
International
Virtual
Observatory

Alliance

IVOA Registry Relational Schema

Version 1.2

IVOA Proposed Recommendation 2024-02-27

Working Group
Registry

This version
https://www.ivoa.net/documents/RegTAP/20240227

Latest version
https://www.ivoa.net/documents/RegTAP

Previous versions
PR-1.2-20240124
WD-1.2-20220519
REC-1.1
PR-20190911
PR-20190529
PR-20190326
PR-20180731
WD-20171206
REC-1.0

Author(s)
Markus Demleitner, Paul Harrison, Marco Molinaro, Gretchen
Greene, Theresa Dower, Menelaos Perdikeas

Editor(s)
Markus Demleitner

Version Control
Revision efdd0fd, 2024-03-04 18:44:12 +0100

https://www.ivoa.net/documents/RegTAP/20240227
https://www.ivoa.net/documents/RegTAP
https://www.ivoa.net/documents/RegTAP/20240124
https://www.ivoa.net/documents/RegTAP/20220519
https://ivoa.net/documents/RegTAP/20191011
https://ivoa.net/documents/RegTAP/20190911
https://ivoa.net/documents/RegTAP/20190529
https://ivoa.net/documents/RegTAP/20190326
https://ivoa.net/documents/RegTAP/20180731
https://ivoa.net/documents/RegTAP/20171206
https://ivoa.net/documents/RegTAP/20141208
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarkusDemleitner
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/PaulHarrison
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarcoMolinaro
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/GretchenGreene
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/GretchenGreene
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/TheresaDower
http://wiki.ivoa.net/twiki/bin/view/IVOA/MenelaosPerdikeas

Abstract
Registries provide a mechanism with which VO applications can discover

and select resources – first and foremost data and services – that are relevant
for a particular scientific problem. This specification defines an interface for
searching this resource metadata based on the IVOA’s TAP protocol. It
specifies a set of tables that comprise a useful subset of the information
contained in the registry records, as well as the table’s data content in terms
of the XML VOResource data model. The general design of the system is
geared towards allowing easy authoring of queries.

Status of this document
This is an IVOA Proposed Recommendation made available for public

review. It is appropriate to reference this document only as a recommended
standard that is under review and which may be changed before it is accepted
as a full Recommendation.

A list of current IVOA Recommendations and other technical documents
can be found at https://www.ivoa.net/documents/.

Contents

1 Introduction 4
1.1 Terminology and Syntactic Conventions 5
1.2 The Relational Registry within the VO Architecture 6

2 Design Considerations 7

3 Primary Keys 8

4 Notes on string handling 9
4.1 Whitespace Normalization 9
4.2 NULL/Empty String Normalization 9
4.3 Case Normalization . 10
4.4 Non-ASCII Characters . 10
4.5 Vocabulary considerations 11

5 QNames in VOResource attributes 12

6 Xpaths 12

7 Discovering Relational Registries 14

2

https://www.ivoa.net/documents/

8 RegTAP Tables 15
8.1 The resource Table . 16
8.2 The res_role Table . 21
8.3 The res_subject Table . 22
8.4 The capability Table . 23
8.5 The res_schema Table . 23
8.6 The res_table Table . 24
8.7 The table_column Table 25
8.8 The interface Table . 28
8.9 The intf_param Table . 31
8.10 The relationship Table . 32
8.11 The validation Table . 32
8.12 The res_date Table . 33
8.13 The res_detail Table . 34
8.14 The alt_identifier Table . 35
8.15 The stc_spatial Table . 35
8.16 The stc_temporal Table . 36
8.17 The stc_spectral Table . 37
8.18 The tap_table View . 37

9 RegTAP Requirements on TAP services 38
9.1 ADQL Optional Features Required for RegTAP 39
9.2 User Defined Functions Required for RegTAP 39

10 Common Queries to the Relational Registry 40
10.1 TAP accessURLs . 41
10.2 Image Services with Spirals 41
10.3 Infrared Image Services . 42
10.4 Catalogs with Redshifts . 42
10.5 Names from an Authority 43
10.6 Records Published by X . 43
10.7 Records from Registry . 43
10.8 Locate RegTAP services . 44
10.9 TAP with Physics . 44
10.10 Theoretical SSA . 45
10.11 Find Contact Persons . 45
10.12 Related Capabilities . 45
10.13 Constraints on Space, Time, and Spectrum 46

A XPaths for res_detail 47

B The Extra UDFs in PL/pgSQL 52

3

C A View Definition for tap_tables (non-normative) 53

D Changes from Previous Versions 54
D.1 Changes from PR-1.2-20240124 54
D.2 Changes from WD-1.2-20220519 54
D.3 Changes from REC-1.1 . 54
D.4 Changes from REC-1.0 . 55
D.5 Changes from PR-2014-10-30 56
D.6 Changes from PR-20140627 56
D.7 Changes from PR-20140227 56
D.8 Changes from WD-20131203 57
D.9 Changes from WD-20130909 57
D.10 Changes from WD-20130411 57
D.11 Changes from WD-20130305 58
D.12 Changes from WD-20121112 58

References 59

1 Introduction

In the Virtual Observatory (VO), registries provide a means for discover-
ing useful resources, i.e., data and services. Individual publishers offer the
descriptions for their resources (“resource records”) in publishing registries.
At the time of writing, there are roughly 20000 such resource records active
within the VO, originating from about 40 publishing registries.

The protocol spoken by these publishing registries, OAI-PMH (Lagoze
and de Sompel et al., 2002), only allows restricting queries by modification
date and identifier and is hence not suitable for data discovery. Even if it
were, data discovery would at least be fairly time consuming if each client
had to query dozens or, potentially, hundreds of publishing registries.

To enable efficient data discovery nevertheless, there are services (“search-
able registries”) harvesting the resource records from the publishing registries
and offering rich query facilities to Registry clients. Version 1.0 of the IVOA
Registry Interfaces specification (Benson and Plante et al., 2009) defined,
among other aspects of the VO registry system, a standard interface for
such services. Built on SOAP and an early draft of an XML-based query
language, this first attempt was quickly obsoleted by parallel developments
in the VO. It was then decided to have searchable registries specified outside
of Registry Interfaces.

This document provides one such specification, based in particular on
TAP (Dowler and Rixon et al., 2010) and ADQL (Mantelet and Morris
et al., 2023). It follows the model of ObsCore (Louys and Tody et al., 2017)

4

of defining a representation of a data model within a relational database.
In this case, the data model is a simplification of the VO’s resource meta-
data interchange representation, the VOResource XML format (Plante and
Demleitner et al., 2018). The simplification yields a schema with 14 tables.
For each table, TAP_SCHEMA metadata is given together with rules for how
to fill these tables from VOResource-serialized metadata records as well as
conditions on foreign keys and recommendations on indexes.

The resulting set of tables has a modest size by today’s standards, but is
still non-trivial. The largest table, table_column, has about a million rows
at the time of writing.

The architecture laid out here allows client applications to perform
“canned” queries on behalf of their users as well as complex queries formu-
lated directly by advanced users, using the same TAP clients they employ
to query astronomical data servers.

1.1 Terminology and Syntactic Conventions

The set of tables and their metadata specified here, together with the map-
ping from VOResource (“ingestion rules”) is collectively called “relational
registry schema” or “relational registry” for short, with a standard schema
name of rr.

The specificiation additionally talks about how to embed these into TAP
services, gives additional user defined functions, talks about discovering com-
pliant services, etc. Since all this is tightly coupled to the “relational registry”
as defined above, we do not introduce a new term for it. Hence, the entire
standard is now known as “IVOA registry relational schema”.

Historically, we intended to follow the ObsCore/ObsTAP model and
talked about RegTAP. As changing this acronym is technically painful (e.g.,
identifiers and URLs would need to be adapted), we kept it even after the
distinction between the schema and its mapping on the one hand and its
combination with a TAP service on the other went away. This means that
the official acronym for “IVOA registry relational schema” is RegTAP. This
aesthetic defect seems preferable to causing actual incompatibilities.

Since RegTAP mentions concepts from several different but related do-
mains, we try to give typographic hints as to the nature of entities discussed:

• Names of tables, columns, and functions of the relational registry are
written in green typewriter.

• Names coming from generic TAP are written in brown typewriter.

• VOResource concepts are written in caps and small caps (where
small caps correspond to lowercase letters in element names of the
XML serialisation).

5

• XML literals (like tag, attribute or XSD type names or special values)
are written in cursive typewriter.

1.2 The Relational Registry within the VO Architecture

Users Computers

Providers

R
eg

is
tr

y
D

ata A
ccess P

ro
to

co
ls

User Layer

Using

Resource Layer

Sharing

VO

Core

F
in

di
ng

G
etting

Desktop Apps

In-Browser
Apps

User
Programs

Data and Metadata Collection
Storage Computation

Semantics
Data

Models

VO Query
Languages

Formats

VOResource

RegTAP

TAPRegExt

VODataService

StandardsRE

SimpleDALRE

Identifiers

ADQL

TAP

MOC

Figure 1: IVOA Architecture diagram with the IVOA Registry Relational
Specification (shown as “RegTAP”) and the related standards.

This specification directly relates to other VO standards in the following
ways:

VOResource, v1.1 (Plante and Demleitner et al., 2018)
This standard sets the foundation for a formal definition of the data
model for resource records via its schema definition. This document
refers to concepts laid down there via xpaths (Clark and DeRose,
1999). RegTAP 1.1 incorporates the concepts from VOResource
1.1 but can represent VOResource 1.0 instances (within the limits
laid out below) as well.

VODataService, v1.2 (Demleitner and Plante et al., 2021)
VODataService describes several concepts and resource types ex-
tending VOResource’s data model, including tablesets, data ser-
vices and data collections. These concepts and types are reflected

6

in the database schema. Again xpaths link this specification and
VODataService.

