore, Element registryCore, Element dbCore, Element
fancyQueryCore, Element debugCore, Element datalinkCore, Element fixed-
QueryCore, Element uploadCore, Element ssapCore.

Atomic Children

e exclusive (boolean; defaults to 'False’) -- If true, context grammars built
from this will raise an error if contexts passed in have keys not defined by
this table

Structure Children

e groups (contains Element group and may be repeated zero or more times)
-- Groups of inputKeys (this is used for form Ul formatting).

e inputKeys (contains Element inputKey and may be repeated zero or more
times) -- Input parameters for this table.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdld, Macro rdldDotted, Macro schema, Macro
sqlquote, Macro test, Macro today, Macro upper, Macro urlquote

Element metaMaker

A procedure application that generates metadata for datalink services.

The code must be generators (i.e., use yield statements) producing either
svcs.InputKeys or protocols.datalink.LinkDef instances.

metaMaker see the data descriptor of the input data under the name descriptor.

The data attribute of the descriptor is always None for metaMakers, so you
cannot use anything given there.

Within MetaMakers’ code, you can access InputKey, Values, Option, and
LinkDef without qualification, and there’s the MS function to build structures.
Hence, a metaMaker returning an InputKey could look like this:

127

<metaMaker>
<code>
yield MS(InputKey, name="format", type="text",
description="0Output format desired",
values=MS(Values,
options=[MS(Option, content_=descriptor.mime),
MS(Option, content_="text/plain")]))
</code>
</metaMaker>

(of course, you should give more metadata -- ucds, better description, etc) in
production).

It's ok to yield None; this will suppress a Datalink and is convenient when some
component further down figures out that a link doesn't exist (e.g., because a
file isn't there). Note that in many cases, it's more helpful to client components
to handle such situations by yielding a DatalinkFault.NotFoundFault.

In addition to the usual names available to ProcApps, meta makers have:

e MS -- function to make DaCHS structures

e InputKey -- the class to make for input parameters

e Values -- the class to make for input parameters’ values attributes
e Options -- used by Values

e LinkDef -- a class to define further links within datalink services.
e DatalinkFault -- a container of datalink error generators

e soda -- the soda module.

May occur in Element datalinkCore.
Atomic Children

e code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

e deprecated (unicode string; defaults to None) -- A deprecation message.
This will be shown if this procDef is being compiled.

e doc (unicode string; defaults to ") -- Human-readable docs for this proc
(may be interpreted as restructured text).

128

e name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

e type (One of: iterator, pargetter, regTest, rowfilter, dataFunction, de-
scriptorGenerator, metaMaker, phraseMaker, mixinProc, dataFormatter,
sourceFields, apply, t_t; defaults to None) -- The type of the procedure
definition. The procedure applications will in general require certain types
of definitions.

Structure Children

e bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

e setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element nullCore

A core always returning None.

This core will not work with the common renderers. It is really intended to go
with coreless services (i.e. those in which the renderer computes everthing itself
and never calls service.runX). As an example, the external renderer could go
with this.

Atomic Children
e original (id reference; defaults to None) -- An id of an element to base the

current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

129

Structure Children

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element productCore

A core retrieving paths and/or data from the product table.

You will not usually mention this core in your RDs. It is mainly used internally
to serve /getproduct queries.

It is instanciated from within //products.rd and relies on tables within that RD.

The input data consists of accref; you can use the string form of RAccrefs, and
if you renderer wants, it can pass in ready-made RAccrefs. You can pass accrefs
in through both an accref param and table rows.

The accref param is the normal way if you just want to retrieve a single image,
the table case is for building tar files and such. There is one core instance in
//products for each case.

The core returns a list of instances of a subclass of ProductBase above.

This core and its supporting machinery handles all the fancy product function-
ality (user autorisation, cutouts, ...).

Atomic Children

e distinct (boolean; defaults to 'False’) -- Add a 'distinct’ modifier to the
query?

e groupBy (unicode string; defaults to None) -- A group by clause. You
shouldn't generally need this, and if you use it, you must give an output-
Table to your core.

e limit (integer; defaults to None) -- A pre-defined match limit (suppresses
DB options widget).

130

e namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable's
id.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

e sortKey (unicode string; defaults to None) -- A pre-defined sort order
(suppresses DB options widget). The sort key accepts multiple columns,
separated by commas.

Structure Children

e condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children
e property (mapping of user-defined keywords in the name attribute to

string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element pythonCore

A core doing computation using a piece of python.
See Python Cores instead of Custom Cores in the reference.
Atomic Children
e original (id reference; defaults to None) -- An id of an element to base the

current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

131

Structure Children

e coreProc (contains Element coreProc) -- Code making the outputTable
from the inputTable.

e inputTable (contains Element inputTable) -- Description of the input data
e outputTable (contains Element outputTable) -- Table describing what

fields are available from this core

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element registryCore

is a core processing OAl requests.

Its signature requires a single input key containing the complete args from the
incoming request. This is necessary to satisfy the requirement of raising errors
on duplicate arguments.

It returns an ElementTree.
This core is intended to work the the RegistryRenderer.
Atomic Children
e original (id reference; defaults to None) -- An id of an element to base the

current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children
e property (mapping of user-defined keywords in the name attribute to

string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

132

Element scsCore

A core performing cone searches.

This will, if it finds input parameters it can make out a position from, add a _r
column giving the distance between the match center and the columns that a
cone search will match against.

If any of the conditions for adding _r aren’t met, this will silently degrade to a
plain DBCore.

You will almost certainly want a:

<FEED source="//scs#coreDescs"/>

in the body of this (in addition to whatever other custom conditions you may
have).

Atomic Children

e distinct (boolean; defaults to 'False’) -- Add a 'distinct’ modifier to the
query?

e groupBy (unicode string; defaults to None) -- A group by clause. You
shouldn't generally need this, and if you use it, you must give an output-
Table to your core.

e limit (integer; defaults to None) -- A pre-defined match limit (suppresses
DB options widget).

e namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable's
id.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

e sortKey (unicode string; defaults to None) -- A pre-defined sort order
(suppresses DB options widget). The sort key accepts multiple columns,
separated by commas.

133

Structure Children

e condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element siapCutoutCore

A core doing SIAP plus cutouts.

It has, by default, an additional column specifying the desired size of the image
to be retrieved. Based on this, the cutout core will tweak its output table such
that references to cutout images will be retrieved.

The actual process of cutting out is performed by the product core and renderer.
Atomic Children

e distinct (boolean; defaults to 'False’) -- Add a 'distinct’ modifier to the
query?

e groupBy (unicode string; defaults to None) -- A group by clause. You
shouldn't generally need this, and if you use it, you must give an output-
Table to your core.

e limit (integer; defaults to None) -- A pre-defined match limit (suppresses
DB options widget).

e namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable's
id.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

134

e queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

e sortKey (unicode string; defaults to None) -- A pre-defined sort order
(suppresses DB options widget). The sort key accepts multiple columns,
separated by commas.

Structure Children

e condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element ssapCore

A core doing SSAP queries.

This core knows about metadata queries, version negotiation, and dispatches
on REQUEST. Thus, it may return formatted XML data under certain circum-
stances.

Interpreted Properties:

e previews: If set to "auto", the core will automatically add a preview col-
umn and fill it with the URL of the products-based preview. Other values
are not defined.

135

Atomic Children

e distinct (boolean; defaults to 'False’) -- Add a 'distinct’ modifier to the
query?

e groupBy (unicode string; defaults to None) -- A group by clause. You
shouldn't generally need this, and if you use it, you must give an output-
Table to your core.

e limit (integer; defaults to None) -- A pre-defined match limit (suppresses
DB options widget).

e namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable's
id.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

e queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

e sortKey (unicode string; defaults to None) -- A pre-defined sort order
(suppresses DB options widget). The sort key accepts multiple columns,
separated by commas.

Structure Children

e condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

136

Element tapCore

A core for the TAP renderer.
Right now, this is a no-op and not used by the renderer.

This will change as we move to regularise the TAP system.
Atomic Children

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element uploadCore

A core handling uploads of files to the database.

It allows users to upload individual files into a special staging area (taken from
the stagingDir property of the destination data descriptor) and causes these
files to be parsed using destDD. Note that destDD must have updating="True"
for this to work properly (it will otherwise drop the table on each update). If
uploads are the only way updates into the table occur, source management is
not necessary for these, though.

You can tell UploadCores to either insert or update the incoming data using the
"mode" input key.

137

Atomic Children

e destDD (id reference; defaults to <Undefined>) -- Reference to the data
we are uploading into. The destination must be an updating data descrip-
tor.

e original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

e inputTable (contains Element inputTable) -- Description of the input data

e outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

e property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Predefined Macros

Macro expansions in DaCHS start with a backslash, arguments are given in
curly braces. What macros are available depends on the element doing the
expansion; regrettably, not all strings are expanded, and at this point it's not
usually documented which are and which are not (though we hope DaCHS
typically behaves "as expected"). If this bites you, complain to the authors and
we promise we'll give fixing this a higher priority.

Macro RSTcc0

\RSTccO{stuffDesignation}

expands to a declaration that stuffDesignation is available under CC-0.
This only works in reStructured text (though it's still almost readable as source).

Available in Element resource

138

Macro RSTcchy

\RSTccby{stuffDesignation}

expands to a declaration that stuffDesignation is available under CC-BY.
This only works in reStructured text (though it's still almost readable as source).

Available in Element resource

Macro RSTccbysa

\RSTccbysa{stuffDesignation}

expands to a declaration that stuffDesignation is available under CC-BY-SA.
This only works in reStructured text (though it's still almost readable as source).

Available in Element resource

Macro RSTservicelink

\RSTservicelink{serviceId}{title=None}

a link to an internal service; id is <rdld>/<serviceld>/<renderer>, title, if
given, is the anchor text.

The result is a link in the short form for restructured test.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

139

Macro RSTtable

\RSTtable{tableName}

adds an reStructured test link to a tableName pointing to its table info.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

Macro colNames

\colNames

returns an SQL-ready list of column names of this table.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element odbcGrammar, Element outputTable, Element pdsGram-
mar, Element reGrammar, Element rowsetGrammar, Element table, Element
transparentGrammar, Element voTableGrammar

Macro curtable

\curtable

returns the qualified name of the current table.

Available in Element outputTable, Element table

140

Macro decapitalize

\decapitalize{aString}

returns aString with the first character lowercased.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

Macro diMetaURI

\d1MetaURI{d1Id}

returns a link to the datalink document for the current product.

This assumes you're assinging standard pubDIDs (see also standardPubDID,
which is used by this).

dlld is the XML id of the datalink service, which is supposed to be in the sameRD
as the rowmaker.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element odbcGrammar, Element pdsGrammar, Element reGrammar,
Element rowmaker, Element rowsetGrammar, Element transparentGrammar, EI-
ement voTableGrammar

Macro docField

\docField{name}

returns an expression giving the value of the column name in the document row.

Available in Element rowmaker

141

Macro fullDLURL

\fullDLURL{d1Service}

returns a python expression giving a link to the full current data set retrieved
through the datalink service.

You would write \ful DLURL{dlsvc} here, and the macro will expand into some-
thing like http://yourserver/currd/dIsvc/dlget?ID=ivo://whatever.

dIService is the id of the datalink service in the current RD.

