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While you do not have to write any HTML to publish data using DaCHS,
and indeed we discourage spending much effort on fancy web pages – the
VO is about generically usable APIs, not fancy, but non-interoperable web
pages –, for some special effects or even the occasional custom UI many
aspects of DaCHS web browser appearance can be overridden (and new
behaviour introduced) through its nevow-based templating system. This
article discusses how to do that.

DaCHS’s System Templates
Overriding System Templates
DaCHS web pages are generated from templates delivered in the distribution’s
gavo/resources/templates subdirectory. Since that might actually be in an "egg" (com-
pressed archive) on your installation, the easiest way to get at them is by using gavo

admin dumpDF templates/<template-name>. The main reason to get them is to override
them locally. To do that, put the template into <dachs-root>/web/templates.
For instance, if you wanted to change the sidebar, on a default installation you would
type:
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$ cd /var/gavo/web/templates
$ gavo admin dumpDF templates/sidebar.html > sidebar.html

While changes to templates will (almost) always directly show up in the pages served by
DaCHS, if you freshly override a system template, you will need to re-start the server to
make it realise it should load the template from a different source.
The content of the template files must be well-formed XML, preferably valid XHTML plus
some extra elements and attributes from the http://nevow.com/ns/nevow/0.1 namespace,
and DaCHS will throw errors on non-well-formed XML. You may want to use run XML
validators – as in:

xmlstarlet val -e sidebar.html

(requires the xmlstarlet package) – on the file before deploying them, although DaCHS
error messages should typically give you a useful hint on where you got it wrong in case
of errors.
While the sidebar’s (and some other templates’) source may not immediately figure as
HTML, you can simply start adding HTML. Try, perhaps, adding:

<p class="sidebaritem">Hello world.</p>

above the opening div in sidebar.html and reload a page showing the sidebar. Your new
material should show in the page.
Note that, if you override a template, it is a good idea to evaluate changes in the
upstream templates after updating DaCHS. We hope we will remember to report on
these in the changelog and on our blog. The ground truth can be obtained by cloning
https://gitlab-p4n.aip.de/gavo/dachs.git dachs and saying:

git log gavo/resources/templates/*

in the directory you checked out.
(perhaps narrowing it down to the file you overrode). We try to avoid breaking user
templates, but as there’s no regression testing against that in place, and sometimes
templates might reference functionality that has been dropped. So, it may and therefore
will still happen (which is an important reason for trying to avoid overriding system
templates and asking on dachs-support if someone knows another way to achive some
desired effect. Plus, of course, by following upstream changes you can follow improve-
ments we make – the popular "Send via SAMP" functionality, for instance, required a
template change.
Templates Commonly Used
Ignoring some templates used for administration and internal purposes, here is a list of
templates used by DaCHS:

defaultresponse.html: used by the form renderer for both the form itself
and the result page. This is what you want to start from when doing
custom UIs.

examples.html: used to format DALI examples (see Writing Examples)
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loginout.html: used when logging out; note that DaCHS uses HTTP basic
authentication; so, this is not a page you can use to explain to your
users what to do to log in, they’ll just see the browser’s authentication
window.

maintenance.html: used when the service is taken offline by creating a
state/MAINT file. The mainText data item contains the contents of that
file

rdinfo.html: the ...browse/<rdId> pages are generated from these
root-tree.html: see The Root Template
root.html: see The Root Template
serviceinfo.html: used by the info renderer
sidebar.html: used by several browser-oriented renderers to create the side-

bar
tableinfo.html: used by the tableinfo renderer (which is what makes the

tableinfo/<table name> pages)
The Root Template
The root.html template is what is rendered when users request the root resource of your
DaCHS installation, so it is a fairly good target for changing (and it’s also fairly safe
to override). While you could put any well-formed XHTML there, we recommend you
base your template on either the distributed root.html, which mainly gives a list of all
services available on the system, or root-tree.html, which organizes services in trees and
only downloads metadata as necessary (a simple non-javascript fallback is part of the
distributed template, too). The latter is intended for use on sites that have more then a
few tens of services, when the plain root.html would expand to several 100s of kilobytes.
You would again do this by going to /var/gavo/web/templates and saying:

gavo admin dumpDF templates/root.html > root.html

(change the first root.html to root-tree.html for the fancier root page). Then edit
root.html.
Note that the root page (and a few more similarly static documents) are fairly aggres-
sively cached by DaCHS. This means that changes to the docment will not usually
become immediately visible in your browser. To force DaCHS to reload fixed templates,
add a nocache argument like this:

http://localhost:8080?nocache=True

If you’re happy with your design, run gavo serve expire //services (the root page cache
is controlled by the //services RD), and it will be shown to non-logged users, too.
That will only work when you have set an adminpasswd (cf. tutorial.html#the-admin-
password) – otherwise, just restart the server.
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The Templating Language
DaCHS employs nevow’s stan as its templating language. Our upstream, the Twisted
community, has since integrated it into its web2 framework; since for DaCHS there is
no compelling reason to migrate (but a fairly compelling reason not to, since we want
to avoid unnecessarily breaking templates), we will keep nevow for the time being.
The great thing about nevow is that the templates are valid, verifyable XHTML. This is
because nevow just adds a few elements and attributes in a separate namespace. This
must be declared alongside the XHTML namespace; a standalone template will thus
have to start like this:

<html
xmlns:n="http://nevow.com/ns/nevow/0.1"
xmlns="http://www.w3.org/1999/xhtml">

(prepending this with a doctype declaration like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

is optional1); in the following, we assume the n prefix for the nevow namespace through-
out, and you’d be devious to use something else.
The nevow namespace contains the following names (examples below; you’re not sup-
posed to understand things here, this is just a reference):

• n:invisible – an element that doesn’t appear in the output. this is useful when
you need some render or data attribute but have no element to "hang it on".

• n:attr – an element to add computed attributes to the embedding element. If you
know xsl.attribute: same thing.

• n:slot – an element replacing itself with the value a mapping in the context data
has for its name attribute.

• n:render – a universal (i.e., can go on any HTML tag) attribute changing the
way the DOM tree is built below that element. To avoid confusion with DaCHS
renderers, we will call the values of these attributes "nevow renderers" in the
following.

• n:pattern – a universal attribute a bit like a tree-typed argument to a nevow
renderer

• n:data – a universal attribute pulling a piece of data from python into the rendering
context for use by nevow renderers.

-- that’s really all it takes for a powerful XML templating language.
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In-Python Stan
While it’s normally preferable to load templates from XML file, sometimes you want to
inline HTML fragments. Stan makes that relatively easy and save by providing a simple
and elegant DOM-like language. Essentially, one says:

from nevow import tags as T

and then has the usual HTML elements as names within T. Calling them as functions
will add attributes, indexing them will add children. This may sound odd but allows
relatively nice expressions such as:

T.body[
T.p["See also ", T.a(href="http://example.com")["here"], ". or"],
T.ul[[

T.li["or ", T.a(href=link)[anchor]
for link, anchor in linklist]]]]

This T is already in the namespace of the renderer function (see below).
More information and this (as well as the whole template language) is available in Meet
Stan.
Template Language Example
To see how this works, consider the serviceinfo.html template (see Overriding System
Templates to see how to get it). The first two "magic" thing are children of head:

<title n:render="title"/>
...
<n:invisible n:render="commonhead"/>

The first is an empty title saying it wants to be rendered by title. That is a DaCHS-
defined nevow renderer that says "put the service title as a text child of the embedding
element (and delete any previous child)". If you are curious, the code implementing that
is in metarender.ServiceInfoRenderer and looks like this:

def render_title(self, ctx, data):
return ctx.tag["Information on Service ’%s’"%

base.getMetaText(self.service, "title")]

Below is a list of the more Common Render and Data Functions.
The other magic thing is the n:invisible. As said above, that tag doesn’t turn up in
the result DOM, it’s just there so we can call the commonhead nevow renderer. It pulls
in all the common CSS and javascript declarations all (or most) DaCHS HTML pages
want.
So: Nevow renderers essentially are just python functions putting things into tags.
The next magic thing is:

<body n:render="withsidebar">

Again, this is asks to pull in a whole lot of elements, this time from a template (you
probably guessed that it is sidebar.html), except that this renderer does not discard chil-
dren present in the template but adds them in a div. Perhaps the implementation helps
here (don’t sweat the details at this point; the code is in web.grend.GavoRenderMixin):
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def render_withsidebar(self, ctx, data):
oldChildren = ctx.tag.children
ctx.tag.children = []
return ctx.tag(class_="container")[

self._sidebar,
T.div(id="body")[

T.a(name="body"),
oldChildren

]]