Other Registry Extensions
Registry extensions are VO standards defining how particular re-
sources (e.g., Standards) or capabilities (e.g., IVOA defined inter-
faces) are described. Most aspects introduced by them are reflected
in the res_detail table using xpaths into the registry documents.
The present standard should not in general need updates for reg-
istry extension updates. For completeness, we note the versions
current as of this specification: SimpleDALRegExt 1.1 (Plante and
Demleitner et al., 2017), StandardsRegExt 1.0 (Harrison and Burke
et al., 2012), TAPRegExt 1.0 (Demleitner and Dowler et al., 2012),
Registry Interfaces 1.1 (Dower and Demleitner et al., 2018)

TAP, v1.0 (Dowler and Rixon et al., 2010)
The queries against the schema defined in the present document,
and the results of these queries, will usually be transported us-
ing the Table Access Protocol TAP. It also allows discovering local
additions to the registry relations via TAP’s metadata publishing
mechanisms.

IVOA Identifiers, v2.0 (Demleitner and Plante et al., 2016)
IVOA identifiers are essentially the primary keys within the VO
registry; as such, they are actual primary keys of the central table
of the relational registry. Also, the notion of an authority as laid
down in IVOA Identifiers plays an important role as publishing
registries can be viewed as a realization of a set of authorities.

This standard also relates to other IVOA standards:

ADQL (Mantelet and Morris et al., 2023) The rules for ingestion are de-
signed to allow easy queries given the constraints of the IVOA As-
tronomical Data Query Language. Also, we give some functions that
extend ADQL using the language’s built-in facility for user-defined
functions.

2 Design Considerations

In the design of the tables, the goal has been to preserve as much of VORe-
source and its extensions, including the element names, as possible.

An overriding consideration has been, however, to make natural joins
between the tables behave usefully, i.e., to actually combine rows relevant to
the same entity (resource, table, capability, etc.). To disambiguate column
names that name the same concept on different entities (name, description,
etc.) and would therefore interfere with the natural join, a shortened tag for

7

the source object is prepended to the name. Thus, a description element
within a resource ends up in a column named res_description, whereas
the same element from a capability becomes cap_description.

We further renamed some columns and most tables with respect to their
VOResource counterparts to avoid clashes with reserved words in popular
database management systems. The alternatives would have been to either
recommend quoting them or burden ADQL translation layers with the task
of automatically converting them to delimited identifiers. Both alternatives
seemed more confusing and less robust than the renaming proposed here.

Furthermore, camel-case identifiers have been converted to underscore-
separated ones (thus, standardID becomes standard_id) to have all-
lowercase column names; this saves potential headache if users choose to
reference the columns using SQL delimited identifiers. Dashes in VORe-
source attribute names are converted to underscores, too, with the exception
of ivo-id, which is just rendered ivoid.

Another design goal of this specification has been that different registries
operating on the same set of registry records will return identical responses
for most queries; hence, we try to avoid relying on features left not defined by
ADQL (e.g., the case sensitivity of string matches). However, with a view
to non-uniform support for information retrieval-type queries in database
systems, the ivo_hasword user defined function is not fully specified here;
queries employing it may yield different results on different implementations,
even if they operate on the same set of resource records.

3 Primary Keys

The primary key in the Registry as an abstract concept is a resource record’s
IVOID. Hence, for all tables having primary keys at all, the ivoid column is
part of its primary key. This specification does not require implementations
to actually declare primary keys in the underlying database, and no aspect of
user-visible behavior depends on such explicit declarations; in particular, this
specification makes no requirements on the contents of tap_schema.keys.

We nevertheless make recommendations on explicit primary keys, as we
expect definitions according to our recommendations will enhance robustness
of services.

In several RegTAP tables – capability, res_schema, res_table, and
interface – artificial primary keys are necessary, as in VOResource XML
sibling elements are not otherwise distinguished. To allow such artificial
primary keys, a column is added to each table, the name of which ends in
_index (cap_index, schema_index, table_index, and intf_index).

The type and content of these X_index columns is implementation-
defined, and clients must not make assumptions on their content except that
the pair ivoid, X_index is a primary key for the relation (plus, of course,

8

that references from other tables correctly resolve). In the tables of columns
given below, the X_index columns have “(key)” given for type. Implemen-
tors have to insert whatever ADQL type is appropriate for their choice or
X_index implementation.

Obvious implementations for X_index include having X_index enumerate
the sibling elements or using some sort of UUID.

4 Notes on string handling

In the interest of consistent behavior between different RegTAP implemen-
tations regardless of their technology choices, this section establishes some
rules on the treatment of strings – both those obtained from attributes and
those obtained from element content – during ingestion from VOResource
XML to database tables.

4.1 Whitespace Normalization

Most string-valued items in VOResource and extensions are of type xs:to-
ken, with the clear intent that whitespace in them is to be normalized in
the sense of XML schema. For the few exceptions that actually are directly
derived from xs:string (e.g., vstd:EndorsedVersion, vs:Waveband) it
does not appear that the intent regarding whitespace is different.

In order to provide reliable querying and simple rules for ingestors even
when these do not employ schema-aware XML parsers, this standard re-
quires that during ingestion, leading and trailing whitespace MUST be re-
moved from all strings; in particular, there are no strings consisting exclu-
sively of whitespace in RegTAP. The treatment of internal whitespace is
implementation-defined. This reflects the expectation that, wherever multi-
word items are queried, whitespace-ignoring constraints will be used (e.g.,
LIKE-based regular expressions or the ivo_hasword user defined function
defined below).

4.2 NULL/Empty String Normalization

While empty strings and NULL values are not usually well distinguished in
VO practice – as reflected in the conventional TABLEDATA and BINARY
serializations of VOTable – , the distinction must be strictly maintained in
the database tables to ensure reproduceable queries across different RegTAP
implementations.

Ingestors therefore MUST turn empty strings (which, by section 4.1,
include strings consisting of whitespace only in VOResource’s XML serial-
ization) into NULL values in the database. Clients expressing constraints

9

on the presence (or absence) of some information must therefore do so using
SQL’s IS NOT NULL (or IS NULL) operators.

4.3 Case Normalization

ADQL 2.0 has no operators for case-insensitive matching of strings. Mainly
for this reason, RegTAP 1.0 required that most columns containing values
not usually intended for display to be converted to lower case on ingestion.
This also somewhat reduces the likelihood that matches are missed because
of different capitalisation, since queries disregarding capitalisation variations
will yield empty (rather than partial) results.

In the table descriptions below, there are explicit requirements on case
normalization near the end of each section. This is particularly important
when the entities to be compared are defined to be case-insensitive (e.g.,
UCDs, IVOIDs). Client software that can inspect user-provided arguments
(e.g., when filling template queries) should also convert the respective fields
to lower case.

This conversion MUST cover all ASCII letters, i.e., A through Z. The
conversion SHOULD take place according to algorithm R2 in section 3.13,
“Default Case Algorithms” of the Unicode Standard (The Unicode Consor-
tium, 2012). In practice, non-ASCII characters are not expected to occur in
columns for which lowercasing is required.

Analogously, case-insensitive comparisons as required by some of the
user-defined functions for the relational registry MUST compare the ASCII
letters without regard for case. They SHOULD compare according to D144
in the Unicode Standard.

Columns intended for presentation are not case-normalised. When
matching against these, queries should use case-insensitive matching, for
which this specification offers the ivo_nocasematch user defined function.
ADQL 2.1 has an ILIKE operator, which may be used instead.

4.4 Non-ASCII Characters

Neither TAP nor ADQL mention non-ASCII in service parameters – in par-
ticular the queries – or returned values. For RegTAP, that is unfortunate,
as several columns will contain relevant non-ASCII characters. Columns
for which extra care is necessary include all descriptions, res_title and
creator_seq in rr.resource, as well as role_name and street_address in
rr.res_role.

RegTAP implementations SHOULD be able to faithfully represent all
characters defined in the latest version of the Unicode standard (The Unicode
Consortium, 2012) at any given time and allow querying using them (having
support for UTF-8 in the database should cover this requirement) for at least
the fields mentioned above.

10

On VOResource ingestion, non-ASCII characters that a service cannot
faithfully store MUST be replaced by a question mark character (“?”).

RegTAP services MUST interpret incoming ADQL as encoded in UTF-8,
again replacing unsupported characters with question marks.

We leave character replacement on result generation unspecified, as best-
effort representations (e.g., “Angstrom” instead of “Ångström”) should not
impact interoperability but significantly improve user experience over consis-
tent downgrading. In VOTable output, implementations SHOULD support
full Unicode in at least the fields enumerated above. Clients are advised to
retrieve results in VOTable or other encoding-aware formats.

Note that with VOTable 1.3, non-ASCII in char-typed fields, while sup-
ported by most clients in TABLEDATA serialization, is technically illegal;
it is essentially undefined in other serializations. To produce standards-
compliant VOTables, columns containing non-ASCII must be of type uni-
codeChar. We expect that future versions of VOTable will change the def-
initions of char and unicodeChar to better match modern standards and
requirements. RegTAP implementors are encouraged to take these up.

4.5 Vocabulary considerations

Since version 1.1, VOResource employs RDF vocabularies to control terms
used in several places; in version 1.2, this concerns content/con-
tentLevel, content/type, content/subject, date/role, con-
tent/relationship/relationshipType. These vocabularies are avail-
able from the IVOA vocabulary repository1 as specified by Vocabularies in
the VO, Version 2 (Demleitner and Gray et al., 2023). The relevant vocab-
ulary URIs are given in the VOResource specification and its schema file.

For RegTAP, these vocabulary resources are important because the
VOResource relationship types and date roles contain some deprecated terms
kept for compatibility with VOResource 1.0, together with guidance what
to use instead. In order to simplify the usage of vocabulary-controlled Reg-
TAP columns, services MUST translate such deprecated terms when the vo-
cabularies give replacements (i.e., appear as subjects of ivoasem:useInstead
triples).

Since the vocabularies are expected to develop independently of their
originating standards, RegTAP service operators furthermore SHOULD reg-
ularly revisit IVOA vocabularies to see if further translations should be done.

In VO practice, many resource records still use subject identifiers that are
not taken from the IVOA UAT2. Where only the lexical form of the identifier
is wrong, RegTAP operators are free to correct the syntax; otherwise, subject

1https://www.ivoa.net/rdf
2http://www.ivoa.net/rdf/uat

11

https://www.ivoa.net/rdf

identifiers should be ingested as given by the data providers even if they are
not drawn from the UAT.