This is intended for "virtual" data where the dataset is generated on the fly
through datalink.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGram-
mar, Element keyValueGrammar, Element mySQLDumpGrammar, Element
nullGrammar, Element odbcGrammar, Element pdsGrammar, Element reGram-
mar, Element rowsetGrammar, Element transparentGrammar, Element voTable-
Grammar

Macro fullPath

\fullPath

returns an expression expanding to the full path of the current input file.

Available in Element rowmaker

Macro getConfig

\getConfig{section}{name=None}

the current value of configuration item {section}{name}.
You can also only give one argument to access settings from the general section.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element

142

http://yourserver/currd/dlsvc/dlget?ID=ivo://whatever

dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

Macro getParam

\getParam{parName}{default="’3}

returns the string representation of the parameter parName.

This is the parameter as given in the table definition. Any changes to an instance
are not reflected here.

If the parameter named does not exist, an empty string is returned.
NULLs/Nones are rendered as NULL; this is mainly a convenience for obscore-
like applications and should not be exploited otherwise, since it's ugly and might
change at some point.

If a default is given, it will be returned for both NULL and non-existing params.

Available in Element outputTable, Element table

Macro inputRelativePath

\inputRelativePath{liberalChars=’True’}

returns an expression giving the current source'’s path relative to inputsDir

liberalChars can be a boolean literal (True, False, etc); if false, a value error is
raised if characters that will result in trouble with the product mixin are within
the result path.

In rowmakers fed by grammars with //products#define, better use @prodtblAc-
cref.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element odbcGrammar, Element pdsGrammar, Element reGrammar,
Element rowmaker, Element rowsetGrammar, Element transparentGrammar, EI-
ement voTableGrammar

143

Macro inputSize

\inputSize

returns an expression giving the size of the current source.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element odbcGrammar, Element pdsGrammar, Element reGrammar,
Element rowmaker, Element rowsetGrammar, Element transparentGrammar, EI-
ement voTableGrammar

Macro internallink

\internallink{relPath}

an absolute URL from a path relative to the DC root.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

Macro lastSourceElements

\lastSourceElements{numElements}

returns an expression calling rmkfuncs.lastSourceElements on the current input
path.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,

144

Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element odbcGrammar, Element pdsGrammar, Element reGrammar,
Element rowmaker, Element rowsetGrammar, Element transparentGrammar, EI-
ement voTableGrammar

Macro magicEmpty

\magicEmpty{val}

returns __ EMPTY___ if val is empty.

This is necessary when feeding possibly empty params from mixin parameters
(don't worry if you don't understand this).

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

Macro metaString

\metaString{metaKey}{default=None}

the value of metaKey on the macro expander.

This will raise an error when the meta Key is not available unless you give a
default.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

145

Macro nameForUCD

\nameForUCD{ucd}

returns the (unique!) name of the field having ucd in this table.

If there is no or more than one field with the ucd in this table, we raise a
ValueError.

Available in Element outputTable, Element table

Macro nameForUCDs

\nameForUCDs{ucds}

returns the (unique!) name of the field having one of ucds in this table.

Ucds is a selection of ucds separated by vertical bars (]). The rules for when
this raises errors are so crazy you don't want to think about them. This really
is only intended for cases where "old" and "new" standards are to be supported,
like with pos.eq.*;meta.main and POS_EQ_*_MAIN.

If there is no or more than one field with the ucd in this table, we raise an
exception.

Available in Element outputTable, Element table

Macro property

\property{propName}

returns an expression giving the value of the property propName on the current
DD.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element odbcGrammar, Element pdsGrammar, Element reGrammar,
Element rowmaker, Element rowsetGrammar, Element transparentGrammar, EI-
ement voTableGrammar

146

Macro qName

\gName

returns the gName of the table we are currently parsing into.

Available in Element outputTable, Element rowmaker, Element table

Macro quote

\quote{arg}

returns the argument in quotes (with internal quotes backslash-escaped if nec-
essary).

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

Macro rdld

\rdId

the identifier of the current resource descriptor.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

147

Macro rdldDotted

\rdIdDotted

the identifier for the current resource descriptor with slashes replaced with dots
(so they work as the "host part" in URlSs.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

Macro rootlessPath

\rootlessPath

returns an expression giving the current source’s path with the resource descrip-
tor's root removed.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element odbcGrammar, Element pdsGrammar, Element reGrammar,
Element rowmaker, Element rowsetGrammar, Element transparentGrammar, EI-
ement voTableGrammar

Macro rowsMade

\rowsMade

returns an expression giving the number of records already returned by this row
maker.

This number excludes failed and skipped rows.

Available in Element rowmaker

148

Macro rowsProcessed

\rowsProcessed

returns an expression giving the number of records already delivered by the
grammar.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element odbcGrammar, Element pdsGrammar, Element reGrammar,
Element rowmaker, Element rowsetGrammar, Element transparentGrammar, El-
ement voTableGrammar

Macro schema

\schema

the schema of the current resource descriptor.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

Macro sourceCDate
\sourceCDate

returns an expression giving the timestamp for the create date of the current
source.

Use dateTimeToJdn or dateTimeToMJD to turn this into JD or MJD (which is
usually preferred in database tables). See also the sourceDate macro.

Available in Element rowmaker

149

Macro sourceDate

\sourceDate

returns an expression giving the timestamp of the current source.

This is a timestamp of the modification date; use dateTimeToJdn or dateTime-
ToMJD to turn this into JD or MJD (which is usually preferred in database
tables). See also the sourceCDate macro.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element odbcGrammar, Element pdsGrammar, Element reGrammar,
Element rowmaker, Element rowsetGrammar, Element transparentGrammar, El-
ement vo TableGrammar

Macro splitPreviewPath

\splitPreviewPath{ext}

returns an expression for the split standard path for a custom preview.

As standardPreviewPath, except that the directory hierarchy of the data files
will be reproduced in previews. For ext, you should typically pass the extension
appropriate for the preview (like {.png} or {.jpeg}).

See the introduction to custom previews for details.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGram-
mar, Element keyValueGrammar, Element mySQLDumpGrammar, Element
nullGrammar, Element odbcGrammar, Element pdsGrammar, Element reGram-
mar, Element rowsetGrammar, Element transparentGrammar, Element voTable-
Grammar

150

Macro sqlquote

\sqlquote{arg}

returns the argument as a quoted string, unless it is 'NULL' or None, in which
case just NULL is returned.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

Macro srcstem

\srcstem

returns python code for the stem of the source file currently parsed in a row-
maker.

Example: if you're currently parsing /tmp/foo.bar.gz, the stem is foo.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element odbcGrammar, Element pdsGrammar, Element reGrammar,
Element rowmaker, Element rowsetGrammar, Element transparentGrammar, EI-
ement voTableGrammar

Macro standardPreviewPath

\standardPreviewPath

returns an expression for the standard path for a custom preview.

This consists of resdir, the name of the previewDir property on the embedding
DD, and the flat name of the accref (which this macro assumes to see in its

151

namespace as accref; this is usually the case in //products#define, which is
where this macro would typically be used).

As an alternative, there is the splitPreviewPath macro, which does not mogrify
the file name. In particular, do not use standardPreviewPath when you have
more than a few le4 files, as it will have all these files in a single, flat directory,
and that can become a chore.

See the introduction to custom previews for details.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGram-
mar, Element keyValueGrammar, Element mySQLDumpGrammar, Element
nullGrammar, Element odbcGrammar, Element pdsGrammar, Element reGram-
mar, Element rowsetGrammar, Element transparentGrammar, Element voTable-
Grammar

Macro standardPubDID

\standardPubDID

returns the "standard publisher DID" for the current product.

The publisher dataset identifier (PubDID) is important in protocols like SSAP
and obscore. If you use this macro, the PubDID will be your authority, the path
compontent ~, and the current value of @prodtblAccref. It thus will only work
where products#define (or a replacement) is in action. If it isn't, a normal
function call getStandardPubDID(\\inputRelativePath) would be an obvious
alternative.

You can of course define your PubDIDs in a different way.

Available in Element rowmaker

Macro tablename

\tablename

returns the unqualified name of the current table.

Available in Element outputTable, Element table

152

Macro tablesForTAP

\tablesForTAP

undocumented Available in Element service

Macro test

\test{*args}

always "test macro expansion".

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

Macro today

\today

today's date in ISO representation.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

153

Macro upper

\upper{aString}

returns aString uppercased.
There's no guarantees for characters outside ASCII.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

Macro urlquote

\urlquote{string}

wraps urllib.quote.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element odbcGrammar, Element outputTable, Element
pdsGrammar, Element reGrammar, Element resRec, Element resource, Element
rowmaker, Element rowsetGrammar, Element service, Element table, Element
transparentGrammar, Element voTableGrammar

Mixins

Mixins ensure a certain functionality on a table. Typically, this is used to provide
certain guaranteed fields to particular cores. For many mixins, there are prede-
fined procedures (both rowmaker applys and grammar rowfilters) that should be
used in grammars and/or rowmakers feeding the tables mixing in a given mixin.

154

The //epntap2+#localfile-2_0 Mixin

Use this mixin if your epntap table is filled with local products (i.e., sources
matches files on your hard disk that DaCHS should hand out itself). This will
arrange for your products to be entered into the products table, and it will
automatically compute file size, etc.

This wants a //products#define rowfilter in your grammar and a
//epntap2#tpopulate-localfile-2_0 apply in your rowmaker.

The //epntap2#table-2_0 Mixin

This mixin defines a table suitable for publication via the EPN-TAP protocol.

According to the standard definition, tables mixing this in should be called
epn_core. Ihe mixin already arranges for the table to be accessible by ADQL
and be on disk.

This also causes the product table to be populated. This means that grammars
feeding such tables need a //products#define row filter. At the very least, you
need to say:

<rowfilter procDef="//products#define">
<bind name="table">"\schema.epn_core"</bind>
</rowfilter>

If you absolutely cannot use //products#define, you will hve to manually pro-
vide the prodtblFsize (file size in bytes), prodtblAccref (product URL), and
prodtblPreview (thumbnail image or None) keys in what’s coming from your
grammar.

Use the //epntap2#populate-2_0 apply in rowmakers feeding tables mixing this
in.

This mixin has the following parameters:

Parameter optional_columns Space-separated list of names of optional
columns to include. Column names available include access_url ac-
cess__format access_ estsize access_mdb thumbnail__url file_name species
filter alt_target_name target_region feature_name bib_reference
publisher spatial_coordinate_description spatial_origin time_origin
time_scale

Parameter spatial__frame_type Flavour of the coordinate system. Since this
determines the units of the coordinates columns, this must be set globally
for the entire dataset. Values defined by EPN-TAP and understood by
this mixin include celestial, body, cartesian, cylindrical, spherical, healpix.

155

The //obscore#publish Mixin

Publish this table to ObsTAP.

This means mapping or giving quite a bit of data from the present table to
ObsCore rows. Internally, this information is converted to an SQL select state-
ment used within a create view statement. In consequence, you must give SQL
expressions in the parameter values; just naked column names from your input
table are ok, of course. Most parameters are set to NULL or appropriate defaults
for tables mixing in //products#table.

Since the mixin generates script elements, it cannot be used in untrusted RDs.
The fact that you can enter raw SQL also means you will get ugly error messages
if you give invalid parameters.

Some items are filled from product interface fields automatically. You must
change these if you obscore-publish tables not mixin in products.