(where self._sidebar contains a parse of the sidebar template).
Going on, you’ll see:

<div class="useservice" n:data="browserURL" n:render="ifdata">

This is the first example for n:data. What happens here is that I put a thing into the
render context, the browserURL. Again, that’s mapped to a python function, which again
comes from web.metarender.ServiceInfoRenderer. It looks like this:

def data_browserURL(self, ctx, data):
return self.service.getBrowserURL()

– where the method returns a URL suitable for a web browser, or None if the service
doesn’t have a renderer for which a browser will display something useful (e.g., a service
only having an ssap.xml renderer). This last part is used in the n:render="ifdata". This
nevow renderer (if you’re curious, it’s in web.grend and thus available on all DaCHS
renderers) will return an empty string if the context object evaluates to false, while
otherwise returning the tree below it.
The net effect of this construct is that the "Use this service in your browser" button
that is generated in what’s below will only be shown if the service actualy is usable in a
web browser.
The image is put in literally, but the link it points to has to be taken from the context
object (the browserURL). To get it into the attribute, nevow uses a trick you may know
from XSLT:

<a>
<n:attr name="href" n:render="string"/>
<img src="/static/img/usesvcbutton.png" class="silentlink"

alt="[Use this service from your browser]"/>
</a>

Essentially, there’s an element, n:attr, that, when rendered, will end up as an attribute
on the embedding element (the a). The name of that attribute is taken from the name

attribute of n:attr, i.e., href in this case. The value of that attribute can be rendered in
an arbitrary way, but in this case, I’m just using the string renderer (provided by nevow
itself), which takes the context object, stringifies it and dumps it into the DOM tree.
Had I written:

<a>
<n:attr name="href">http://foo.bar/baz</n:attr>
a link

</a>
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the result would have been:

<a href="http://foo.bar/baz">a link</a>

– while introducing constants in this way doesn’t make much sense, it might be useful
if, for instance, the context object were a relative link, in which case you could have
written:

<a>
<n:attr name="href">http://foo.bar/baz<n:invisible

n:render="string"/></n:attr>
a link

</a>

If this seems spooky to you, play around with it for a moment – it’s really not as hard
as it might seem.
What follows in serviceinfo.html is just more of the same, with some additional nevow
renderers explained below. The next new thing – and the last major concept to under-
stand for nevew renderering – is this:

<ul n:data="rendAvail" n:render="sequence">
<li n:render="mapping" n:pattern="item">

<em><n:slot name="rendName"/></em> --
<n:slot name="rendExpl"/></li>

</ul>

Let’s take this step by step. First, we put something into the context object: rendAvail.
This is again taken from the DaCHS renderer (still the ServiceInfoRenderer), which
reads:

def data_rendAvail(self, ctx, data):
return [{"rendName": rend,

"rendExpl": RendExplainer.explain(rend, self.service)}
for rend in self.service.allowed]

RendExplainer.explain is a function returning DOM fragments explaining what a renderer
does, with embedded links and similar as necessary. So, what comes back is a structure
looking like this:

[
{"rendName": "form", "rendExpl": "This is browseable"},
{"rendName": "scs.xml", "rendExpl": "This is not browseable"}]

-- a sequence of mappings.
Such sequences you can renderer using the nevow-provided sequence nevow renderer.
This renderer looks for an element that has n:pattern="sequence" in the DOM tree
below it, and renders one copy of of that each for each element of the context object
(which must be a sequence) with, and that’s the brilliant part, the context object set to
that object. You may want to read that sentence again...
So, with example sequene above the:

<li n:render="mapping" n:pattern="item">
<em><n:slot name="rendName"/></em> --

<n:slot name="rendExpl"/></li>
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in the body of the ul element will be rendered twice, first with:

{"rendName": "form", "rendExpl": "This is browseable"}

as the context object and then with:

{"rendName": "scs.xml", "rendExpl": "This is not browseable"}]

These are mappings in python lingo, and so it may not surprise you that to make
something sensible of that, nevow provides a mapping nevow renderer. It’s a bit like
sequence in that it inspects the tree below it. Unlike it, it doesn’t look for item patterns
but for n:slot, which has a name attribute – the element is then replaced by the value
of the named key in the mapping.
One last new thing is a bit further down:

<n:invisible n:render="ifmeta rights">
<h2>Copyright, License, Acknowledgements</h2>
<p n:render="metahtml">rights</p>

</n:invisible>

Here, the render attribute contains a blank. Nevow interprets that as a parameterised
renderer; in effect, the parameter(s) are passed to the renderer. It probably helps to see
how this is implemented:

def render_ifmeta(self, metaName):
if self.getMeta(metaName) is not None:

return lambda ctx, data: ctx.tag
else:

return lambda ctx, data: ""

Anyway, parameterised nevow renderers need this extra argument, and you’ll get weird
errors if you don’t provide it.
And that’s almost all you need to know about nevow’s templating language, except
for what additional render and data functions there are. The more useful of which are
covered in the next chapter.
Common Render and Data Functions
In DaCHS templates, nevow renderers can come from nevow itself, the active renderer
(that’s usually form for templates or a variety thereof), or the active service element in
the RD (customRF and customDF for nevow renderers and data functions). Unfortunately,
we’ve added nevow renderers and data functions in a somewhat ad-hoc fashion, and so
they’re not really documented terribly well.
Until we get to imporve that, here’s an overview of the nevow renderers (and data
functions) we believe are most useful in practice.

string: (from nevow) takes the unicode of a context object and places that
in the DOM

sequence: (from nevow) iterates over the context object, rendering item

patterns in its subtree once per item.
mapping: (from nevow) fills n:slot elements in its subtree with values from

its (dict) context object, taking the slot’s name attributes as keys
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meta (data function): (from GavoRenderMixin) puts the named item
from the current meta parent (usually, the service) into the context
object. This could look like this:

<p n:data="meta creationDate" n:render="ifdata">
<n:span class="date" n:render="string"/></p>

(you don’t usally need this, prefer the meta render function)
meta: (from GavoRenderMixin) renders the meta item named in the text

content as text.
metahtml: (from GavoRenderMixin) renders the meta item named in the

text content as HTML; this automatically handles meta sequences and
several special cases, so it’s the preferred way of including metadata in
templates.

rootlink: (from GavoRenderMixin) this was intended for running DaCHS
"off-root" (i.e., as if in a subdirectory of the server). Since that’s not
how DaCHS was deployed in practice, it’s not used consistently, so
there’s no point in using it right now.

getconfig: (from GavoRenderMixin) takes a config key from its content and
renders it as the value of this configuration item, e.g.:

Finish up in
<span n:render="getconfig">[async]defaultExecTime</span> seconds

If you leave out the section, [general] is assumed as usual.
ifmeta: (from GavoRenderMixin) a parameterised renderer, i.e. used like

this:
<p n:render="ifmeta coverage"><stuff/></p>

With this, stuff is rendered if a coverage meta item is present in the
service.

ifownmeta: (from GavoRenderMixin) like ifmeta, except meta items are not
inherited (e.g., title, which service typically gets from the embedding
resource)

ifdata: (from GavoRenderMixin) only renders the embedded subtree if the
context object evaluates to True

ifnodata: (from GavoRenderMixin) only renders the embedded subtree if
the context object evaluates to False

ifslot: (from GavoRenderMixin) a parameterised renderer. It only renders
the embedded subtree (usually a slot) if the named key exists in the
context object (which must be a dict-like thing)

ifnoslot: (from GavoRenderMixin) the reverse of ifslot.
ifadmin: (from GavoRenderMixin) renders the embedded subtree if there is

a logged user and that user is gavoadmin.
explodableMeta: (from GavoRenderMixin) used in the sidebar – see there

for what it does.
authinfo: (from GavoRenderMixin) returns material letting an anonymous

user log in or a logged in user log out.
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prependsite: (from GavoRenderMixin) for templates intended to be shared
between sites, this prepends the current site’s short name (config item
[web]sitename) to the element content.

withsidebar: (from GavoRenderMixin) used on the body element, adds the
standard DaCHS sidebar to a page.