5 QNames in VOResource attributes

VOResource and its extensions make use of XML QNames in attribute
values, most prominently in xsi:type. The standard representation of
these QNames in XML instance documents makes use of an abbrevi-
ated notation employing prefixes declared using the xmlns mechanism
as discussed in Bray and Hollander et al. (2009). Within an ADQL-
exposed database, no standard mechanism exists that could provide a
similar mapping of URLs and abbreviations. The correct way to handle
this problem would thus be to have full QNames in the database (e.g.,
{http://www.ivoa.net/xml/ConeSearch/v1.0}ConeSearch for the canon-
ical cs:ConeSearch). This, of course, would make for excessively tedious
and error-prone querying.

For various reasons, VOResource authors have always been encouraged
to use a set of “standard” prefixes. This allows an easy and, to users, un-
surprising exit from the problem of the missing xmlns declarations: For the
representation of QNames within the database, these recommended prefixes
are now mandatory. Future VOResource extensions define their mandatory
prefixes themselves.

As described in the IVOA endorsed Note “XML schema versioning poli-
cies” (Harrison and Demleitner et al., 2018), minor-version updates to XML
schemas do not change the namespace URIs. Before the adoption of that
note, some schemas introduced namespace URIs that did change on minor
versions. For consistency, and because there should not really be discovery
use cases based on minor versions of XML schemas, all namespace URIs for
the same major version of a standard have the same canonical prefix – e.g.,
the schema URIs from both VODataService 1.0 and VODataService 1.1 are
mapped to vs:.

For reference, table 1 lists the XML namespace URIs and their canonical
prefixes for schemata widely used in the VO Registry.

6 Xpaths

This specification piggybacks on top of the well-established VOResource
standard. This means that it does not define a full data model, but rather
something like a reasonably query-friendly view of a partial representation of
one. The link between the actual data model, i.e., VOResource and its exten-
sions as defined by the XML Schema documents, and the fields within this

12

cs http://www.ivoa.net/xml/ConeSearch/v1.0
dc http://purl.org/dc/elements/1.1/
oai http://www.openarchives.org/OAI/2.0/
ri http://www.ivoa.net/xml/RegistryInterface/v1.0
sia http://www.ivoa.net/xml/SIA/v1.0
sia http://www.ivoa.net/xml/SIA/v1.1
slap http://www.ivoa.net/xml/SLAP/v1.0
ssap http://www.ivoa.net/xml/SSA/v1.0
ssap http://www.ivoa.net/xml/SSA/v1.1
tr http://www.ivoa.net/xml/TAPRegExt/v1.0
vg http://www.ivoa.net/xml/VORegistry/v1.0
vr http://www.ivoa.net/xml/VOResource/v1.0
vs http://www.ivoa.net/xml/VODataService/v1.0
vs http://www.ivoa.net/xml/VODataService/v1.1
vstd http://www.ivoa.net/xml/StandardsRegExt/v1.0
xsi http://www.w3.org/2001/XMLSchema-instance

Table 1: The canonical prefix mapping in the VO Registry as of the publi-
cation of this specification.

database schema, is provided by xpaths, which are here slightly abbreviated
for both brevity and generality.

All xpaths given in this specification are assumed to be relative to the
enclosing vr:Resource element; these are called “resource xpaths” in the
following. If resource xpaths are to be applied to an OAI-PMH response, the
Xpath expression */*/*/oai:metadata/ri:Resource must be prepended
to it, with the canonical prefixes from section 5 implied. The resource
xpaths themselves largely do not need explicit namespaces since VOResource
elements are by default unqualified. Elements and attributes from non-
VOResource schemata in such resource xpaths have the canonical names-
pace prefixes, which in this specification only applies to several xsi:type
attribute names.

Some tables draw data from several different VOResource elements. For
those, we have introduced an extended syntax with additional metacharac-
ters (,), and |, where the vertical bar denotes an alternative and the paren-
theses grouping. For instance, our notation /(tableset/schema/|)table/
corresponds to the two xpaths /table and /tableset/schema/table.

Within the Virtual Observatory, the link between data models and con-
crete data representations is usually made using utypes. Since VOResource
is directly modelled in XML Schema, the choice of XPath as the bridging
formalism is compelling, though, and utypes themselves are not necessary
for the operation of a TAP service containing the relational registry. TAP,

13

however, offers fields for utypes in its TAP_SCHEMA. Since they are not oth-
erwise required, this specification takes the liberty of using them to denote
the xpaths.

In the metadata for tables and columns below, the utypes given are
obtained from the xpaths by simply prepending them with xpath:. To avoid
repetition, we allow relative xpaths: when the xpath in a column utype does
not start with a slash, it is understood that it must be concatenated with
the table utype to obtain the full xpath.

For illustration, if a table has a utype of

xpath:/capability/interface/

and a column within this table has a utype of

xpath:accessURL/@use,

the resulting resource xpath would come out to be

/capability/interface/accessURL/@use;

to match this in an OAI-PMH response, the XPath would be

//*/oai:metadata/ri:Resource/capability/interface/accessURL/@use.

While clients MUST NOT rely on these utypes in either TAP_SCHEMA or
the metadata delivered with TAP replies, service operators SHOULD provide
them, in particular when there are local extensions to the relational registry
in their services. Giving xpaths for extra columns and tables helps human
interpretation of them at least when the defining schema files are available.

Resource xpaths are also used in the res_detail table (section 8.13).
These are normal xpaths (although again understood relative to the enclosing
Resource element), which, in particular, means that they are case sensitive.
On the other hand, to clients they are simply opaque strings, i.e., clients
cannot just search for any xpaths into VOResource within res_detail.

Non-normatively, we give an XSLT sheet3 producing resource xpaths for
suitable VOResource extensions. It is, however, not fully general, as it will
only notice direct subclasses of VOResource’s Resource, Capability, and
Interface classes. If extensions derive from other extensions’ subclasses of
these classes, the stylesheet would need to be amended.

7 Discovering Relational Registries

The relational registry can be part of any TAP service. The presence of the
tables discussed here is indicated by declaring support for the data model

3https://www.ivoa.net/documents/RegTAP/20240227/makeutypes.xslt

14

https://www.ivoa.net/documents/RegTAP/20240227/makeutypes.xslt

Registry 1.2 with the IVOID

ivo://ivoa.net/std/RegTAP#1.2

in the service’s capabilities as governed by TAPRegExt (Demleitner and
Dowler et al., 2012). Technically, this entails adding

<dataModel ivo-id="ivo://ivoa.net/std/RegTAP#1.2"
>Registry 1.2</dataModel>

as a child of the capability element with the type tr:TableAccess.
A client that knows the access URL of one TAP service containing a

relational registry can thus discover all other services exposing one. The
“Find all TAP endpoints offering the relational registry” example (sect. 10.8)
shows a query that does this.

Services implementing this data model that do not (strive to) offer the
full data content of the VO registry (like domain-specific registries or exper-
imental systems) MUST NOT declare the above data model in order to not
invite clients expecting the VO registry to send queries to it.

Section 5.2 of Registry Interfaces 1.1 additionally requires full RegTAP
services to register a vg:Registry-typed record with a (possibly auxiliary)
TAP capability. This record is being used by the RofR, and it opens up a
migration path to a data-based discovery pattern4.

8 RegTAP Tables

All tables making up the RegTAP schema are in the rr schema. In both
TAP_SCHEMA and the VODataService tableset, the rr schema MUST be as-
sociated with a utype matching the data model identifier given in sect. 7,
i.e.,

ivo://ivoa.net/std/RegTAP#1.2.

In the following table descriptions, the names of tables (cf. Table 2)
and columns are normative and MUST be used as given, and all-lowercase.
The utypes given in the table descriptions are formed as discussed in
section 6 and are subject to the requirements given there. All columns
defined in this document MUST have a 1 in the std column of the
TAP_SCHEMA.table_columns table. Unless otherwise specified, all values of
ucd and unit in TAP_SCHEMA.table_columns are NULL for columns defined
here. Descriptions are not normative (as given, they usually are taken from
the schema files of VOResource and its extensions with slight redaction).

4This would look for schema utypes and appears desirable to enable multiple instances
of a data model within one TAP service; it is expected that the recommended discovery
pattern in RegTAP 1.3 will be updated accordingly.

15

Registry operators MAY provide additional columns in their tables, but they
MUST provide all columns given in this specification.

Many of the columns specified below are defined as having a “string”
data type. This is to be translated into arrays of char or unicodeChar
on VOTable output depending on the service operators’ decisions as to the
representation of non-ASCII data in the database. For requirements and
recommendations regarding national characters in RegTAP, see Sect. 4.4.
The length of these arrays is not defined by this standard, where no artificial
length limits should be imposed by implementations.

Some of the types are given as “datatype+xtype”. In these cases, the
xtype MUST be given in VOTable output, and the serialisation rules from
DALI (Dowler and Demleitner et al., 2017) apply.

All table descriptions start out with brief remarks on the relationship
of the table to the VOResource XML data model. Then, the columns are
described in a selection of TAP_SCHEMA metadata. For each table, recom-
mendations on explicit primary and foreign keys as well as indexed columns
are given, where it is understood that primary and foreign keys are already
indexed in order to allow efficient joins; these parts are not normative, but
operators should ensure decent performance for queries assuming the pres-
ence of the given indexes and relationships. Finally, miscellaneous normative
requirements, typically on case normalization, are given.

8.1 The resource Table

The rr.resource table contains most atomic members of vr:Resource that
have a 1:1 relationship to the resource itself. Members of derived types are,
in general, handled through the res_detail table even if 1:1 (see 8.13).
The content_level, content_type, and waveband members are 1:n but
still appear here. If there are multiple values, they are concatenated with
hash characters (#). Use the ivo_hashlist_has ADQL extension function
to check for the presence of a single value. This convention saves on tables
while not complicating common queries significantly.