Note: you must say dachs imp //obscore before anything obscore-related will
work.

This mixin has the following parameters:

Parameter accessURL defaults to accref; URL at which the product can be
obtained. Leave as is for tables mixing in products.

Parameter calibLevel defaults to o; Calibration level of data, a number be-
tween 0 and 3; for details, see http://dc.g-vo.org/tableinfo/ivoa.obscore#
note-calib

Parameter collectionName defaults to ’unnamed’; A human-readable name
for this collection. This should be short, so don’t just use the resource
title

Parameter coverage defaults to NULL; A polygon giving the spatial coverage
of the data set; this must always be in ICRS. This is cast to an pgsphere
spoly, which currently means that you have to provide an spoly (reference),
too.

Parameter creatorDID defaults to NULL; Global identifier of the data set as-
signed by the creator. Leave NULL unless the creator actually assigned
an IVO id herself.

Parameter dec defaults to NULL; Center Dec

Parameter did defaults to $coMpuTE; Global identifier of the data set. Leave
$COMPUTE for tables mixing in products.

156

http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib
http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib

Parameter emMax defaults to NULL; Upper bound of wavelengths represented
in the data set, in meters.

Parameter emMin defaults to NULL; Lower bound of wavelengths represented
in the data set, in meters.

Parameter emResPower defaults to NULL; Spectral resolution as lambda/delta
lambda

Parameter emUCD defaults to NULL; UCD of the spectral axis as defined by
the spectrum DM, plus a few values defined in obscore 1.1 for Doppler
axes

Parameter emXel defaults to NULL; Number of samples along the spectral axis

Parameter expTime defaults to nuLL; Total time of event counting. This
simply is tMax-tMin for simple exposures.

Parameter facilityName defaults to NULL; The institute or observatory at
which the data was produced

Parameter fov defaults to NULL; Approximate diameter of region covered

Parameter instrumentName defaults to NULL; The instrument that produced
the data

Parameter mime defaults to mime; The MIME type of the product file. Only
touch if you do not mix in products.

Parameter oUCD defaults to nuLL; UCD of the observable quantity, e.g.,
em.opt for wide-band optical frames.

Parameter obsld defaults to accref; ldentifier of the data set. Only change
this when you do not mix in products.

Parameter polStates defaults to NULL; List of polarization states present in
the data; if you give something, use the convention of choosing the ap-
propriate from {I Q U V RR LL RL LR XX YY XY YX POLI POLA} and
write them in alphabetical order with / separators, e.g. /I/Q/XX/.

Parameter polXel defaults to NULL; Number of polarisation states in this prod-
uct

Parameter productSubtype defaults to NULL; File subtype. Details pending

Parameter productType Data product type; one of image, cube, spectrum,
sed, timeseries, visibility, event, or NULL if None of the above

Parameter ra defaults to NULL; Center RA

157

Parameter sPixelScale defaults to nULL; Size of a spatial pixel (in arcsec)

Parameter sResolution defaults to NULL; The (best) angular resolution within
the data set, in arcsecs

Parameter sXell defaults to NULL; Number of pixels along the first spatial axis

Parameter sXel2 defaults to NULL; Number of pixels along the second spatial
axis

Parameter size defaults to accsize/1024; The estimated size of the product in
kilobytes. Only touch when you do not mix in products#table.

Parameter tMax defaults to NuLL; MJD for the upper bound of times covered
in the data set. See tMin

Parameter tMin defaults to nuLL; MJD for the lower bound of times covered
in the data set (e.g. start of exposure). Use ts_to_mjd(ts) to get this
from a postgres timestamp.

Parameter tResolution defaults to NULL; Temporal resolution
Parameter tXel defaults to NULL; Number of samples along the time axis

Parameter targetClass defaults to NULL; Class of target object(s). You should
take whatever you put here from http://simbad.u-strasbg.fr/guide/chF.
htx

Parameter targetName defaults to NULL; Name of the target object.

Parameter title defaults to NULL; A human-readable title of the data set.

The //obscore#publishSIAP Mixin

Publish a PGS SIAP table to ObsTAP.

This works like //obscore#publish except some defaults apply that copy fields
that work analoguously in SIAP and in ObsTAP.

For special situations, you can, of course, override any of the parameters, but
most of them should already be all right. To find out what the parameters
described as "preset for SIAP" mean, refer to //obscore#publish.

Note: you must say dachs imp //obscore before anything obscore-related will
work.

This mixin has the following parameters:

158

http://simbad.u-strasbg.fr/guide/chF.htx
http://simbad.u-strasbg.fr/guide/chF.htx

Parameter accessURL defaults to accref; URL at which the product can be
obtained. Leave as is for tables mixing in products.

Parameter calibLevel defaults to o; Calibration level of data, a number be-
tween 0 and 3; for details, see http://dc.g-vo.org/tableinfo/ivoa.obscore#
note-calib

Parameter collectionName defaults to ’unnamed’; A human-readable name
for this collection. This should be short, so don’t just use the resource
title

Parameter coverage defaults to coverage; preset for SIAP

Parameter creatorDID defaults to nULL; Global identifier of the data set as-
signed by the creator. Leave NULL unless the creator actually assigned
an IVO id herself.

Parameter dec defaults to centerDelta; preset for SIAP

Parameter did defaults to $coMpuTE; Global identifier of the data set. Leave
$COMPUTE for tables mixing in products.

Parameter emMax defaults to bandpassHi; preset for SIAP
Parameter emMin defaults to bandpassLo; preset for SIAP

Parameter emResPower defaults to NULL; Spectral resolution as lambda/delta
lambda

Parameter emUCD defaults to NULL; UCD of the spectral axis as defined by
the spectrum DM, plus a few values defined in obscore 1.1 for Doppler
axes

Parameter emXel defaults to NULL; Number of samples along the spectral axis

Parameter expTime defaults to NULL; Total time of event counting. This
simply is tMax-tMin for simple exposures.

Parameter facilityName defaults to NULL; The institute or observatory at
which the data was produced

Parameter fov defaults to pixelScale[1]*pixelSize[1]; preset for SIAP; we use
the extent along the X axis as a very rough estimate for the size. If you
can do better, by all means do.

Parameter instrumentName defaults to instId; The instrument that pro-
duced the data

Parameter mime defaults to mime; The MIME type of the product file. Only
touch if you do not mix in products.

159

http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib
http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib

Parameter oUCD defaults to ’em.opt’; preset for SIAP; fix if you either know
more about the band of if your images are not in the optical.

Parameter obsld defaults to accref; ldentifier of the data set. Only change
this when you do not mix in products.

Parameter polStates defaults to NULL; List of polarization states present in
the data; if you give something, use the convention of choosing the ap-
propriate from {I Q U V RR LL RL LR XX YY XY YX POLI POLA} and
write them in alphabetical order with / separators, e.g. /I/Q/XX/.

Parameter polXel defaults to NULL; Number of polarisation states in this prod-
uct

Parameter productSubtype defaults to NULL; File subtype. Details pending
Parameter productType defaults to ’image’; preset for SIAP

Parameter ra defaults to centerAlpha; preset for SIAP

Parameter sPixelScale defaults to pixelScale[0]/3600; preset for SIAP

Parameter sResolution defaults to pixelScale[1]*3600; preset for SIAP; this
is just the pixel scale in one dimension. If that's seriously wrong or you
have uncalibrated images in your collection, you may need to be more
careful here.

Parameter sXell defaults to pixelSize[1]; preset for SIAP
Parameter sXel2 defaults to pixelsize[2]; preset for SIAP

Parameter size defaults to accsize/1024; The estimated size of the product in
kilobytes. Only touch when you do not mix in products#table.

Parameter tMax defaults to date0bs; preset for SIAP; if you want, change this
to end of observation as available.

Parameter tMin defaults to dateObs; preset for SIAP; if you want, change this
to start of observation as available.

Parameter tResolution defaults to NULL; Temporal resolution
Parameter tXel defaults to NULL; Number of samples along the time axis

Parameter targetClass defaults to NuLL; Class of target object(s). You should
take whatever you put here from http://simbad.u-strasbg.fr/guide/chF.
htx

Parameter targetName defaults to NULL; Name of the target object.

Parameter title defaults to imageTitle; preset for SIAP

160

http://simbad.u-strasbg.fr/guide/chF.htx
http://simbad.u-strasbg.fr/guide/chF.htx

The //obscore#publishSSAPHCD Mixin

Publish a table mixing in //ssap#hcd to ObsTAP. Since //ssap#hcd is depre-
cated, this should not be used in new RDs, either. For //ssap#mixc tables, use
publishSSAPMIXC.

This works like the //obscore#publish mixin except some defaults apply that
copy fields that work analoguously in SSAP and in ObsTAP.

The columns already set in SSAP are marked as UNDOCUMENTED in the
parameter list below. For special situations, you can, of course, override any
of the parameters. To find out what they actually mean, mean, refer to the
//obscore#publish mixin.

Note that this mixin does not set coverage (obscore: s_region). This is because
although we could make a circle from ssa_location and ssa_aperture, circles
are not allowed in DaCHS' s_region (which has a fixed type of spoly). The
recommended solution to still have s_region is to add (and index) a custom
field in the ssa table and compute some sort of spolys for the coverage.

Note: you must say dachs imp //obscore before anything obscore-related will
work.

This mixin has the following parameters:
Parameter accessURL defaults to accref; URL at which the product can be
obtained. Leave as is for tables mixing in products.

Parameter calibLevel defaults to o; Calibration level of data, a number be-
tween 0 and 3; for details, see http://dc.g-vo.org/tableinfo/ivoa.obscore#
note-calib

Parameter collectionName

defaults to \sqlquote{\getParam{ssa_collection}{NULL}};
UNDOCUMENTED

Parameter coverage defaults to NULL; Use ssa_region when the table also
mixes in //ssap#simpleCoverage

Parameter creatorDID
defaults to ssa_creatordiD; UNDOCUMENTED
Parameter dec

defaults to degrees(lat(ssa_location)); UNDOCUMENTED

161

http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib
http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib

Parameter did defaults to $coMPuTE; Global identifier of the data set. Leave
$COMPUTE for tables mixing in products.

Parameter emMax

defaults to ssa_specend; UNDOCUMENTED
Parameter emMin

defaults to ssa_specstart; UNDOCUMENTED

Parameter emResPower defaults to NULL; Spectral resolution as lambda/delta
lambda

Parameter emUCD

defaults to \sqlquote{\getParam{ssa_spectralucdl}};
UNDOCUMENTED

Parameter emXel defaults to NULL; Number of samples along the spectral axis
Parameter exp Time
defaults to ssa_timeExt; UNDOCUMENTED

Parameter facilityName defaults to NULL; The institute or observatory at
which the data was produced

Parameter fov
defaults to ssa_aperture; UNDOCUMENTED
Parameter instrumentName

defaults to \sqlquote{\getParam{ssa_instrument}{NULL}};
UNDOCUMENTED

Parameter mime defaults to mime; The MIME type of the product file. Only
touch if you do not mix in products.

Parameter oUCD
defaults to \sqlquote{\getParam{ssa_fluxucd}}; UNDOCUMENTED

Parameter obsld defaults to accref; ldentifier of the data set. Only change
this when you do not mix in products.