resulttable: (from HTMLResultRenderMixin) renders an HTML table out
of a result context object (this is what draws the table on default
HTML results)

resultline: (from HTMLResultRenderMixin) renders the first line of the re-
sult table in a key-value manner (this is sometimes used with the qp
renderer)

parpair: (from HTMLResultRenderMixin) expects a (key, value) pair in the
context and renders it as key:value in the current tag (this is used to
render the current parameters; to avoid showing lots of non-informative
lines, this will render nothing if value is None.

ifresult: (from HTMLResultRenderMixin) swallows the child tree if no result
is available

ifnoresult: (from HTMLResultRenderMixin) renders its content only if a
result table is available but contains no rows.

result: (from HTMLResultRenderMixin) a data function putting the current
result into the context. If no result is available (e.g., because no query
has been sent), None will be put into the context data.

queryseq: (from HTMLResultRenderMixin) a data function putting a se-
quence of (key, value) query parameters into the context data.

param: (from HTMLResultRenderMixin) a parameterised renderer that
takes a python format string and formats the value of the param named
in the content with it, for instance:

<span n:render="param %5.2f">rv</span>

resultmeta: (from service.SvcResult) a data function on results (i.e., this
must be in an element with n:data="result") putting a dictionary with
at least the key itemsMatched into the context.

inputRec: (from service.SvcResult) a data function on results (i.e., this
must be in an element with n:data="result") putting a the parameters
dictionary of the inputs table (typcially, the input parameters) into the
context.

table: (from service.SvcResult) a data function on results (i.e., this must
be in an element with n:data="result") putting a the result’s primary
table into the context

Overriding the Default Response Template
Sometimes you want to change something in the appearance of a service that cannot be
done with either service/@customCSS or the tricks described in How do I add an image
to a query form?. You will then need to override the defaultresponse template. As an
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example, you can refer to apfs/res/apfs_new RD; it has a custom template sitting next
to the RD as response.template, which is declared as a custom service template in the
service element via:

<template key="response">res/response.template</template>

(the path is relative to the RD’s resdir).
What we wanted to do here is change then title depending on input parameters (some-
times it’s "apparent places", sometimes "intermediate places", and I also wanted to have
a warning if users chose a non-single star for the ephemeris generated, as that is probably
inaccurate.
A word of warning: Do not introduce a custom template lightly. We do change
defaultresponse.html occasionally, and you should probably follow these changes in your
templates. So, before you do a custom, service-specific template, ask on the dachs-
support mailing list if someone knows a smarter solution to your problem.
In the APFS case, what made us use a custom template is teh varying title; that’s really
hard to do in some other way because the title is service metadata, and the service
is persistent within DaCHS, possibly even used concurrently by concurrent requests.
Manipulating its metadata per-request is therefore a bad idea.
So, what did we do? First, get the default response template to have something to start
with. We recommend to put it into a subdirectory /res, so assuming you are in the RD’s
resdir, you’d do:

$ mkdir -p res
$ gavo admin dumpDF templates/defaultresponse.html > res/response.html

That done, you can place the template declaration above into the service definition and
start changing the template. Changes should be immediately visible on reload.
To give you an impression of the interplay between the template and the RD, here
is a closer look at the apfs/res/apfs_new RD and the associated template at https:
//svn.ari.uni-heidelberg.de/svn/gavo/hdinputs/apfs/res/response.html There, we first
had to add a custom render function rendering the title to the service:

<customRF name="apfsTitle">
# wants n:data="result"
if data.queryMeta.get("columnSet")==set(["equ"]):

denom = "Apparent Places"
elif data.queryMeta.get("columnSet")==set(["equ", "cio"]):

denom = "Apparent and Intermediate Places"
else:

denom = "Intermediate Places"
star = str(data.inputTable.getMeta("forStar"))
return ctx.tag[denom+" for star \catname "+star]

</customRF>

We’re getting a parameter from queryMeta here, an ugly piece of misdesign keeping lots
of information on the request. Before you repeat that stunt, ask on dachs-support,
because there are most certainly better ways do do that. The remaining part is a fairly
straightforward nevow renderer, perhaps except for the call of the catname macro, which
is here because in this particular case the render function is used by two services and
we’ve put it into a STREAM to allow reuse.
In comparison, the necessary changes in response.template are minor:
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<h1 n:render="apfsTitle"/>

is all that’s needed. The template goes on saying:

<p n:data="inputRec" n:render="mapping">
ICRS position is &alpha;=<n:slot name="alpha"/>,
&delta;=<n:slot name="delta"/>.