In VOResource documents, multiple rights elements are allowed on a
single record. This is mainly for compatiblity with DataCite, and multiple
rights elements are discouraged by the VOResource specification at least
for use within the VO. RegTAP uses that freedom to include rights and
rights_uri columns in rr.resource directly. These columns must be popu-
lated, respectively, with the content and the value of the rightsURI attribute
of the first rights element within a resource record (falling back to NULL).
RegTAP services may provide all rights and rightsURI values through
rr.res_detail (see sect. 8.13).

A local addition is the creator_seq column. It contains all content of
the name elements below a resource element curation child’s creator

16

res schema

· ivoid
· schema description

res table

· table description
· table name
· table utype

table column

· name
· ucd
· unit
· column description
· utype

relationship

· relationship type
· related id

stc temporal

· time start
· time end

res role

· role name
· base role

alt identifier

· alt identifier

resource

· ivoid
· res type
· res title
· updated
· res description
· creator seq
· source value
· waveband

res subject

· ivoid
· res subject

res date

· date value
· date role

stc spatial

· coverage

capability

· standard id
· cap type

validation

· val level
· validated by

res detail

· detail xpath
· detail value

interface

· intf type
· access url

intf param

· name
· ucd
· unit
· param description
· utype

stc spectral

· spectral start
· spectral end

Figure 2: A sketch of the Relational Registry schema. Only the columns
considered most interesting for client use are shown. Arrows indicate foreign
key-like relationships.

children, concatenated with a sequence of semicolon and blank characters
(“; ”). The individual parts must be concatenated preserving the sequence
of the XML elements. The resulting string is primarily intended for display
purposes (“author list”) and is hence not case-normalized. It was added
since the equivalent of an author list is expected to be a metadatum that
is displayed fairly frequently, but also since the sequence of author names
is generally considered significant. The res_role table, on the other hand,
does not allow recovering the input sequence of the rows belonging to one
resource.

The res_type column reflects the lower-cased value of the ri:Resource
element’s xsi:type attribute, where the canonical prefixes (cf. sect. 5) are
used. While custom or experimental VOResource extensions may lead to
more or less arbitrary strings in that column, VOResource and its IVOA-
recommended extensions at the time of writing define the following values
for res_type:

vg:authority A naming authority; as described in the IVOA Identifiers spec-
ification (Demleitner and Plante et al., 2016), these records are used
to guarantee global uniqueness of IVOIDs.

17

Name and UType Description

rr.alt_identifier
xpath:/(curation/creator/|)altIdentifier

An alternate identifier associated with this record.

rr.capability
xpath:/capability/

Pieces of behaviour of a resource.

rr.interface
xpath:/capability/interface/

Information on access modes of a capability.

rr.intf_param
xpath:/capability/interface/param/

Input parameters for services.

rr.relationship
xpath:/content/relationship/

Relationships between resources (like mirroring,
derivation, serving a data collection).

rr.res_date
xpath:/curation/

A date associated with an event in the life cycle of
the resource.

rr.res_detail XPath-value pairs for members of resource or capa-
bility and their derivations that are less used and/or
from VOResource extensions.

rr.res_role Entities (persons or organizations) operating on re-
sources: creators, contacts, publishers, contributors.

rr.res_schema
xpath:/tableset/schema/

Sets of tables related to resources.

rr.res_subject
xpath:/content/

Topics, object types, or other descriptive keywords
about the resource.

rr.res_table
xpath:/(tableset/schema/|)table/

(Relational) tables that are part of schemata or re-
sources.

rr.resource
xpath:/

The resources (like services, data collections, organi-
zations) present in this registry.

rr.stc_spatial
xpath:/coverage/spatial

The spatial coverage of resources.

rr.stc_spectral
xpath:/coverage/spectral

The spectral coverage of resources, given as one or
more intervals.

rr.stc_temporal
xpath:/coverage/temporal

The temporal coverage of resources, given as one or
more intervals.

rr.table_column
xpath:/(tableset/schema/|)/table/column/

Metadata on columns of a resource’s tables.

rr.tap_table TAP-queriable tables.

rr.validation
xpath:/(capability/|)validationLevel

Validation levels for resources and capabilities.

Table 2: The tables making up the TAP data model Registry 1.1

vg:registry A registry. This can be a publishing registry (which have at least
one capability element of type vg:Harvest), or a searchable registry
(like a RegTAP service). See Registry Interfaces 1.1 on how to apply
this resource type.

vr:organisation The main purpose of an organisation as a registered resource

18

is to be referenced by IVOID as a publisher of other resources.

vr:resource Any entity or component of a VO application that is describable
and identifiable by an IVOA identifier; while it is technically possible
to publish such records, the authors of such records should probably
be asked to use a more specific type.

vr:service A resource that can be invoked by a client to perform some action
on its behalf.

vs:catalogservice A service that interacts with one or more specified tables.

vs:catalogresource A resource accessible through collective services (which
would typically be declared through auxiliary capabilities) or non-
IVOA protocols (typical example: A set of tables accessible within
a larger TAP service).

vs:dataservice A service for accessing astronomical data; publishers choosing
this over vs:CatalogService probably intend to communicate that
the resource does not have an intrinsically tabular structure.

vs:dataresource A non-tabular resource accessible through collective services
(which would typically be declared through auxiliary capabilities) or
non-IVOA protocols.

vs:datacollection A resource type intended by VODataService version 1.1
to be used for data-only resources. Data providers should use
vs:CatalogResource or vs:DataResource instead.

vstd:standard A description of a standard specification.

The status attribute of vr:Resource is considered an implementation
detail of the XML serialization and is not reflected here. Neither inactive
nor deleted records may be kept in the resource table. Since all other
tables in the relational registry should keep a foreign key on the ivoid col-
umn, this implies that only metadata on active records is being kept in the
relational registry. In other words, users can expect a resource to exist and
work if they find it in a relational registry.

19

Column names, utypes, datatypes, and descriptions for the rr.resource table

ivoid
xpath:identifier

string Unambiguous reference to the resource conforming to
the IVOA standard for identifiers.

res_type
xpath:@xsi:type

string Resource type (something like vg:authority,
vs:catalogservice, etc).

created
xpath:@created

character[19]
+timestamp

The UTC date and time this resource metadata de-
scription was created.

short_name
xpath:shortName

string A short name or abbreviation given to something, for
presentation in space-constrained fields (up to 16 char-
acters).

res_title
xpath:title

string The full name given to the resource.

updated
xpath:@updated

character[19]
+timestamp

The UTC date this resource metadata description was
last updated.

content_level
xpath:content/contentLevel

string A hash-separated list of content levels specifying the
intended audience.

res_description
xpath:content/description

string An account of the nature of the resource.

reference_url
xpath:content/referenceURL

string URL pointing to a human-readable document describ-
ing this resource.

creator_seq
xpath:curation/creator/name

string The creator(s) of the resource in the order given by the
resource record author, separated by semicolons.

content_type
xpath:content/type

string A hash-separated list of natures or genres of the content
of the resource.

source_format
xpath:content/source/@format

string The format of source_value. This, in particular, can
be “bibcode”.

source_value
xpath:content/source

string A bibliographic reference from which the present re-
source is derived or extracted.

res_version
xpath:curation/version

string Label associated with creation or availablilty of a ver-
sion of a resource.

region_of_regard
xpath:coverage/regionOfRegard

real A single numeric value representing the angle, given in
decimal degrees, by which a positional query against
this resource should be “blurred” in order to get an
appropriate match.

waveband
xpath:coverage/waveband

string A hash-separated list of regions of the electro-magnetic
spectrum that the resource’s spectral coverage overlaps
with.

rights
xpath:/rights

string A statement of usage conditions (license, attribution,
embargo, etc).

rights_uri
xpath:/rights/@rightsURI

string A URI identifying a license the data is made available
under.

This table should have the ivoid column explicitly set as its primary
key.

The following columns MUST be lowercased during ingestion: ivoid,

20

res_type, content_level, content_type, source_format, waveband.
Clients are advised to query the res_description and res_title columns
using the the ivo_hasword function, and to use ivo_hashlist_has on
content_level, content_type, and waveband.

The row for region_of_regard in TAP_SCHEMA.columns MUST have deg
in its unit column.

When querying content_type and content_level, note that resource
record authors should restrict themselves to terms from the vocabularies
at http://ivoa.net/rdf/voresource/content_type and http://ivoa.net/rdf/
voresource/content_level, respectively

The content of incoming content/type and content/level elements
must be normalized according to the rules laid down in sect. 4.5 before further
processing.

8.2 The res_role Table

This table subsumes the contact, publisher, contributor, and creator mem-
bers of the VOResource data model. They have been combined into a single
table to reduce the total number of tables, and also in anticipation of a
unified data model for such entities in future versions of VOResource.

The actual role is given in the base_role column, which can be one
of contact, publisher, contributor, or creator. Depending on this
value, here are the xpaths for the table fields (we have abbreviated /cura-
tion/publisher as cp, /curation/contact as co, /curation/creator
as cc, and /curation/contributor as cb):

base_role value contact publisher creator contributor

role_name co/name cp cc/name cb
role_ivoid co/name/@ivo-id cp/@ivo-id cc/name/@ivo-id cb/@ivo-id
address co/address N/A N/A N/A
email co/email N/A N/A N/A
telephone co/telephone N/A N/A N/A
logo co/logo N/A cc/logo N/A

Not all columns are available for each role type in VOResource. For exam-
ple, contacts have no logo, and creators no telephone members. Unavailable
metadata (marked with N/A in the above table) MUST be represented with
NULL values in the corresponding columns.

When matching against role_name, please be aware that despite the
admonitions in section 3.1.2 of VOResource 1.1 (which recommends a format
like Last, F. for person names), as of this writing the wide majority of role
names in the VO Registry are not in this format. Hence, name matching in
RegTAP at this point should be very lenient.

21

http://ivoa.net/rdf/voresource/content_type
http://ivoa.net/rdf/voresource/content_level
http://ivoa.net/rdf/voresource/content_level

Column names, utypes, datatypes, and descriptions for the rr.res_role table

ivoid
xpath:/identifier

string The parent resource.

role_name string The real-world name or title of a person or organiza-
tion.

role_ivoid string An IVOA identifier of a person or organization.

street_address string A mailing address for a person or organization.

email string An email address the entity can be reached at.

telephone string A telephone number the entity can be reached at.

logo string URL pointing to a graphical logo, which may be used
to help identify the entity.

base_role string The role played by this entity; this is one of contact,
publisher, contributor, or creator.