Parameter polStates defaults to NULL; List of polarization states present in
the data; if you give something, use the convention of choosing the ap-
propriate from {Il Q U V RR LL RL LR XX YY XY YX POLI POLA} and
write them in alphabetical order with / separators, e.g. /I/Q/XX/.

162

Parameter polXel defaults to NULL; Number of polarisation states in this prod-
uct

Parameter productSubtype defaults to NULL; File subtype. Details pending
Parameter productType

defaults to ’spectrun’; UNDOCUMENTED
Parameter ra

defaults to degrees(long(ssa_location)); UNDOCUMENTED
Parameter sPixelScale defaults to NULL; Size of a spatial pixel (in arcsec)
Parameter sResolution

defaults to \getParan{ssa_spaceRes}{NULL}/3600.; UNDOCUMENTED
Parameter sXell defaults to NULL; Number of pixels along the first spatial axis

Parameter sXel2 defaults to NULL; Number of pixels along the second spatial
axis

Parameter size defaults to accsize/1024; The estimated size of the product in
kilobytes. Only touch when you do not mix in products#table.

Parameter tMax

defaults to ssa_dateObs+ssa_timeExt/43200.; UNDOCUMENTED
Parameter tMin

defaults to ssa_dateObs-ssa_timeExt/43200.; UNDOCUMENTED
Parameter tResolution defaults to NULL; Temporal resolution
Parameter tXel defaults to NULL; Number of samples along the time axis
Parameter targetClass

defaults to ssa_targclass; UNDOCUMENTED
Parameter targetName

defaults to ssa_targname; UNDOCUMENTED
Parameter title

defaults to ssa_dstitle; UNDOCUMENTED

163

The //obscore#publishSSAPMIXC Mixin

Publish a table mixing in //ssap#mixc to ObsTAP.

This works like the //obscore#publish mixin except some defaults apply that
copy fields that work analoguously in SSAP and in ObsTAP.

The columns already set in SSAP are marked as UNDOCUMENTED in the
parameter list below. For special situations, you can, of course, override any
of the parameters. To find out what they actually mean, mean, refer to the
//obscore#publish mixin.

Note that this mixin does not set coverage (obscore: s_region). This is because
although we could make a circle from ssa_location and ssa_aperture, circles
are not allowed in DaCHS’ s_region (which has a fixed type of spoly). The
recommended solution to still have s_region is to add (and index) a custom
field; the //ssap#simpleCoverage will do this.

Note: you must say dachs imp //obscore before anything obscore-related will
work.

This mixin has the following parameters:
Parameter accessURL defaults to accref; URL at which the product can be
obtained. Leave as is for tables mixing in products.

Parameter calibLevel defaults to o; Calibration level of data, a number be-
tween 0 and 3; for details, see http://dc.g-vo.org/tableinfo/ivoa.obscore#
note-calib

Parameter collectionName
defaults to ssa_collection; UNDOCUMENTED

Parameter coverage defaults to NULL; Use ssa_region when the table also
mixes in //ssap#simpleCoverage

Parameter creatorDID
defaults to ssa_creatordID; UNDOCUMENTED
Parameter dec
defaults to degrees(lat(ssa_location)); UNDOCUMENTED

Parameter did defaults to $coMpuTE; Global identifier of the data set. Leave
$COMPUTE for tables mixing in products.

Parameter emMax

164

http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib
http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib

defaults to ssa_specend; UNDOCUMENTED
Parameter emMin

defaults to ssa_specstart; UNDOCUMENTED
Parameter emResPower

defaults to ssa_specstart/ssa_specres; UNDOCUMENTED
Parameter emUCD

defaults to \sqlquote{\getParam{ssa_spectralucd}};
UNDOCUMENTED

Parameter emXel
defaults to ssa_length; UNDOCUMENTED
Parameter exp Time
defaults to ssa_timeExt; UNDOCUMENTED
Parameter facilityName
defaults to \sqlquote{\metaString{facility}}; UNDOCUMENTED
Parameter fov
defaults to ssa_aperture; UNDOCUMENTED
Parameter instrumentName
defaults to ssa_instrument; UNDOCUMENTED

Parameter mime defaults to mime; The MIME type of the product file. Only
touch if you do not mix in products.

Parameter oUCD
defaults to \sqlquote{\getParam{ssa_fluxucd}}; UNDOCUMENTED

Parameter obsld defaults to accref; ldentifier of the data set. Only change
this when you do not mix in products.

Parameter polStates defaults to NULL; List of polarization states present in
the data; if you give something, use the convention of choosing the ap-
propriate from {I Q U V RR LL RL LR XX YY XY YX POLI POLA} and
write them in alphabetical order with / separators, e.g. /I/Q/XX/.

Parameter polXel defaults to NULL; Number of polarisation states in this prod-
uct

165

Parameter productSubtype defaults to NULL; File subtype. Details pending
Parameter productType

defaults to ssa_dstype; UNDOCUMENTED
Parameter ra

defaults to degrees(long(ssa_location)); UNDOCUMENTED
Parameter sPixelScale defaults to nULL; Size of a spatial pixel (in arcsec)
Parameter sResolution

defaults to \getParam{ssa_spaceRes}{NULL}/3600.; UNDOCUMENTED
Parameter sXell defaults to NULL; Number of pixels along the first spatial axis

Parameter sXel2 defaults to NULL; Number of pixels along the second spatial
axis

Parameter size defaults to accsize/1024; The estimated size of the product in
kilobytes. Only touch when you do not mix in products#table.

Parameter tMax

defaults to ssa_dateObs+ssa_timeExt/43200.; UNDOCUMENTED
Parameter tMin

defaults to ssa_dateObs-ssa_timeExt/43200.; UNDOCUMENTED
Parameter tResolution defaults to NULL; Temporal resolution
Parameter tXel defaults to NULL; Number of samples along the time axis
Parameter targetClass

defaults to ssa_targclass; UNDOCUMENTED
Parameter targetName

defaults to ssa_targname; UNDOCUMENTED
Parameter title

defaults to ssa_dstitle; UNDOCUMENTED

166

The //products#table Mixin

A mixin for tables containing "products".

A "product" here is some kind of binary, typically a FITS file. The table re-
ceives the columns accref, accsize, owner, and embargo (which is defined in
//products#prodcolUsertable).

By default, the accref is the path to the file relative to the inputs directory; this
is also what /getproduct expects for local products. You can of course enter
URLs to other places.

For local files, you are strongly encouraged to keep the accref URL- and shell-
clean, the most important reason being your users' sanity. Another is that
obscore in the current implementation does no URL escaping for local files. So,
just don’t use characters like like +, the ampersand, apostrophes and so on;
the default accref parser will reject those anyway. Actually, try making do with
alphanumerics, the underscore, the dash, and the dot, ok?

owner and embargo let you introduce access control. Embargo is a date at
which the product will become publicly available. As long as this date is in the
future, only authenticated users belonging to the group owner are allowed to
access the product.

In addition, the mixin arranges for the products to be added to the system table
products, which is important when delivering the files.

Tables mixing this in should be fed from grammars using the //products#define
row filter.

The //scs#positions Mixin

A mixin adding standardized columns for equatorial positions to the table.

It consists of the fields alphaFloat, deltaFloat (float angles in degrees, J2000.0)
and c_x, c_y, c_z (intersection of the radius vector to alphaFloat, deltaFloat
with the unit sphere).

You will usually use it in conjunction with the //scs#eqFloat procDef that
preparse these fields for you.

Thus, you could say:

<proc procDef="//scs#eqFloat">
<arg name="alpha">alphaSrc</arg>
<arg name="delta">deltaSrc</arg>
</proc>

167

Note, however, that it's usually much better to not mess with the table structure
and handle positions using the q3cindex mixin.

The //scs#q3cindex Mixin

A mixin adding an index to the main equatorial positions.

This is what you usually want if your input data already has "sane" (i.e., ICRS
or at least J2000) positions or you convert the positions manually.

You have to designate exactly one column with the ucds pos.eq.ra;meta.main
pos.eq.dec;meta.main, respectively. These columns receive the positional index.

This will fail without the g3c extension to postgres.
The //siap#pgs Mixin

A table mixin for simple support of SIAP.

The columns added into the tables include

(certain) FITS WCS headers

e imageTitle (interpolateString should come in handy for these)
e instld -- some id for the instrument used

e dateObs -- MJD of the "characteristic" observation time

e the bandpass* values. You're on your own with them...

e the values of the product mixin.

e mimetype -- the mime type of the product.

e the coverage, centerAlpha and centerDelta, nAxes, pixelSize,
pixelScale, wes* fields calculated by the computePGS macro.
(their definition is in the siap system RD)

Tables mixing in pgs can be used for SIAP querying and automatically mix in
the products table mixin.

To feed these tables, use the //siap#computePGS and //siap#setMeta procs.
Since you are dealing with products, you will also need the //products#define
rowgen in your grammar.

168

The //slap#basic Mixin

This mixin is for tables serving SLAP services, i.e., tables with spectral lines.
It does not contain all "optional" columns, hence the name basic. We'd do
"advanced", too, if there's demand.

Use the //slap#fillBasic procDef to populate such tables.
The //ssap#hcd Mixin

Do not use this in new RDs. Use mixc instead.

This mixin is for "homogeneous" data collections, where homogeneous means
that all values in hcd_outpars are constant for all datasets in the collection.
This is usually the case if they all come from one instrument.

Rowmakers for tables using this mixin should use the //ssap#setMeta proc
application.

Do not forget to call the //products#define row filter in grammars feeding
tables mixing this in. At the very least, you need to say:

<rowfilter procDef="//products#define">
<bind name="table">"mySchema.myTableName"</bind>
</rowfilter>

This mixin has the following parameters:

Parameter collection defaults to __NULL
ssa:DatalD.Collection

; ivo id of the originating collection;

Parameter creationType defaults to __NULL__; Process used to produce the
data (zero or more of archival, cutout, filtered, mosaic, projection, spec-
tralExtraction, catalogExtraction); ssa:DatalD.CreationType

Parameter creator defaults to __NULL__; Creator designation;
ssa:DatalD.Creator

Parameter dataSource defaults to __NULL__; Generation type (typically, one

survey, pointed, theory, custom, artificial); ssa:DatalD.DataSource

Parameter fluxCalibration Type of flux calibration (one of AB-
SOLUTE, RELATIVE, NORMALIZED, or UNCALIBRATED);
ssa:Char.FluxAxis.Calibration

169

Parameter fluxSIl defaults to __NuLL__; S| conversion factor for fluxes in the
spectrum instance (not the SSA metadata) in Osuna-Salgado convention;

ssa:Dataset.FluxSl| (you probably want to leave this empty)

Parameter fluxUCD defaults to phot.flux.density;em.wl; ucd of the flux col-
umn, like phot.count, phot.flux.density, etc. Default is for flux over wave-
length; ssa:Char.FluxAxis.Ucd

Parameter fluxUnit Flux unit used by the spectra and in SSA char metadata.
This must be a VOUnit string (use a single blank if your spectrum is not
calibrated).