</p>

This displays the position of the star for which the ephemeris is computed for. We do
this here because the input to this service is something like a catalog number, and alpha
and delta are actually computed by the service’s input data descriptor.
Finally, when the result is in context, we do:

<p style="border:2px solid red; max-width:400px; padding:5pt"
n:render="multiplicityWarning"/>

We would do this today by attaching a _warning meta item on the result, but since that
was not available when we wrote the RD, we added a custom render function like this:

<customRF name="multiplicityWarning">
# wants n:data="result"
if data.inputTable.getMeta("multiple"):

return ctx.tag["Warning: This star"
" is identified by Hipparcos as being a ",
T.strong["multiple star."],
" This means that proper motions given in the Hipparcos"
" catalogue are unreliable when applied to extended periods"
" of time. Thus, the places given below will be severely"
" wrong unless the orbital period of the object is sufficiently"
" long (i.e., hundreds of years)."]

return ""
</customRF>

The multiple meta is put to the table further up in the computation. Note how we leave
as much as possible to the template; for instance, the style is set there rather in the
render function.

Custom Template, Custom Core
For exotic, custom services you can combine a custom template with a python (or
custom) core. Here is a stripped-down example to get you started; if you want to run
this, you will have to install pyephem (if you port this to astropy and share your port
with us, you’ll receive good Karma).
First, the RD; the thing to watch out for is the creation of the output table, getting the
input params, and setting the output params. Note that you’d normally generate table
rows, which would be dicts added through addRow:

<resource schema="neptune">
<!-- Metadata omitted. Thou shalt not do this. -->
<service id="s">

<template key="response">response.html</template>
<pythonCore>
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<inputTable>
<inputKey name="for_date" type="timestamp"

tablehead="Date"
description="Date to compute ephemeris for">
<property key="defaultForForm">1969-06-04</property>

</inputKey>
<inputKey name="lat" unit="deg" tablehead="Latitude">

<property key="defaultForForm">49.4294</property>
</inputKey>
<inputKey name="long" unit="deg" tablehead="Longitude">

<property key="defaultForForm">11.00417</property>
</inputKey>

</inputTable>

<outputTable>
<param name="next_rising" type="timestamp"/>
<param name="next_setting" type="timestamp"/>

</outputTable>

<coreProc>
<setup>

<code>
import ephem

</code>
</setup>
<code>

res = rsc.TableForDef(self.outputTable)
n = ephem.Neptune(inputTable.getParam("for_date"))
obs = ephem.Observer()
obs.lat = inputTable.getParam("lat")*DEG
obs.long = inputTable.getParam("long")*DEG
obs.date = inputTable.getParam("for_date")
res.setParam("next_rising", obs.next_rising(n).datetime())
res.setParam("next_setting", obs.next_setting(n).datetime())
return res

</code>
</coreProc>

</pythonCore>
</service>

</resource>

And here’s the template:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:n="http://nevow.com/ns/nevow/0.1">

<head n:render="commonhead">
<title>Nepune rising (and setting)</title>
<style type="text/css">

.horizontime {
font-size: 300%;
color: #ff6688;
font-family: fantasy;
white-space: nowrap;

}
</style>
</head>
<body n:data="result">

<p style="text-align:center">
Neptune rising:
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<span class="horizontime" n:render="param %s">next_rising</span>
</p>
<p style="text-align:center">

Neptune setting:
<span class="horizontime" n:render="param %s">next_setting</span>

</p>
<n:invisible n:render="form genForm"/>

</body>
</html>

Suggested exercise: write two renderers such that you can write:

<span class="horizontime" n:render="rising_time"/>

and get the rising time formatted the way you want it. If you get stuck, ask back, and
we’ll provide a solution and a new exercise.

1One reason not to declare a DTD is that careless clients other than web browsers (on system with
misconfigured system catalogs) might stumble across such a page and try do download the DTD; the
W3C was so pissed with clients doing that that they are now severely slowing them down by delaying
delivery of the DTDs, which sometimes leads to surprising client behaviour.

14


	Contents
	DaCHS's System Templates
	Overriding System Templates
	Templates Commonly Used
	The Root Template

	The Templating Language
	In-Python Stan
	Template Language Example
	Common Render and Data Functions

	Overriding the Default Response Template
	Custom Template, Custom Core