The ivoid column should be an explicit foreign key into the resource
table. It is recommended to maintain indexes on at least the role_name
column, ideally in a way that supports regular expressions.

The following columns MUST be lowercased during ingestion: ivoid,
role_ivoid, base_role. Clients are advised to query the remain-
ing columns, in particular role_name, case-insensitively, e.g., using
ivo_nocasematch.

8.3 The res_subject Table

Since subject queries are expected to be frequent and perform relatively
complex checks (e.g., resulting from thesaurus queries in the clients), the
subjects are kept in a separate table rather than being hash-joined like other
string-like 1:n members of resource.

Column names, utypes, datatypes, and descriptions for the rr.res_subject table

ivoid
xpath:/identifier

string The parent resource.

res_subject
xpath:subject

string Topics, object types, or other descriptive keywords
about the resource.

The ivoid column should be an explicit foreign key into resource. It is
recommended to index the res_subject column, preferably in a way that
allows to process case-insensitive and pattern queries using the index.

The ivoid column MUST be lowercased during ingestion. Clients are
advised to query the res_subject column case-insensitively, e.g., using
ivo_nocasematch.

22

The content of incoming subject elements may be normalized according
to the rules laid down in sect. 4.5.

8.4 The capability Table

The capability table describes a resource’s modes of interaction; it only con-
tains the members of the base type vr:Capability. Members of derived
types are kept in the res_detail table (see 8.13).

The table has a cap_index to disambiguate multiple capabilities on a
single resource. See section 3 for details.

Column names, utypes, datatypes, and descriptions for the rr.capability table

ivoid
xpath:/identifier

string The parent resource.

cap_index integer An arbitrary identifier of this capability within the re-
source.

cap_type
xpath:@xsi:type

string The type of capability covered here. If looking for end-
points implementing a certain standard, you should not
use this column but rather match against standard_id.

cap_description
xpath:description

string A human-readable description of what this capability
provides as part of the over-all service.

standard_id
xpath:@standardID

string A URI for a standard this capability conforms to.

This table should have an explicit primary key made up of ivoid and
cap_index. The ivoid column should be an explicit foreign key into
resource. It is recommended to maintain indexes on at least the cap_type
and standard_id columns.

The following columns MUST be lowercased during ingestion: ivoid,
cap_type, standard_id. Clients are advised to query the cap_description
column using the ivo_hasword function.

8.5 The res_schema Table

The res_schema table corresponds to VODataService’s schema element. It
has been renamed to avoid clashes with the SQL reserved word SCHEMA.

The table has a column schema_index to disambiguate multiple schema
elements on a single resource. See section 3 for details.

23

Column names, utypes, datatypes, and descriptions for the rr.res_schema table

ivoid
xpath:/identifier

string The parent resource.

schema_index integer An arbitrary identifier for the res_schema rows belong-
ing to a resource.

schema_description
xpath:description

string A free text description of the tableset explaining in
general how all of the tables are related.

schema_name
xpath:name

string A name for the set of tables.

schema_title
xpath:title

string A descriptive, human-interpretable name for the table
set.

schema_utype
xpath:utype

string An identifier for a concept in a data model that the
data in this schema as a whole represent.

This table should have an explicit primary key made up of ivoid and
schema_index. The ivoid column should be an explicit foreign key into
resource.

The following columns MUST be lowercased during ingestion:
ivoid, schema_name, schema_utype. Clients are advised to query
the schema_description and schema_title columns using the the
ivo_hasword function.

8.6 The res_table Table

The res_table table models VODataService’s table element. It has been
renamed to avoid name clashes with the SQL reserved word TABLE.

VODataService 1.0 (an early prototype that never became REC) had
a similar element that was a direct child of resource. Ingestors should also
accept such tables, as there are still some active VODataService 1.0 resources
in the Registry at the time of writing (this is the reason for the alternative
in the table xpath).

The table contains a column table_index to disambiguate multiple ta-
bles on a single resource. See section 3 for details. Note that if the sibling
count is used as implementation of table_index, the count must be per
resource and not per schema, as table_index MUST be unique within a
resource.

24

Column names, utypes, datatypes, and descriptions for the rr.res_table table

ivoid
xpath:/identifier

string The parent resource.

schema_index integer Index of the schema this table belongs to, if it belongs
to a schema (otherwise NULL).

table_description
xpath:description

string A free-text description of the table’s contents.

table_name
xpath:name

string The fully qualified name of the table. As per VO-
DataService, this includes all catalog or schema pre-
fixes needed to distinguish it in a query, and it comes
with SQL delimiters where necessary.

table_index integer An arbitrary identifier for the tables belonging to a
resource.

table_title
xpath:title

string A descriptive, human-interpretable name for the table.

table_type
xpath:@type

string A name for the role this table plays. Recognized values
include "output", indicating this table is output from a
query; "base_table", indicating a table whose records
represent the main subjects of its schema; and "view",
indicating that the table represents a useful combina-
tion or subset of other tables. Other values are allowed.

table_utype
xpath:utype

string An identifier for a concept in a data model that the
data in this table as a whole represent.

This table should have an explicit primary key made up of ivoid
and table_index. The ivoid column should be an explicit foreign
key into resource. It is recommended to maintain an index on at
least the table_description column, ideally one suited for queries with
ivo_hasword. Since table_utype is used in data discovery, it should also
be indexed.

The following columns MUST be lowercased during ingestion:
ivoid, table_type, table_utype. Clients are advised to query the
table_description and table_title columns using the the ivo_hasword
function.

8.7 The table_column Table

The table_column table models the content of VODataService’s column
element. The table has been renamed to avoid a name clash with the SQL
reserved word COLUMN.

Since it is expected that queries for column properties will be fairly com-
mon in advanced queries, it is the column table that has the unprefixed
versions of common member names (name, ucd, utype, etc).

The flag column contains a concatenation of all values of a col-
umn element’s flag children, separated by hash characters. Use the

25

ivo_hashlist_has function in queries against flag.
The table_column table also includes information from VODataSer-

vice’s data type concept. VODataService 1.1 includes several type sys-
tems (VOTable, ADQL, Simple). The type_system column contains the
value of the column’s datatype child, with the VODataService XML pre-
fix fixed to vs; hence, this column will contain one of NULL, vs:taptype,
vs:simpledatatype, and vs:votabletype. Modern resource records should
always use vs:votabletype, but column declarations using the other type
systems are still present in the VO.

26

Column names, utypes, datatypes, and descriptions for the rr.table_column table

ivoid
xpath:/identifier

string The parent resource.

table_index integer Index of the table this column belongs to.

name
xpath:name

string The name of the column.

ucd
xpath:ucd

string A unified content descriptor that describes the scientific
content of the column.

unit
xpath:unit

string The unit associated with all values in the column.

utype
xpath:utype

string An identifier for a role in a data model that the data
in this column represents.

std
xpath:@std

integer If 1, the meaning and use of this column is reserved
and defined by a standard model. If 0, it represents
a database-specific column that effectively extends be-
yond the standard.

datatype
xpath:dataType

string The type of the data contained in the column.

extended_schema
xpath:dataType/@extendedSchema

string An identifier for the schema that the value given by the
extended attribute is drawn from.

extended_type
xpath:dataType/@extendedType

string A custom type for the values this column contains.

arraysize
xpath:dataType/@arraysize

string The shape of the array that constitutes the value, e.g.,
4, *, 4*, 5x4, or 5x*, as specified by VOTable.

delim
xpath:dataType/@delim

string The string that is used to delimit elements of an array
value when arraysize is not ’1’.

type_system
xpath:dataType/@xsi:type

string The type system used, as a QName with a canonical
prefix; this will ususally be one of vs:simpledatatype,
vs:votabletype, and vs:taptype.

flag
xpath:flag

string Hash-separated keywords representing traits of the col-
umn. Recognized values include "indexed", "primary",
and "nullable".

column_description
xpath:description

string A free-text description of the column’s contents.

The pair ivoid, table_index should be an explicit foreign key into
res_table. It is recommended to maintain indexes on at least the
column_description, name, ucd, and utype columns, where the index
on column_description should ideally be able to handle queries using
ivo_hasword.

The following columns MUST be lowercased during ingestion: ivoid,
name, ucd, utype, datatype, type_system. The boolean value of the col-
umn’s std attribute must be converted to 0 (False), 1 (True), or NULL (not
given) on ingestion. Clients are advised to query the description column
using the ivo_hasword function, and to query the flag column using the

27

ivo_hashlist_has function.

8.8 The interface Table

The interface table subsumes both the vr:Interface and vr:access-
URL types from VOResource. The integration of accessURL into the
interface table means that an interface in the relational registry can only
have one access URL, where in VOResource it can have many. VOResource
1.1 deprecated that capability (that was never really used in practice anyway)
and replaced it with mirrorURL. In the unlikely case multiple accessURL
are defined in a single interface nevertheless, implementation behavior for a
RegTAP service is undefined.

The table contains a column intf_index to disambiguate multiple inter-
faces of one resource. See section 3 for details.

In VOResource, interfaces can have zero or more securityMethod
children to convey support for authentication and authorization methods.
Apart from an identifier for an authentication method – usually taken from
the SSO document Taffoni and Schaaf et al. (2017) –, no actual content
has been specified so far for these elements. Also, there are as of now no
actual discovery cases employing this information except “filter out services
requiring authentication”. Hence, RegTAP 1.2 does not attempt to map
securityMethod except through the authenticated_only column which
is required to be 0 when there is no securityMethod or at least one
securityMethod without a standardId on an interface, 1 otherwise.

Clients not prepared to authenticate to services should always include a
authenticated_only=0 condition when retrieving access URLs from Reg-
TAP 1.2 services, as it is conceivable that a future VO will contain many
services requiring authentication and users should not have to try out which
of them they can actually use.

The query_type column is a hash-joined list (analogous to waveband in
the resource table), as the XML schema allows listing up to two request
methods.