Parameter instrument defaults to __NULL__; Instrument or code used to pro-
duce these datasets; ssa:DatalD.Instrument

Parameter publisher defaults to \metaString{publisherID}; Publisher IVO (by
default taken from the DC config); ssa:Curation.Publisher

_ ; URL or bibcode of a publication
describing this data; ssa:Curation.Reference

Parameter reference defaults to __NULL

Parameter spectralCalibration defaults to __NULL__; Type of wavelength Cal-
ibration (one of ABSOLUTE, RELATIVE, NORMALIZED, or UNCALI-
BRATED); ssa:Char.SpectralAxis.Calibration

Parameter spectralResolution defaults to naN; Resolution on the spectral
axis; you must give this as FWHM wavelength in meters here. Approxi-
mate as necessary; ssa:Char.Spectral Axis.Resolution

Parameter spectralSI defaults to __NULL__; Sl conversion factor of frequency
or wavelength in the spectrum instance (not the SSA metadata, they are
all in meters); ssa:Dataset.SpectralS| (you probably want to leave this

empty)

Parameter spectralUCD defaults to em.wl; ucd of the spectral column, like
em.freq or em.energy; default is wavelength; ssa:Char.Spectral Axis.Ucd

Parameter spectralUnit Spectral unit used by the spectra (SSA char meta-
data always is wavelength in meters). This must be a VOUnit string (use
a single blank if your spectrum is not calibrated).

Parameter statFluxError defaults to __NuLL__; Statistical error in flux;
ssa:Char.FluxAxis.Accuracy.StatError

Parameter statSpaceError defaults to __NULL__; Statistical error in position
in degrees; ssa:Char.SpatialAxis.Accuracy.StatError

Parameter statSpectError defaults to __NULL__; Statistical error in wave-
length (units of specralSl); ssa:Char.SpectralAxis.Accuracy.StatError

170

Parameter sysFluxError defaults to __NULL__; Systematic error in flux;
ssa:Char.FluxAxis.Accuracy.SysError

Parameter sysSpectError defaults to __NULL__; Systematic error in wave-
length (in m); ssa:Char.SpectralAxis.Accuracy.SysError

Parameter timeSI defaults to __NULL__; S| conversion factor for times in
Osuna-Salgado convention; ssa:DataSet.TimeS| (you probably want to
leave this empty)

The //ssap#mixc Mixin

This mixin provides the columns and params for a common SSA service.

Rowmakers for tables using this mixin should use the //ssap#setMeta and the
/ /ssap#setMixcMeta proc applications.

There are some limitations to the variability; in particular, all spectra must have
the same types of axes (i.e., frequency, wavelength, or energy) with identical
units. If you don't have that, either leave the respective metadata empty or
homogenize it before ingestion.

Do not forget to call the //products#define row filter in grammars feeding
tables mixing this in. At the very least, you need to say:

<rowfilter procDef="//products#define">
<bind name="table">"schema.table"</bind>
</rowfilter>

This mixin has the following parameters:
Parameter fluxSIl defaults to __NULL__; S| conversion factor for fluxes in the

spectrum instance (not the SSA metadata) in Osuna-Salgado convention;
ssa:Dataset.FluxSI (you probably want to leave this empty)

Parameter fluxUCD defaults to phot.flux.density;em.wl; ucd of the flux col-
umn, like phot.count, phot.flux.density, etc. Default is for flux over wave-
length; ssa:Char.FluxAxis.Ucd

Parameter fluxUnit Flux unit used by the spectra and in SSA char metadata.
This must be a VOUnit string (use a single blank if your spectrum is not
calibrated).

Parameter spectralSI defaults to __NULL__; S| conversion factor of frequency
or wavelength in the spectrum instance (not the SSA metadata, they are
all in meters); ssa:Dataset.SpectralS| (you probably want to leave this

empty)

171

Parameter spectralUCD defaults to em.wl; ucd of the spectral column, like
em.freq or em.energy; default is wavelength; ssa:Char.Spectral Axis.Ucd

Parameter spectralUnit Spectral unit used by the spectra (SSA char meta-
data always is wavelength in meters). This must be a VOUnit string (use
a single blank if your spectrum is not calibrated).

Parameter timeSI defaults to __NULL__; S| conversion factor for times in
Osuna-Salgado convention; ssa:DataSet.TimeS| (you probably want to
leave this empty)

The //ssap#sdm-instance Mixin

This mixin is intended for tables that get serialized into documents conforming
to the Spectral Data Model 1, specifically to VOTables

The input to such tables comes from ssa tables (hcd, in this case). Their
columns (and params) are transformed into params here.

The mixin adds two columns (you could add more if, e.g., you had errors de-
pending on the spectral or flux value), spectral (wavelength or the like) and
flux. Their metadata is taken from the ssa fields where available (ssa_fluxucd
as flux UCD, ssa_fluxunit etc).

This mixin in action could look like this:

<table id="instance" onDisk="False">
<mixin ssaTable="spectra"
fluxUnit="Jy"
>//ssap#sdm-instance</mixin>
</table>

The mixin thus defines a gazillion of params. This will almost always be filled
using //ssap#feedSSAToSDM as explaned in SDM compliant tables

This mixin has the following parameters:

Parameter fluxDescription defaults to The dependent variable of this

spectrum (see the ucd for its physical meaning); Description for the flux
column

Parameter spectralDescription defaults to The independent variable of
this spectrum (see its ucd to figure out whether it’s a wavelength,

frequency, or energy); Description for the spectral column

Parameter spectralUCDOVverride Force UCD of the spectral column (don't
use this)

172

Parameter spectralUnitOverride Force unit of the spectral column (don't use
this)

Parameter ssaTable The SSAP (HCD) instance table to take the params from

The //ssap#simpleCoverage Mixin

A mixin furnishes a table with an ssa__region column giving a polygonal coverage.
For SSA, that’s unnecessary, but it's highly recommended if you have data with
positional and aperture data and will publish it via obscore, too (which in turn
is highly recommended).

The column will be filled with a hexagon approximating the aperture by
//ssap#setMeta, so usually you're set with this mixin. We also create an index
for the ssa_region field.

To make it visible in obscore, however, you must bind the coverage mixin par of
//obscore#publishSSAPHCD to ssa_region.

Triggers

In the context of the GAVO DC, triggers are conditions on rows -- either the raw
rows emitted by grammars if they are used within grammars, or the rows about
to be shipped to a table if they are used within tables. Triggers may be used
recursively, i.e., triggers may contain more triggers. Child triggers are normally
or-ed together.

Currently, there is one useful top-level trigger, the element ignoreOn. If an
ignoreOn s triggered, the respective row is silently dropped (actually, you ig-
noreOn has a bail attribute that allows you to raise an error if the trigger is
pulled; this is mainly for debugging).

The following triggers are defined:

Element and

A trigger that is true when all its children are true.
Atomic Children

e name (unicode string; defaults to 'unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

173

Structure Children

e triggers (contains any of and,keyPresent,keyNull,keyls, keyMissing,not and
may be repeated zero or more times) -- One or more conditions joined
by an implicit logical or. See Triggers for information on what can stand
here.

Element keyls

A trigger firing when the value of key in row is equal to the value given.

Missing keys are always accepted. You can define an SQL type; value will then
be interpreted as a literal for this type, and this literal's value will be compared
against the key's value. This is only needed for grammars like fitsProductGram-
mar that actually yield typed values.

Atomic Children

e key (unicode string; defaults to <Undefined>) -- Key to check

e name (unicode string; defaults to 'unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

e type (unicode string; defaults to 'text’) -- An SQL type the python equiv-
alent of which the value should be converted to before checking.

e value (unicode string; defaults to <Undefined>) -- The string value to
fire on.

Element keyMissing

A trigger firing if a certain key is missing in the dict.

This is equivalent to:
<not><keyPresent key="xy"/></not>

Atomic Children

e key (unicode string; defaults to <Undefined>) -- Key to check

e name (unicode string; defaults to 'unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

174

Element keyNull
A trigger firing if a certain key is missing or NULL/None
Atomic Children

e key (unicode string; defaults to <Undefined>) -- Key to check

e name (unicode string; defaults to 'unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

Element keyPresent
A trigger firing if a certain key is present in the dict.
Atomic Children

e key (unicode string; defaults to <Undefined>) -- Key to check

e name (unicode string; defaults to 'unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

Element not
A trigger that is false when its children, or-ed together, are true and vice versa.
Atomic Children

e name (unicode string; defaults to 'unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

Structure Children

e triggers (contains any of and,keyPresent, keyNull,keyls,keyMissing,not and
may be repeated zero or more times) -- One or more conditions joined
by an implicit logical or. See Triggers for information on what can stand
here.

175

Renderers Available

The following renderers are available for allowing and URL creation. The pa-
rameter style is relevant when adapting condDescs’ or table based cores to
renderers:

e With clear, parameters are just handed through

e With form, suitable parameters are turned into vizier-like expressions

e With pql, suitable parameters are turned into their PQL counterparts,

letting you specify ranges and such.

Unchecked renderers can be applied to any service and need not be explicitly
allowed by the service.

The admin Renderer

This renderer’s parameter style is "clear".
A renderer allowing to block and/or reload services.

This renderer could really be attached to any service since it does not call it,
but it usually lives on //services/overview. It will always require authentication.

It takes the id of the RD to administer from the path segments following the
renderer name.

By virtue of builtin vanity, you can reach the admin renderer at /seffe, and thus
you can access /seffe/foo/q to administer the foo/q RD.

The api Renderer

This renderer’s parameter style is "dali".

A renderer that works like a VO standard renderer but that doesn't actually
follow a given protocol.

Use this for improvised APls. The default output format is a VOTable,
and the errors come in VOSI VOTables. The renderer does, however, eval-
uate basic DALl parameters. You can declare that by including <FEED
source="//pql#DALIPars" /> in your service.

These will return basic serice metadata if passed MAXREC=0.

176

The availability Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.
A renderer for a VOSI availability endpoint.

An endpoint with this renderer is automatically registered for every service. The
answers can be configured using the admin renderer.

The capabilities Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.
A renderer for a VOSI capability endpoint.

An endpoint with this renderer is automatically registered for every service. The
responses contain information on what renderers ("interfaces") are available for
a service and what properties they have.

The coverage Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.
A renderer returning various forms of a service's spatial coverage.

This will return a 404 if the service doesn't have a coverage.spatial meta (and
will bomb out if that isn't a SMoc).

Based on the accept header, it will return a PNG if the client indicates it's
interested in that or if it accepts text/html, in which case we assume it's a
browser; otherwise, it will produce a MOC in FITS format.

The custom Renderer

This renderer’s parameter style is "clear".
A renderer defined in a python module.

To define a custom renderer write a python module and define a class MainPage
inheriting from gavo.web.ServiceBasedPage.

This class basically is a nevow resource, i.e., you can define docFactory, locate-
Child, renderHTTP, and so on.

To use it, you have to define a service with the resdir-relative path to the module
in the customPage attribute and probably a nullCore. You also have to allow
the custom renderer (but you may have other renderers, e.g., static).

177

If the custom page is for display in web browsers, define a class method is-
Browseable(cls, service) returning true. This is for the generation of links like
"use this service from your browser" only; it does not change the service's be-
haviour with your renderer.

There should really be a bit more docs on this, but alas, there's none as yet.
The dlasync Renderer

This renderer’s parameter style is "pql”.

A renderer for asynchronous datalink.
The diget Renderer

This renderer’s parameter style is "clear".
A renderer for data processing by datalink cores.
This must go together with a datalink core, nothing else will do.

This renderer will actually produce the processed data. It must be complemented
by the dlmeta renderer which allows retrieving metadata.

The dlmeta Renderer

This renderer’s parameter style is "clear".
A renderer for data processing by datalink cores.
This must go together with a datalink core, nothing else will do.