The mirror_url column is used to keep all mirror URLs in one field,
again separating values with hash characters. This design was chosen over
a native array since arrays of variable-length strings are not supported by
VOTable, and emulating them is a major implementation liability. It was
chosen over a separate database table implementing the 1:n relation because
the hash – a fragment identifier in URIs, and access fragments are mean-
ingless for access URLs – happens to be a safe and convenient separator for
the datatype, and thus there is no semantic cost attached to using an ar-
ray emulation that is simpler on both client and server. Note that contrary
to query_type and similar hash-joined lists of enumerated values, no case
normalisation may take place in mirror_url.

28

This table only contains interface elements from within capabilities. In-
terface elements in StandardsRegExt records are ignored in the relational
registry, and they must not be inserted in this table, since doing so would
disturb the foreign key from interface into capability. In other words, the
relational registry requires every interface to have a parent capability.

Analogous to resource.res_type, the intf_type column contains type
names; VOResource extensions can define new types here, but at the time of
writing, the following types are mentioned in IVOA-recommended schemata:

vs:paramhttp A service invoked via an HTTP query, usually with some form
of structured parameters. This type is used for interfaces speaking
“simple” IVOA protocols.

vr:webbrowser A (form-based) interface intended to be accessed interactively
by a user via a web browser.

vg:oaihttp A standard OAI PMH interface using HTTP queries with form-
urlencoded parameters.

vg:oaisoap A standard OAI PMH interface using a SOAP Web Service in-
terface.

vr:webservice A Web Service that is describable by a WSDL document.

29

Column names, utypes, datatypes, and descriptions for the rr.interface table

ivoid
xpath:/identifier

string The parent resource.

cap_index integer The index of the parent capability.

intf_index integer An arbitrary identifier for the interfaces of a resource.

intf_type
xpath:@xsi:type

string The type of the interface (vr:webbrowser,
vs:paramhttp, etc).

intf_role
xpath:@role

string An identifier for the role the interface plays in the par-
ticular capability. If the value is equal to "std" or be-
gins with "std:", then the interface refers to a standard
interface defined by the standard referred to by the ca-
pability’s standardID attribute.

std_version
xpath:@version

string The version of a standard interface specification that
this interface complies with. When the interface is pro-
vided in the context of a Capability element, then the
standard being refered to is the one identified by the
Capability’s standardID element.

query_type
xpath:queryType

string Hash-joined list of expected HTTP method (get or
post) supported by the service.

result_type
xpath:resultType

string The MIME type of a document returned in the HTTP
response.

wsdl_url
xpath:wsdlURL

string The location of the WSDL that describes this Web Ser-
vice. If NULL, the location can be assumed to be the
accessURL with ’?wsdl’ appended.

url_use
xpath:accessURL/@use

string A flag indicating whether this should be interpreted as
a base URL (’base’), a full URL (’full’), or a URL to a
directory that will produce a listing of files (’dir’).

access_url
xpath:accessURL

string The URL at which the interface is found.

mirror_url
xpath:mirrorURL

string Secondary access URLs of this interface, separated by
hash characters.

authenticated_only integer A flag for whether an interface is available for anony-
mous use (=0) or only authenticated clients are served
(=1).

This table should have the pair ivoid, cap_index as an explicit foreign
key into capability, and the pair ivoid, and intf_index as an explicit
primary key. Additionally, it is recommended to maintain an index on at
least the intf_type column.

The following columns MUST be lowercased during ingestion: ivoid,
intf_type, intf_role, std_version, query_type, result_type, url_use,
Clients are advised to query query_type using the the ivo_hashlist_has
function.

30

8.9 The intf_param Table

The intf_param table keeps information on the parameters available on
interfaces. It is therefore closely related to table_column, but the differences
between the two are significant enough to warrant a separation between the
two tables. Since the names of common column attributes are used where
applicable in both tables (e.g., name, ucd, etc), the two tables cannot be
(naturally) joined.

Column names, utypes, datatypes, and descriptions for the rr.intf_param table

ivoid
xpath:/identifier

string The parent resource.

intf_index integer The index of the interface this parameter belongs to.

name
xpath:name

string The name of the parameter.

ucd
xpath:ucd

string A unified content descriptor that describes the scientific
content of the parameter.

unit
xpath:unit

string The unit associated with all values in the parameter.

utype
xpath:utype

string An identifier for a role in a data model that the data
in this parameter represents.

std
xpath:@std

integer If 1, the meaning and use of this parameter is reserved
and defined by a standard model. If 0, it represents
a database-specific parameter that effectively extends
beyond the standard.

datatype
xpath:dataType

string The type of the data contained in the parameter.

extended_schema
xpath:dataType/@extendedSchema

string An identifier for the schema that the value given by the
extended attribute is drawn from.

extended_type
xpath:dataType/@extendedType

string A custom type for the values this parameter contains.

arraysize
xpath:dataType/@arraysize

string The shape of the array that constitutes the value, e.g.,
4, *, 4*, 5x4, or 5x*, as specified by VOTable.

delim
xpath:dataType/@delim

string The string that is used to delimit elements of an array
value when arraysize is not ’1’.

param_use
xpath:@use

string An indication of whether this parameter is required
to be provided for the application or service to work
properly (one of required, optional, ignored, or NULL).

param_description
xpath:description

string A free-text description of the parameter’s contents.

The pair ivoid, intf_index should be an explicit foreign key into
interface.

The remaining requirements and conventions are as per section 8.7 where
applicable, and param_description taking the role of column_description.

31

8.10 The relationship Table

The relationship element is a slight denormalization of the vr:Relation-
ship type: whereas in VOResource, a single relationship element can take
several IVOIDs, in the relational model, the pairs are stored directly. It is
straightforward to translate between the two representations in the database
ingestor.

Column names, utypes, datatypes, and descriptions for the rr.relationship table

ivoid
xpath:/identifier

string The parent resource.

relationship_type
xpath:relationshipType

string The type of the relationship; these terms are drawn
from a controlled vocabulary and are DataCite-
compatible.

related_id
xpath:relatedResource/@ivo-id

string The IVOA identifier for the resource referred to.

related_name
xpath:relatedResource

string The name of resource that this resource is related to.

The ivoid column should be an explicit foreign key into the resource
table. You should index at least the related_id column.

The following columns MUST be lowercased during ingestion: ivoid,
relationship_type, related_id.

The content of incoming relationshipType elements must be normal-
ized according to the rules laid down in sect. 4.5 before lowercasing.

8.11 The validation Table

The validation table subsumes the vr:validationLevel-typed members
of both vr:Resource and vr:Capability.

If the cap_index column is NULL, the validation comprises the entire
resource. Otherwise, only the referenced capability has been validated.

While it is recommended that harvesters only accept resource records
from their originating registries, it is valuable to gather validation results
from various sources. Hence, harvesters for the relational registry may choose
to obtain validation data from the OAI-PMH endpoints of various registries
by not harvesting just for the ivo_managed set and generate rr.validation
rows from these records. This can trigger potentially problematic behavior
when the original registry updates its resource record in that naive imple-
mentations will lose all third-party validation rows; this may actually be the
correct behavior, since an update of the registry record might very well indi-
cate validation-relevant changes in the underlying services. Implementations
are free to handle or ignore validation results as they see fit, and they may
add validation results of their own.

32

The validation levels are defined in Hanisch and IVOA Resource Registry
Working Group et al. (2007) and currently range from 0 (description stored
in a registry) to 4 (inspected by a human to be technically and scientifically
correct).

Column names, utypes, datatypes, and descriptions for the rr.validation table

ivoid
xpath:/identifier

string The parent resource.

validated_by
xpath:validationLevel/@validatedBy

string The IVOA ID of the registry or organisation that as-
signed the validation level.

val_level
xpath:validationLevel

integer A numeric grade describing the quality of the resource
description, when applicable, to be used to indicate the
confidence an end-user can put in the resource as part
of a VO application or research study.

cap_index integer If non-NULL, the validation only refers to the capabil-
ity referenced here.

The ivoid column should be an explicit foreign key into resource. Note,
however, that ivoid, cap_index is not a foreign key into capability since
cap_index may be NULL (in case the validation addresses the entire resource).

The following columns MUST be lowercased during ingestion: ivoid,
validated_by.

8.12 The res_date Table

The res_date table contains information gathered from vr:Curation’s
date children.

Column names, utypes, datatypes, and descriptions for the rr.res_date table

ivoid
xpath:/identifier

string The parent resource.

date_value
xpath:date

character[19]
+timestamp

A date associated with an event in the life cycle of the
resource.

value_role
xpath:date/@role

string A string indicating what the date refers to, e.g., cre-
ated, availability, updated. This value is generally
drawn from a controlled vocabulary.

The ivoid column should be an explicit foreign key into resource.
The following columns MUST be lowercased during ingestion: ivoid,

value_role.
The content of incoming date/@role attributes must be normalized

according to the rules laid down in sect. 4.5 before lowercasing.

33

8.13 The res_detail Table

The res_detail table is the relational registry’s primary means for exten-
sibility as well as a fallback for less-used simple metadata. Conceptually,
it stores triples of resource entity references, resource xpaths, and values,
where resource entities can be resource records themselves or capabilities.
Thus, metadata with values that are either string-valued or sets of strings
can be represented in this table.

As long as the metadata that needs to be represented in the relational
registry for new VOResource extensions is simple enough, no changes to the
schema defined here will be necessary as these are introduced. Instead, the
extension itself simply defines new xpaths to be added in res_detail.

Some complex metadata – tr:languageFeature or vstd:key being
examples – cannot be kept in this table. If a representation of such infor-
mation in the relational registry is required, this standard will need to be
changed.

Appendix A gives a list of resource xpaths from the registry extensions
that were recommendations at the time of writing. For the resource xpaths
marked with an exclamation mark there, xpath/value pairs MUST be gen-
erated whenever the corresponding metadata items are given in a resource
record. For the remaining resource xpaths, these pairs should be provided if
convenient; they mostly concern test queries and other curation-type infor-
mation that, while unlikely to be useful to normal users, may be relevant to
curation-type clients that, e.g., ascertain the continued operation of services.

Some detail values must be interpreted case-insensitively; this concerns,
in particular, IVOID like the TAP data model type. For other rows – the
test queries are immediate examples – , changing the case will likely break
the data. In order to avoid having to give and implement case normaliza-
tion rules by detail xpath, no case normalization is done on detail values at
all, and users and clients will have to use ivo_nocasematch when locating
case-insensitive values. For the resource xpaths given in Appendix A, this
concerns all items with xpaths ending in @ivo-id.

Individual ingestors MAY choose to expose additional metadata using
other xpaths, provided they are formed according to the rules in section 6
(this rule is intended to minimize the risk of later clashes).

In addition to the metadata listed in this specification, metadata defined
in future IVOA-approved VOResource extensions MUST or SHOULD be
present in res_detail as the extensions require it.

34

Column names, utypes, datatypes, and descriptions for the rr.res_detail table

ivoid
xpath:/identifier

string The parent resource.

cap_index integer The index of the parent capability; if NULL the xpath-
value pair describes a member of the entire resource.

detail_xpath string The xpath of the data item.

detail_value string (Atomic) value of the member.

The ivoid column should be an explicit foreign key into resource. It
is recommended to maintain indexes on at least the columns detail_xpath
and detail_value, where the index on detail_value should ideally work
for both direct comparisons and searches using ivo_nocasematch.

The following column MUST be lowercased during ingestion: ivoid.
Clients are advised to use ivo_nocasematch to search in detail_value if
the values are to be compared case-insensitively (e.g., all IVOIDs).

8.14 The alt_identifier Table

Since its version 1.1, VOResource allows the annotation of various elements
(initially, the record itself and creators) with alternate identifiers (the alt-
Identifier element). Examples of these are DOIs, ORCIDs, and bibcodes.

Considering that that the typical query against the alternate identifiers
can be expected to be of the type “records having to do with identifier ” and
since the identifiers are stored in URI form and hence identifiers of different
types cannot clash, RegTAP does not keep track where an alternate identifier
was encountered. Instead, the alt_identifier table just links IVOIDs and
alternate identifiers:

Column names, utypes, datatypes, and descriptions for the rr.alt_identifier table

ivoid
xpath:/identifier

string The parent resource.

alt_identifier string An identifier for the resource or an entity related to the
resource in URI form.

The ivoid column should be an explicit foreign key into resource. It is
recommended to maintain an index on the alt_identifier column.

8.15 The stc_spatial Table

Since VODataService 1.2, registry records can represent their resource’s spa-
tial coverage using spatial MOCs (Fernique and Nebot et al., 2022). The
stc_spatial table is a direct reflection of this metadata:

35

Column names, utypes, datatypes, and descriptions for the rr.stc_spatial table

ivoid
xpath:/identifier

string The parent resource.

coverage
xpath:.

string
+moc

A geometry representing the area a resource contains
data for; this should be tight at least with a resolution
of degrees.

ref_system_name
xpath:@frame

string The reference frame coverage is written in. This is cur-
rently reserved and fixed to NULL. Clients should al-
ways add a constraint to NULL for this to avoid match-
ing non-celestial resources later.

The ivoid column should be an explicit foreign key into resource.
The details of how the MOC-valued coverage is entered and retrieved will

be given in version 1.2 of DALI (Dowler and Demleitner et al., 2017). Im-
plementations MUST evaluate the ADQL CONTAINS and INTERSECTS
predicates with coverage as one argument and ADQL CIRCLEs and POLY-
GONs as the other, and they must support CONTAINS with an ADQL
POINT in the first argument. There are no expectations that the predi-
cates are computed exactly, but implementations should strive to limit the
number of false positives; clients are advised that on services supporting
MOC literals, it is probably much faster and more exact to use MOC-MOC
comparisons to query coverage.

8.16 The stc_temporal Table

Since VODataService 1.2, registry records can represent their resource’s tem-
poral coverage as a union of time intervals. The stc_temporal table is a
direct reflection of this metadata:

Column names, utypes, datatypes, and descriptions for the rr.stc_temporal table

ivoid
xpath:/identifier

string The parent resource.

time_start
xpath:.

real Lower limit of a time interval covered by the resource.

time_end
xpath:.

real Upper limit of a time interval covered by the resource.

The ivoid column should be an explicit foreign key into resource.
Clients are advised that the ivo_interval_overlaps user defined func-

tion is available to conveniently compare a user-specified interval of interest
to time_start · · · time_end.

Since VODataService temporal coverage is given in MJD, the rows for
time_start and time_end in TAP_SCHEMA.columns MUST have the appro-
priate VOUnits (Gray and Cecconi et al., 2023) string, d, in their unit
column.

36

8.17 The stc_spectral Table

Since VODataService 1.2, registry records can represent their resource’s spec-
tral coverage as a union of energy intervals. The stc_spectral table is a
direct reflection of this metadata:

Column names, utypes, datatypes, and descriptions for the rr.stc_spectral table

ivoid
xpath:/identifier

string The parent resource.

spectral_start
xpath:.

real Lower limit of a messenger energy interval covered by
the resource (for the solar system barycenter).

spectral_end
xpath:.

real Upper limit of a messenger energy interval covered by
the resource (for the solar system barycenter).

The ivoid column should be an explicit foreign key into resource.
Clients are advised that the ivo_interval_overlaps user defined func-

tion is available to conveniently compare a user-specified intervals of interest
to spectral_start · · · spectral_end.

Since VODataService spectral coverage gives energies in Joules, the rows
for spectral_start and spectral_end in TAP_SCHEMA.columns MUST have
the appropriate VOUnits string, J, in their unit column.

8.18 The tap_table View

Several Registry clients need to easily obtain metadata on tables queriable
through TAP. Since the Registry data model gives services some freedom
registering these – they can occur in tablesets of TAP services, in tablesets of
records having auxiliary TAP capabilities (Demleitner and Taylor, 2019), or
both – it is hard to write ADQL producing such a relation. Hence, starting
with version 1.2 of RegTAP, implementing services must provide a view
encapsulating a query yielding all tables in rr.res_table

1. that are accessible through a TAP service

2. and are not declared as output tables (which by definition cannot be
queried)

3. exactly once for each actual table (i.e., there cannot be two rows in the
view having the same (svcid, table_name))

4. with references to both a full metadata record and the record of the
TAP service publishing the resource..

Condition 4 requires an explanation: A given table can be both in the
tableset of the TAP service (that will in general have very little additional
information on the table) and in the tableset of a specific resource (which

37

will contain rich metadata on the table). In the latter case, tap_table must
reference the specific resource as the full metadata record (the resid col-
umn). Tables only present in their TAP services’ tableset will have identical
resid and svcid.

The tap_table view has the following columns:

Column names, utypes, datatypes, and descriptions for the rr.tap_table table

resid string IVOA identifier of the resource this table was taken
from (where there is a dedicated resource containing
this table in its tableset, that resource is preferred over
a TAP service).

svcid string IVOA identifier of the TAP service making this table
queriable.

table_name
xpath:name

string The fully qualified name of the table. As per VO-
DataService, this includes all catalog or schema pre-
fixes needed to distinguish it in a query, and it comes
with SQL delimiters where necessary.

table_title
xpath:title

string A descriptive, human-interpretable name for the table.

table_description
xpath:description

string A free-text description of the table’s contents.

table_utype
xpath:utype

string An identifier for a concept in a data model that the
data in this table as a whole represent.

Since rr.tap_table is (at least conceptually; this specification does not
forbid making it a materialised view or a physical table) a view, it inherits
the properties of the contributing tables. This means that table_title
and table_description should be queried using ivo_hasword, and that
table_utype should have an index. By construction, (svcid, table_name)
is suitable as a primary key of the relation.

Appendix C gives a standard SQL query that will produce the view
specified here from other RegTAP tables.

9 RegTAP Requirements on TAP services

Since RegTAP deals with text much more intensively than is usual for the as-
trophysical data that TAP and ADQL were designed for and some query pat-
terns uncommon in astrophysics significanly help writing RegTAP queries,
TAP services implementing RegTAP MUST implement some ADQL exten-
sions, partly specified as ADQL optional features, partly in ADQL User
Defined Functions (UDFs).

38

9.1 ADQL Optional Features Required for RegTAP

TAP Servers implementing the ivo://ivoa.net/std/RegTAP#1.2 data
model MUST implement the following optional features defined in ADQL
2.1 (Mantelet and Morris et al., 2023):

COALESCE
Primarily in order to make the use of ivo_string_agg predictable
in the presence of NULL values in columns like standard_id,
RegTAP services MUST provide the COALESCE feature in ivo:
//ivoa.net/std/TAPRegExt#features-adql-type.

ILIKE
As a standard alternative to ivo_nocasematch as employed by Reg-
TAP earlier than 1.2, RegTAP services MUST provide the ILIKE
feature in ivo://ivoa.net/std/TAPRegExt#features-adql-string.

WITH
To let clients more clearly structure their queries, Reg-
TAP services MUST implement common table expressions
as per the WITH feature in ivo://ivoa.net/std/TAPRegExt#
features-adql-common-table.

9.2 User Defined Functions Required for RegTAP

TAP Servers implementing the ivo://ivoa.net/std/RegTAP#1.2 data
model MUST implement the following User Defined Functions in their ADQL
language, given here with signatures written as recommended in TAPRegExt
(Demleitner and Dowler et al., 2012):

ivo_nocasematch(value VARCHAR(*), pat VARCHAR(*))->INTEGER
The function returns 1 if pat matches value, 0 otherwise. pat is
defined as for the SQL LIKE operator, but the match is performed
case-insensitively. Clients that only talk to RegTAP 1.2 and later
should prefer the ILIKE operator.

ivo_hasword(haystack VARCHAR(*), needle VARCHAR(*)) -> INTEGER
The function takes two strings and returns 1 if the second is con-
tained in the first one in a “word” sense, i.e., delimited by non-
letter characters or the beginning or end of the string, where case
is ignored. It returns 0 otherwise. Additionally, servers MAY em-
ploy techniques to improve recall, in particular stemming. Registry
clients must hence expect different results from different servers
when using ivo_hasword; for such queries trying them on multiple
registries may improve recall.

ivo_hashlist_has(hashlist VARCHAR(*), item VARCHAR(*)) -> INTEGER
The function takes two strings; the first is a list of words not con-
taining the hash sign (#), concatenated by hash signs, the second

39

is a word not containing the hash sign. It returns 1 if, compared
case-insensitively, the second argument is in the list of words en-
coded in the first argument, 0 otherwise. The behavior for second
arguments containing a hash sign is undefined.

ivo_string_agg(expr VARCHAR(*), delim VARCHAR(*)) -> VARCHAR(*)
An aggregate function returning all values of expr within a GROUP
concatenated with delim. NULLs in the aggregate do not con-
tribute, an empty aggregate yields an empty string.

ivo_interval_overlaps(l1 T, h1 T, l2 T, h2 T) -> INTEGER
The function returns 1 if the interval [l1...h1] overlaps with the in-
terval [l2...h2]. For the purposes of this function, the case l1=h2
or l2=h1 is treated as overlap. The function returns 0 for non-
overlapping intervals. The function must be available for both in-
tegers and floating point numbers; on most systems, this will mean
that T is NUMERIC.