This renderer will return the links and services applicable to one or more pub-
DIDs.

See Datalink and SODA for more information.
The docform Renderer

This renderer’s parameter style is "form".
A renderer displaying a form and delivering core's result as a document.

The core must return a pair of mime-type and content; on errors, the form is
redisplayed.

This is mainly useful with custom cores doing weird things. This renderer will
not work with dbBasedCores and similar.

178

The edition Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.
A renderer representing a (tutorial-like) text document.

Not sure yet what I'll do when people actually call this; for now, the access URL
must be given as metadata.

The examples Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.
A renderer for examples for service usage.

This renderer formats _example meta items in its service. Its output is XHTML
compliant to VOSI examples; clients can parse it to, for instance, fill forms for
service operation or display examples to users.

The examples make use of RDFa to convey semantic markup. To see what kind
of semantics is contained, try http://www.w3.0org/2012/pyRdfa/Overview.html
and feed it the example URL of your service.

The default content of __example is ReStructured Text, and really, not much else
makes sense. An example for such a meta item can be viewed by executing gavo
admin dumpDF //userconfig, in the tapexamples STREAM.

To support annotation of things within the example text, DaCHS defines several
RST extensions, both interpreted text roles (used like :role-name: ‘content with
blanks‘) and custom directives (used to mark up blocks introduced by a single
line like .. directive-name :: (the blanks before and after the directive name
are significant).

Here's the custom interpreted text roles:
e dl-id: An publisher DID a service returns data for (used in datalink ex-
amples)

e taptable: A (fully qualified) table name a TAP example query is (partic-
ularly) relevant for; in HTML, this is also a link to the table description.

e genparam: A "generic parameter" as defined by DALI. The values of these
have the form param(value), e.g., :genparam:'P0OS(32,4)". Right now, not
parantheses are allowed in the value. Complain if this bites you.

These are the custom directives:

179

http://www.w3.org/2012/pyRdfa/Overview.html

e tapquery: The query discussed in a TAP example.

Examples for how to write TAP examples are in the userconfig.rd distributed
with DaCHS. Examples for Datalink examples can be found in the GAVO RDs
feros/q and califa/q3.

The external Renderer

This renderer’s parameter style is “clear”.
A renderer redirecting to an external resource.

These try to access an external publication on the parent service and ask it for
an accessURL. If it doesn't define one, this will lead to a redirect loop.

In the DC, external renderers are mainly used for registration of third-party
browser-based services.

The fixed Renderer

This renderer’s parameter style is "clear".
A renderer that renders a single template.

Use something like <template key="fixed">res/ft.html</template> in the enclos-
ing service to tell the fixed renderer where to get this template from.

In the template, you can fetch parameters from the URL using something like
<n:invisible n:data="parameter FOO0" n:render="string"/>;, you can also define
new render and data functions on the service using customRF and customDF.

This is, in particular, used for the data center’s root page.

The fixed renderer is intended for non- or slowly changing content. It is anno-
tated as cachable, which means that DaCHS will in general only render it once
and then cache it. If the render functions change independently of the RD, use
the volatile renderer.

Built-in services for such browser apps should go through the //run RD.
The form Renderer

This renderer’s parameter style is "form".
The "normal" renderer within DaCHS for web-facing services.
It will display a form and allow outputs in various formats.

It also does error reporting as long as that is possible within the form.

180

The get Renderer

This renderer’s parameter style is "clear".
The renderer used for delivering products.

This will only work with a ProductCore since the resulting data set has to
contain products.Resources. Thus, you probably will not use this in user RDs.

The howtocite Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.

A renderer that lets you format citation instructions.
The info Renderer

This renderer’s parameter style is "clear"”. This is an unchecked renderer.
A renderer showing all kinds of metadata on a service.

This renderer produces the default referenceURL page. To change its appear-
ance, override the serviceinfo.html template.

The logout Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.
logs users out.

With a valid authorization header, this emits a 401 unauthorized, without one,
it displays a logout page.

The mimg.jpeg Renderer

This renderer’s parameter style is "form".

A machine version of the JpegRenderer -- no vizier expressions, hardcoded pa-
rameters, plain text errors.

This should not have been part of DaCHS proper. It will be removed.

181

The mupload Renderer

This renderer’s parameter style is "form".
A renderer allowing for updates to individual records using file uploads.

The difference to Uploader is that no form-redisplay will be done. All errors are
reported through HTTP response codes and text strings. It is likely that this
renderer will change and/or go away.

The pubreg.xml Renderer

This renderer’s parameter style is "clear".
A renderer that works with registry.oaiinter to provide an OAI-PMH interface.

The core is expected to return a stanxml tree.
The gp Renderer

This renderer’s parameter style is "clear".
The Query Path renderer extracts a query argument from the query path.

Basically, whatever segments are left after the path to the renderer are taken
and fed into the service. The service must cooperate by setting a queryField
property which is the key the parameter is assigned to.

QPRenderers cannot do forms, of course, but they can nicely share a service
with the form renderer.

To adjust the results’ appreance, you can override resultline (for when there's
just one result row) and resulttable (for when there is more than one result row)
templates.

The rdinfo Renderer

This renderer’s parameter style is "clear".
A renderer for displaying various properties about a resource descriptor.

This renderer could really be attached to any service since it does not call it,
but it usually lives on //services/overview.

By virtue of builtin vanity, you can reach the rdinfo renderer at /browse, and
thus you can access /browse/foo/q to view the RD infos. This is the form used
by table registrations.

182

In addition to all services, this renderer also links tableinfos for all non-temporary,
on-disk tables defined in the RD. When you actually want to hide some internal
on-disk tables, you can set a property internal on the table (the value is ignored).

The scs.xml Renderer

This renderer’s parameter style is "pql”.
A renderer for the Simple Cone Search protocol.

These do their error signaling in the value attribute of an INFO child of RE-
SOURCE.

You must set the following metadata items on services using this renderer if you

want to register them:

e testQuery.ra, testQuery.dec -- A position for which an object is present
within 0.001 degrees.

The siap.xml Renderer

This renderer’s parameter style is "pql”.
A renderer for a the Simple Image Access Protocol.

These have errors in the content of an info element, and they support metadata
queries.

For registration, services using this renderer must set the following metadata

items:

e sia.type -- one of Cutout, Mosaic, Atlas, Pointed, see SIAP
spec

You should set the following metadata items:
e testQuery.pos.ra, testQuery.pos.dec -- RA and Dec for a query
that yields at least one image
o testQuery.size.ra, testQuery.size.dec -- Rol extent for a query

that yields at least one image.

You can set the following metadata items (there are defaults on them that
basically communicate there are no reasonable limits on them):

183

sia.maxQueryRegionSize.(long|lat)

sia.maxlmageExtent.(long|lat)

sia.maxFileSize

sia.maxRecord (default dalHardLimit global meta)

The siap2.xml Renderer

This renderer’s parameter style is "dali".
A renderer for SIAPv2.

In general, if you want a SIAP2 service, you'll need something like the obscore
view in the underlying table.

The slap.xml Renderer

This renderer’s parameter style is "pql”.
A renderer for the simple line access protocol SLAP.

For registration, you must set the following metadata on services using the
slap.xml renderer:

There's two mandatory metadata items for these:
e slap.dataSource -- one of observational/astrophysical, observa-
tional /laboratory, or theoretical
e slap.testQuery -- parameters that lead to a non-empty response. The way

things are written in DaCHS, MAXREC=1 should in general work.

The soap Renderer

This renderer’s parameter style is "clear".
A renderer that receives and formats SOAP messages.

This is for remote procedure calls. In particular, the renderer takes care that you
can obtain a WSDL definition of the service by appending ?wsdl to the access
URL.

184

The ssap.xml Renderer

This renderer’s parameter style is "pql”.
A renderer for the simple spectral access protocol.

For registration, you must set the following metadata on services using the
ssap.xml renderer:

e ssap.dataSource -- survey, pointed, custom, theory, artificial

e ssap.testQuery -- a query string that returns some data; RE-
QUEST=queryData is added automatically

Other SSA metadata includes:

e ssap.creationType -- archival, cutout, filtered, mosaic, pro-
jection, spectralExtraction, catalogExtraction (defaults to
archival)

e ssap.compliancelevel -- set to "query" when you don't deliver
SDM compliant spectra; otherwise don't say anything, DaCHS
will fill in the right value.

Properties supported by this renderer:

e datalink -- if present, this must be the id of a datalink service
that can work with the pubDIDs in this table (don't use this
any more, datalink is handled through table-level metadata
now)

e defaultRequest -- by default, requests without a REQUEST
parameter will be rejected. If you set defaultRequest to query-
data, such requests will be processed as if REQUEST were
given (which is of course sane but is a violation of the stan-
dard).

The static Renderer

This renderer’s parameter style is "clear".
A renderer that just hands through files.

The standard operation here is to set a staticData property pointing to a resdir-
relative directory used to serve files for. Indices for directories are created.

185

You can define a root resource by giving an indexFile property on the service.
Note in particular that you can use an index file with an extension of shtml.
This lets you use nevow templates, but since metadata will be taken from the
global context, that's probably not terribly useful. You are probably looking for
the fixed renderer if you find yourself needing this.

The tableMetadata Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.
A renderer for a VOSI table metadata endpoint.

An endpoint with this renderer is automatically registered for every service. The
responses contain information on the tables exposed by a given service.

The tableinfo Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.
A renderer for displaying table information.

Since tables don’t necessarily have associated services, this renderer cannot use
a service to sit on. Instead, the table is being passed in as as an argument.
There's a built-in vanity tableinfo that sits on //dc_tables#show using this
renderer (it could really sit anywhere else).

The tablenote Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.
A renderer for displaying table notes.
It takes a schema-qualified table name and a note tag in the segments.

This does not use the underlying service, so it could and will run on any service.
However, you really should run it on ___system___/dc_tables/show, and there's
a built-in vanity name tablenote for this.

The tap Renderer

This renderer’s parameter style is "clear".
A renderer speaking all of TAP (including sync, async, and VOSI).

Basically, this just dispatches to the sync and async resources.

186

The upload Renderer

This renderer’s parameter style is "form".
A renderer allowing for updates to individual records using file upload.

This renderer exposes a form with a file widget. It is likely that the interface
will change.

The uws.xml Renderer

This renderer’s parameter style is "pql”.
A renderer speaking UWS.

This is for asynchronous exection of larger jobs. Operators will normally use
this together with a custom core or a python core.

See Custom UWSes for details.
The volatile Renderer

This renderer’s parameter style is "clear".
A renderer rendering a single template with fast-changing results.

This is like the fixed renderer, except that the results are not cached.

Predefined Procedures

Procedures available for rowmaker/parmaker apply
/ /epntap2+#£populate-2_0

Sets metadata for an epntap data set, including its products definition.

The values are left in vars, so you need to do manual copying, e.g., using
idmaps="*".

In some descriptions below, you will see __replace_framed___. This means
that the actual descriptions, units, and UCDs will depend on the value of spa-
tial_frame_type in the //epntap2#ttable-2_0 mixin. After you have made a
first (possibly severely incomplete) import of your table, you can see the actual
metadata by opening http://localhost:8080/tableinfo/yourschema.epn_core.

Setup parameters for the procedure are:

187

http://localhost:8080/tableinfo/yourschema.epn_core

Late parameter cl_resol_max defaults to None; Resolution in the first coor-
dinate, upper limit

Late parameter cl_resol_min defaults to None; Resolution in the first coor-
dinate, lower limit.

Late parameter cImax defaults to None; __replace_framed___, upper limit
Late parameter cImin defaults to None; __ replace_framed___, lower limit.

Late parameter c2_resol_max defaults to None, Resolution in the second
coordinate, upper limit

Late parameter c2_resol_min defaults to None; Resolution in the second co-
ordinate, lower limit.

Late parameter c2max defaults to None; ___replace_framed___, upper limit
Late parameter c2min defaults to None; ___replace_framed___, lower limit.

Late parameter c3_resol_max defaults to None; Resolution in the third co-
ordinate, upper limit

Late parameter c3_resol_min defaults to None; Resolution in the third coor-
dinate, lower limit.

Late parameter c3max defaults to None; ___replace_framed___, upper limit
Late parameter c3min defaults to None; ___ replace_framed___, lower limit.

Late parameter creation_date defaults to None; Date of first entry of this
granule

Late parameter dataproduct_type defaults to None; The high-level organi-
zation of the data product, from enumerated list (e.g., 'im’ for image, sp
for spectrum)

Late parameter emergence_max defaults to None; Emergence angle during
data acquisition, upper limit

Late parameter emergence_min defaults to None; Emergence angle during
data acquisition, lower limit.

Late parameter granule_gid Common to granules of same type (e.g. same
map projection, or geometry data products). Can be alphanumeric.

Late parameter granule_uid Internal table row index Unique ID in data ser-
vice, also in v2. Can be alphanumeric.

Late parameter incidence_max defaults to None; Incidence angle (solar
zenithal angle) during data acquisition, upper limit

188

Late parameter incidence_min defaults to None; Incidence angle (solar
zenithal angle) during data acquisition, lower limit.

Late parameter index_ defaults to \rowsMade; A numeric reference for the
item. By default, this is just the row number. As this will (usually)
change when new data is added, you should override it with some unique
integer number specific to the data product when there is such a thing.

Late parameter instrument_host_name Name of the observatory or space-
craft that the observation originated from; for ground-based data,
use |AU observatory codes, http://www.minorplanetcenter.net/iau/lists/
ObsCodesF.html, for space-borne instruments use http://nssdc.gsfc.nasa.

gov/nmc/

Late parameter instrument_name defaults to None; Service providers are in-
vited to include multiple values for instrument_name, e.g., complete name
+ usual acronym. This will allow queries on either '"VISIBLE AND IN-

FRARED THERMAL IMAGING SPECTROMETER’ or VIRTIS to pro-
duce the same reply.

Late parameter measurement_type defaults to None; UCD(s) defining the
data, with multiple entries separated by hash (#) characters.

Late parameter modification__date defaults to None; Date of last modifica-
tion (used to handle mirroring)

Late parameter obs_id Associates granules derived from the same data (e.g.
various representations/processing levels). Can be alphanumeric, may be
the ID of original observation.

Late parameter phase_max defaults to None; Phase angle during data acqui-
sition, upper limit

Late parameter phase_min defaults to None; Phase angle during data acqui-
sition, lower limit.

Late parameter processing__level CODMAC calibration level; see the et_ cal
note http://dc.g-vo.org/tableinfo/titan.epn_core#£note-et_cal for what
values are defined here.

Late parameter release_date defaults to None; Start of public access period

Late parameter s_region defaults to None; A spatial footprint of a
dataset located on a spherical coordinate system. Currently, this
is fixed to be a spherical polygon (fill it with something like pg-
sphere.SPoly.fromDALI([@longl, @latl, @long2, @lat2,...], all coordinates
in degrees). You could use circles or MOCs here; contact the tool main-
tainers if you need that.

189

http://www.minorplanetcenter.net/iau/lists/ObsCodesF.html
http://www.minorplanetcenter.net/iau/lists/ObsCodesF.html
http://nssdc.gsfc.nasa.gov/nmc/
http://nssdc.gsfc.nasa.gov/nmc/
http://dc.g-vo.org/tableinfo/titan.epn_core#note-et_cal

Late parameter service__title defaults to None; Title of resource (an acronym
really, will be used to handle multiservice results)

Late parameter spectral_range_max defaults to None; Spectral range (fre-
quency), upper limit

Late parameter spectral_range_min defaults to None; Spectral range (fre-
quency), lower limit.

Late parameter spectral_resolution_max defaults to None; Sectral resolu-
tion, upper limit

Late parameter spectral_resolution_min defaults to None; Sectral resolu-
tion, lower limit.

Late parameter spectral_sampling_step__max defaults to None; spectral
sampling step, upper limit

Late parameter spectral_sampling_step__min defaults to None; spectral
sampling step, lower limit.

Late parameter target_class defaults to "unknown"; The type of the target;
choose from asteroid, dwarf_planet, planet, satellite, comet, exoplanet,
interplanetary__medium, ring, sample, sky, spacecraft, spacejunk, star

Late parameter target_name Name of the target object, preferably accord-
ing to the official IAU nomenclature. As appropriate, take these from
the exoplanet encyclopedia http://exoplanet.eu, the meteor catalog at
http://www.Ipi.usra.edu/meteor/, the catalog of stardust samples at
http://curator.jsc.nasa.gov/stardust/catalog/

Late parameter target_region defaults to None; This is a complement to the
target name to identify a substructure of the target that was being ob-
served (e.g., Atmosphere, Surface). Take terms from them Spase dictio-
nary at http://www.spase-group.org or the IVOA thesaurus.

Late parameter time_exp_max defaults to None; Integration time of the
measurement, upper limit

Late parameter time_exp_min defaults to None; Integration time of the
measurement, lower limit.

Late parameter time_max defaults to None; Acquisition stop time (in JD)
Late parameter time_min defaults to None; Acquisition start time (in JD)

Late parameter time_sampling_step_max defaults to None; Sampling time
for measurements of dynamical phenomena, upper limit

190

http://exoplanet.eu
http://www.lpi.usra.edu/meteor/
http://curator.jsc.nasa.gov/stardust/catalog/
http://www.spase-group.org

Late parameter time_sampling_step_min defaults to None; Sampling time
for measurements of dynamical phenomena, lower limit.

Late parameter time_scale defaults to "unknown"; Time scale used for the
various times, as given by IVOA's STC data model. Choose from TT,
TDB, TOG, TOB, TAI, UTC, GPS, UNKNOWN

/ /epntap2#populate-localfile-2_0

Use this apply when you use the //epntap2+#tlocalfile-2_0 mixin. This will only
(properly) work when you use a //products#define rowfilter; if you have that,
this will work without further configuration.

Setup parameters for the procedure are:

Late parameter creation_date defaults to \sourceCDate; A timestamp giving
the dataset's creation time as a datetime object

/ /procs#dictMap

Maps input values through a dictionary.

The dictionary is given in its python form here. This apply only operates on
the rawdict, i.e., the value in vars is changed, while nothing is changed in the
rowdict.

Setup parameters for the procedure are:

Parameter default defaults to KeyError; Default value for missing keys (with
this at the default, an error is raised)

Parameter key Name of the input key to map

Parameter mapping Python dictionary literal giving the mapping

/ /procs#fullQuery

runs a free query against the data base and enters the first result record into
vars.

locals() will be passed as data, so you can define more bindings and refer to
their keys in the query.

Setup parameters for the procedure are:

Parameter errCol defaults to ’<unknown>’; a column name to use when raising
a ValidationError on failure.

Parameter query an SQL query

191

/ /procs#mapValue

is an apply proc that translates values via a utils.NameMap

Destination may of course be the source field (though that messes up idempo-
tency of macro expansion, which shouldn't usually hurt).

The format of the mapping file is:

<target key><tab><source keys>

where source keys is a whitespace-seperated list of values that should be mapped
to target key (sorry the sequence’s a bit unusual).

A source key must be encoded quoted-printable. This usually doesn't matter
except when it contains whitespace (a blank becomes =20) or equal signs (which
become =3D).

Here's an example application for a filter that's supposed to translate some
botched object names:

<apply name="cleanObject" procDef="//procs#mapValue">

<bind name="destination">"cleanedObject"</bind>

<bind name="failuresMapThrough">True</bind>

<bind name="value">@prelObject</bind>

<bind name="sourceName">"flashheros/res/namefixes.txt"</bind>
</apply>

The input could look like this, with a Tab char written as " <TAB> " for clarity:

alp Cyg <TAB> aCyg alphaCyg
Nova Cygni 1992 <TAB> Nova=20Cygni=20’92 Nova=20Cygni

Setup parameters for the procedure are:

Parameter destination name of the field the mapped value should be written
into

Parameter failuresAreNone defaults to False; Rather than raise an error,
yield NULL for values not in the mapping

Parameter failuresMap Through defaults to False; Rather than raise an error,
yield the input value if it is not in the mapping (this is for 'fix some’-like
functions and only works when failureAreNone is False)

Parameter logFailures defaults to False; Log non-resolved names?

Parameter sourceName An inputsDir-relative path to the NameMap source
file.

Late parameter value The value to be mapped.

192

/ / procs#resolveObject

Resolve identifiers to simbad positions.

It caches query results (positive as well as negative ones) in cacheDir. To avoid
flooding simbad with repetetive requests, it raises an error if this directory is
not writable.

It leaves J2000.0 positions as floats in the simbadAlpha and simbadDelta vari-
ables.

Setup parameters for the procedure are:

Late parameter identifier The identifier to be resolved.

Parameter ignoreUnknowns defaults to True; Return Nones for unknown ob-
jects? (if false, ValidationErrors will be raised)

Parameter logUnknowns defaults to False; Write unresolved object names to

the info log

/ /procs#simpleSelect

Fill variables from a simple database query.

The idea is to obtain a set of values from the data base into some columns
within vars (i.e., available for mapping) based on comparing a single input value
against a database column. The query should always return exactly one row. If
more rows are returned, the first one will be used (which makes the whole thing
a bit of a gamble), if none are returned, a ValidationError is raised.

Setup parameters for the procedure are:
Parameter assignments mapping from database column names to vars col-
umn names, in the format {<db colname>:<vars name>}"
Parameter column the column to compare the input value against
Parameter errCol
defaults to ’<unknown>’; UNDOCUMENTED
Parameter table name of the database table to query

Late parameter val UNDOCUMENTED

193

/ /siap#computePGS

Computes WCS information for SIA tables from FITS WCS keys.

It takes no arguments but expects WCS-like keywords in rowdict, i.e., CRVALI,
CRVAL2 (interpreted as float deg), CRPIX1, CRPIX2 (pixel corresponding to
CRVAL1, CRVAL2), CUNIT1, CUNIT2 (pixel scale unit, we bail out if it isn't
deg and assume deg when it's not present), CDn_n (the transformation matrix;
substitutable by CDELTn), NAXISn (the image size).

Records without or with insufficient wcs keys are furnished with all-NULL wcs
info if the missinglsError setup parameter is False, else they bomb out with a
DataError (the default).

Setup parameters for the procedure are:

Parameter missinglsError defaults to True; Throw an exception when no
W(CS information can be located.

Parameter naxis defaults to "1,2"; Comma-separated list of integer axis in-

dices (1=first) to be considered for WCS

/ /siap#getBandFromFilter

sets the bandpassld, bandpassUnit, bandpassRefval, bandpassHi, and band-
passLo from a set of standard band Ids.

The bandpass ids known are contained in a file supplied file that you should
consult for supported values. Run gavo admin dumpDF data/filters.txt for
details.

All values filled in here are in meters.

If this is used, it must run after //siap#setMeta since setMeta clobbers our
result fields.

Setup parameters for the procedure are:

Parameter sourceCol defaults to None; Name of the column containing the fil-
ter name; leave at default None to take the band from result['bandpassld],
where such information would be left by siap#setMeta.

194

/ /siap#setMeta

sets siap meta and product table fields.
These fields are common to all SIAP implementations.

If you define the bandpasses yourself, do not change bandpassUnit and give all
values in Meters. If you do change it, at least obscore would break, but probably
more. For optical images, we recommend to fill out bandpassld and then let
the //siap#getBandFromFilter apply compute the actual limits. If your band
is not known, please supply the necessary information to the authors.

Do not use idmaps="x" when using this procDef; it writes directly into result,
and you would be clobbering what it does.

Setup parameters for the procedure are:

Late parameter bandpassHi defaults to None; lower value of wavelength or
frequency (you usually want to use //siap#getBandFromFilter to fill this).

Late parameter bandpassld defaults to None; a rough indicator of the band-
pass, like Johnson bands

Late parameter bandpassLo defaults to None; upper value of the wavelength
or frequency (you usually want to use //siap#getBandFromFilter to fill
this).

Late parameter bandpassRefval defaults to ©None; characteristic fre-
quency or wavelength of the exposure (you usually want to use
/ /siap#getBandFromFilter to fill this).

Late parameter bandpassUnit defaults to "m"; The unit of the bandpassRe-
fval and friends (just don't touch this)

Late parameter dateObs defaults to None; the midpoint of the observation;
this can either be a datetime instance, or a float>1e6 (a julian date) or
something else (which is then interpreted as an MJD)

Late parameter instrument defaults to str(rd.getMeta("instrument")); a
short identifier for the instrument used

Late parameter pixflags defaults to None; processing flags (C atlas image or
cutout, F resampled, X computed without interpolation, Z pixel flux cal-
ibrated, V unspecified visualisation for presentation only)

Late parameter refFrame defaults to *ICRS’; reference frame of the coordi-
nates (change at your peril)

195

Late parameter title defaults to None; image title. This should, in as few
characters as possible, convey some idea what the image will show (e.g.,
instrument, object, bandpass

/ /slap#fillBasic

This apply is intended for rowmakers filling tables mixing in //slap#basic. It
populates vars for all the columns in there; you'll normally want idmaps="*"
with this apply.

For most of its parameters, it will take them for same-named vars, so you can
slowly build up its arguments through var elements.

Setup parameters for the procedure are:

Late parameter chemical_element defaults to echemical_element; Element
that makes the transition. It's probably ok to dump molecule names in
here, too.

Late parameter final_level_energy defaults to efinal_level_energy; Energy
of the final state

Late parameter final_name defaults to efinal_name; Designation of the final
state

Late parameter id_status defaults to "identified"; Identification status; this
would be identified or unidentified plus possibly uncorrected (but read the
SLAP spec for that).

Late parameter initial_level_energy defaults to @initial_level_energy; En-
ergy of the initial state

Late parameter initial_name defaults to einitial_name; Designation of the
initial state

Late parameter linename defaults to @linename; A brief designation for the
line, like 'H alpha’ or 'N 111 992.973 A"

Late parameter pub defaults to epub; Publication this came from (use a bib-
code).

Late parameter wavelength defaults to ewavelength; Wavelength of the
transition in meters; this will typically be an expression like
int(@wavelength)*1e-10

196

/ /ssap#feedSSAToSDM

feedSSAToSDM takes the current rowlterator's sourceToken and feeds it to
the params of the current target. sourceTokens must be an SSA rowdict (as
provided by the sdmCore). Futher, it takes the params from the sourceTable
argument and feeds them to the params, too.

All this probably only makes sense in parmakers when making tables mixing in
//ssap#tsdm-instance in data children of sdmCores.

/ /ssap#setMeta

Sets metadata for an SSA data set, including its products definition.

The values are left in vars, so you need to do manual copying, e.g., using
idmaps="*", or, if you need to be more specific, idmaps="ssa_*".

Setup parameters for the procedure are:
Late parameter alpha defaults to None; right ascension of target (ICRS de-
grees); ssa:Char.SpatialAxis.Coverage.Location.Value.C1

Late parameter aperture defaults to None; angular diameter of aperture (ex-
pected in degrees); ssa:Char.SpatialAxis.Coverage.Bounds.Extent

Late parameter bandpass defaults to None; bandpass (i.e., rough spectral lo-
cation) of this dataset; ssa:DatalD.Bandpass

Late parameter cdate defaults to None; date the file was created (or pro-
cessed; optional); this must be either a string in ISO format, or you need
to parse to a timestamp yourself; ssa:DatalD.Date

Late parameter creatorDID defaults to None; id given by the creator (leave
out if not applicable); ssa:DatalD.CreatorDID

Late parameter cversion defaults to None; creator assigned version for this file
(should be incremented when it is changed); ssa:DatalD.Version

Late parameter dateObs defaults to None; observation midpoint (you can give
a datetime, a string in iso format, a jd, or an mjd, the latter two being
told apart by comparing against 1e6)

Late parameter delta defaults to None; declination of target (ICRS degrees);
ssa:Char.SpatialAxis.Coverage.Location.Value.C2

Late parameter dstitle a title for the data set (e.g., instrument, filter, target
in some short form; must be filled in); ssa:DatalD.Title

197

Late parameter length defaults to None; Number of samples in the spectrum;
ssa:Dataset.Length

Late parameter pdate defaults to datetime.datetime.utcnow(); date the file
was last published (in general, the default is fine); ssa:Curation.Date

Late parameter pubDID |d provided by the publisher (i.e., you); this is an
opaque string and must be given; ssa:Curation.PublisherDID

Late parameter redshift defaults to None; source redshift; ssa:Target.Redshift

Late parameter snr defaults to None; signal-to-noise ratio estimated for this
dataset; ssa:Derived.SNR

Late parameter specend defaults to None; upper bound of wavelength interval
(in meters); ssa:Char.SpectralAxis.Coverage.Bounds.Stop

Late parameter specext defaults to None; (ignored; only present for compat-
iblity, computed from specstart and specend)

Late parameter specmid defaults to None; (ignored; only present for compat-
iblity, computed from specstart and specend)

Late parameter specstart defaults to None; lower bound of wavelength inter-
val (in meters); ssa:Char.SpectralAxis.Coverage.Bounds.Start

Late parameter targclass defaults to None; object class (star, QSO,...);
ssa: Target.Class

Late parameter targname defaults to None; common name of the object ob-
served; ssa: Target.Name

Late parameter timeExt defaults to None; exposure time (in seconds);
ssa:Char. TimeAxis.Coverage.Bounds.Extent

/ /ssap#setMixcMeta

Sets metadata for an SSA data set from mixed sources. This will only work
sensibly in cooperation with setMeta

As with setMeta, the values are left in vars; if you did as recommended with
setMeta, you'll have this covered as well.

Setup parameters for the procedure are:

Late parameter binSize defaults to None; Bin size on the spectral axis in m

198

Late parameter collection defaults to None; IOVA id of the originating data
collection (leave empty if you don’t know what this is about)

Late parameter creationType defaults to None; Process used to produce
the data (zero or more of archival, cutout, filtered, mosaic, projec-
tion, spectralExtraction, catalogExtraction, concatenated by commas);
ssa:DatalD.Creation Type

Late parameter creator defaults to "Take from RD"; Creator/Author

Late parameter dataSource defaults to None; Generation type (typically, one
survey, pointed, theory, custom, artificial); ssa:DatalD.DataSource

Late parameter dstype defaults to "spectrum"; Type of data. The only de-
fined value currently is Spectrum, but you may get away with TimeSeries;
ssa:Dataset. Type

Late parameter fluxCalib defaults to None; Type of flux calibration (one
of ABSOLUTE, RELATIVE, NORMALIZED, or UNCALIBRATED);
ssa:Char.FluxAxis.Calibration

Late parameter fluxStatError defaults to None; Statistical error for flux in
units of fluxUnit

Late parameter fluxSysError defaults to None; Systematic error for flux in
units of fluxUnit

Late parameter instrument defaults to "Take from RD"; Instrument or code
used to produce this dataset; ssa:DatalD.Instrument

Late parameter publisher defaults to "Take from RD"; Publisher [IVO;
ssa:Curation.Publisher

Late parameter reference defaults to "Take from RD"; URL or bibcode of a
publication describing this data.

Late parameter specCalib defaults to None; Type of wavelength Calibration
(one of ABSOLUTE, RELATIVE, NORMALIZED, or UNCALIBRATED);
ssa:Char.SpectralAxis.Calibration

Late parameter specres defaults to None; Resolution on the spectral axis; you
must give this as FWHM wavelength in meters here. This will default to
binSize if not given; ssa:Char.SpectralAxis.Resolution

Late parameter spectStatError defaults to Nome; Statistical error for the
spectral coordinate in m

Late parameter spectSysError defaults to None; Systematic error for the
spectral coordinate in m

199

Procedures available for grammar rowfilters
/ /procs#expandComma

A row generator that reads comma seperated values from a field and returns
one row with a new field for each of them.

Setup parameters for the procedure are:

Parameter destField Name of the column the individual columns are written
to

Parameter srcField Name of the column containing the full string

/ /procs#expandDates

is a row generator to expand time ranges.
The finished dates are left in destination as datetime.datetime instances

Setup parameters for the procedure are:

Parameter dest defaults to ’curTime’; name of the column the time should
appear in

Parameter end the end date(time)

Late parameter hrinterval defaults to 24; difference between generated
timestamps in hours

Parameter start the start date(time), as either a datetime object or a column
ref

/ /procs#expandintegers

A row processor that produces copies of rows based on integer indices.

The idea is that sometimes rows have specifications like "Star 10 through Star
100". These are a pain if untreated. A RowExpander could create 90 individual
rows from this.

Setup parameters for the procedure are:

Parameter endName column containing the end value
Parameter indName name the counter should appear under

Parameter startName column containing the start value

200

/ /products#define

Enters the values defined by the product interface into a grammar’s result.

See the documentation on the //products#table mixin. In short: you will always
have to touch table (to the name of the table this row is managed in).

If you don't serve FITS images, you will also have to set mime. Use a media
type like "image/jpeg" or "text/csv" here as appropriate. If not set, this defaults
to "image/fits" (which is, we claim, suitable for cubes and certain spectra, too);
for FITS binary tables, use application /fits.

Everything else is optional: You may want to set preview and preview_mime if
DaCHS can't do previews of your stuff automatically. datalink is there if you
have a datalink thing. What's left is for special situations.

This will create the keys prodblAccref, prodtblOwner, prodtblEmbargo, prodt-
blPath, prodtblFsize, prodtblTable, prodtbIMime, prodtblPreview, prodt-
bleMime, and prodtblDatalink keys in rawdict -- you can refer to them in the
usual @foo way, which is sometimes useful even outside products processing
proper (in particular for prodtblAccref).

Setup parameters for the procedure are:
Late parameter accref defaults to \inputRelativePath{False}; an access ref-
erence (this ususally is t