Reference implementations of the functions for the PostgreSQL database
system are given in Appendix B. As required for UDFs with an ivo_ pre-
fix, these functions are also listed in the Catalogue of ADQL User Defined
Functions (Campillo and Demleitner, 2023).

10 Common Queries to the Relational Registry

This section contains sample queries to the relational registry, mostly con-
tributed as use cases by various members of the IVOA Registry working
group. They are intended as an aid in designing relational registry queries,
in particular for users new to the data model.

When locating access URLs for capabilities of standard services, these
sample queries limit the matches to interfaces declared with role equal to
std. This filters out WebBrowser interfaces that some data providers add
in SCS or SSAP capabilities (a practice not recommended). Future standards
might require more specific strings starting with std: in this place; discovery
for those needs to be adapted accordingly.

In RegTAP 1.0, this filtering was effected by constraining the interface
type to vs:ParamHTTP. As discussed there, this adopted existing discovery
patterns and worked around missing metadata in VOResource records. This
workaround is no longer necessary, and future standards should be free to
use other interface types rather than vr:ParamHTTP.

Note that it still is possible that a single resource will return multiple
access URLs with the query patterns given here. Clients can assume that all
access URLs returned in this way correspond to their constraints. Therefore,
it is legal to randomly pick one of those.

40

Service standards can give discovery patterns different from the ones
shown here if their particular use cases require them.

10.1 TAP accessURLs

Problem: Find all TAP services; return their accessURLs
As the capability type is in rr.capability, whereas the access URL can

be found from rr.interface, this requires a (natural) join.
Clients communicating with a RegTAP 1.1 or later service should request

the new authenticated_only column. If this is 1, the service requires some
sort of authentication and should only presented to users if a client has the
necessary infrastructure for the authentication system.

Hence, clients only interested in services not requiring authentication
should use

SELECT ivoid, access_url
FROM rr.capability
NATURAL JOIN rr.interface
WHERE standard_id like 'ivo://ivoa.net/std/tap%'

AND intf_role='std'
AND authenticated_only=0

Analogous considerations apply to the other example queries
Other standard_ids relevant here include:

• ivo://ivoa.net/std/registry for OAI-PMH services,

• ivo://ivoa.net/std/sia for SIA services,

• ivo://ivoa.net/std/conesearch for SCS services, and

• ivo://ivoa.net/std/ssa for SSA services.

10.2 Image Services with Spirals

Problem: Find all SIA services that might have spiral galaxies
This is somewhat tricky since it is probably hard to image a part of

the sky guaranteed not to have some, possibly distant, spiral galaxy in it.
However, translating the intention into “find all SIA services that mention
spiral in either the subject (from rr.res_subject), the description, or the
title (which are in rr.resource)”, the query would become:

SELECT ivoid, access_url
FROM rr.capability

NATURAL JOIN rr.resource
NATURAL JOIN rr.interface

41

NATURAL JOIN rr.res_subject
WHERE standard_id like 'ivo://ivoa.net/std/sia%'

AND intf_role='std'
AND (

1=ivo_nocasematch(res_subject, '%spiral%')
OR 1=ivo_hasword(res_description, 'spiral')
OR 1=ivo_hasword(res_title, 'spiral'))

10.3 Infrared Image Services

Problem: Find all SIA services that provide infrared images
The waveband information in rr.resource comes in hash-separated

atoms (which can be radio, millimeter, infrared, optical, uv, euv, x-ray, or
gamma-ray). For matching those, use the ivo_hashlist_has function as
below. The access URL and the service standard come from rr.interface
and rr.capability, respectively.

SELECT ivoid, access_url
FROM rr.capability

NATURAL JOIN rr.resource
NATURAL JOIN rr.interface

WHERE standard_id LIKE 'ivo://ivoa.net/std/sia%'
AND intf_role='std'
AND 1=ivo_hashlist_has(waveband, 'infrared')

10.4 Catalogs with Redshifts

Problem: Find all searchable catalogs (i.e., cone search services) that pro-
vide a column containing redshifts

Metadata on columns exposed by a service are contained in
rr.table_column. Again, this table can be naturally joined with
rr.capability and rr.interface.

SELECT ivoid, access_url
FROM rr.capability

NATURAL JOIN rr.table_column
NATURAL JOIN rr.interface

WHERE standard_id LIKE 'ivo://ivoa.net/std/conesearch%'
AND intf_role='std'
AND ucd='src.redshift'

Sometimes you want to match a whole set of ucds. Frequently the simple
regular expressions of SQL will help, as in AND ucd LIKE ’pos.parallax%’.
When that is not enough, use boolean OR expressions

42

10.5 Names from an Authority

Problem: Find all the resources published by a certain authority
An “authority” within the VO is something that hands out identifiers.

You can tell what authority a record came from by looking at the “host
part” of the IVO identifier, most naturally obtained from rr.resource. Since
ADQL cannot actually parse URIs, we make do with simple string matching:

SELECT ivoid
FROM rr.resource
WHERE ivoid LIKE 'ivo://org.gavo.dc%'

10.6 Records Published by X

Problem: What registry records are there from a given publisher?
This uses the rr.res_role table both to match names (in this case, a

publisher that has “gavo” in its name) and to ascertain the named entity
actually publishes the resource (rather than, e.g., just being the contact in
case of trouble). The result is a list of ivoids in this case. You could join this
with any other table in the relational registry to find out more about these
services.

SELECT ivoid
FROM rr.res_role
WHERE 1=ivo_nocasematch(role_name, '%gavo%')

AND base_role='publisher'

or, if the publisher actually gives its ivo-id in the registry records,

SELECT ivoid
FROM rr.res_role
WHERE role_ivoid='ivo://ned.ipac/ned'

AND base_role='publisher'

10.7 Records from Registry

Problem: What registry records are there originating from registry X?
This is mainly a query interesting for registry maintainers. Still, it is a

nice example for joining with the rr.res_detail table, in this case to first
get a list of all authorities managed by the CDS registry.

SELECT ivoid FROM rr.resource
RIGHT OUTER JOIN (

SELECT 'ivo://' || detail_value || '%' AS pat
FROM rr.res_detail
WHERE detail_xpath='/managedAuthority'

43

AND ivoid='ivo://cds.vizier/registry')
AS authpatterns

ON 1=ivo_nocasematch(resource.ivoid, authpatterns.pat)

10.8 Locate RegTAP services

Problem: Find all TAP endpoints offering the relational registry
This is the discovery query for RegTAP services themselves; note how

this combines rr.res_detail pairs with rr.capability and rr.interface
to locate the desired protocol endpoints. As clients should not usally be
concerned with minor versions of protocols unless they rely on additions
made in later versions, this query will return endpoints supporting “version
1” rather than exactly version 1.2.

SELECT access_url
FROM rr.interface
NATURAL JOIN rr.capability
NATURAL JOIN rr.res_detail
WHERE standard_id LIKE 'ivo://ivoa.net/std/tap%'

AND intf_role='std'
AND detail_xpath='/capability/dataModel/@ivo-id'
AND 1=ivo_nocasematch(detail_value,

' ivo://ivoa.net/std/regtap#1.%')
AND authenticated_only=0

Also note the remarks on the likely evolution of data model query pat-
terns in sect. 7.

10.9 TAP with Physics

Problem: Find all TAP services exposing a table with certain features
“Certain features” could be “have some word in their description and

having a column with a certain UCD”. Either way, this kind of query fairly
invariably combines the usual rr.capability and rr.interface for service
location with rr.table_column for the column metadata and rr.res_table
for properties of tables.

SELECT ivoid,
name, ucd, column_description,
access_url

FROM rr.capability
NATURAL JOIN rr.interface
NATURAL JOIN rr.table_column
NATURAL JOIN rr.res_table

WHERE standard_id LIKE 'ivo://ivoa.net/std/tap%'

44

AND intf_role='std'
AND 1=ivo_hasword(table_description, 'quasar')
AND ucd='phot.mag;em.opt.v'

10.10 Theoretical SSA

Problem: Find all SSAP services that provide theoretical spectra.
The metadata required to solve this problem is found in the SSAP registry

extension and is thus kept in rr.res_detail:

SELECT access_url
FROM rr.res_detail

NATURAL JOIN rr.capability
NATURAL JOIN rr.interface

WHERE detail_xpath='/capability/dataSource'
AND intf_role='std'
AND standard_id LIKE 'ivo://ivoa.net/std/ssa%'
AND detail_value='theory'

10.11 Find Contact Persons

Problem: The service at http://dc.zah.uni-heidelberg.de/tap is
down, who can fix it?

This uses the rr.res_role table and returns all information on it based
on the IVOID of a service that in turn was obtained from rr.interface.
You could restrict to the actual technical contact person by requiring
base_role=’contact’.

SELECT DISTINCT base_role, role_name, email
FROM rr.res_role

NATURAL JOIN rr.interface
WHERE access_url='http://dc.zah.uni-heidelberg.de/tap'

10.12 Related Capabilities

Problem: Get the capabilities of all services serving a specific resource
(typically, a data collection).

In the VO, data providers can register data collections either as such or
with “auxiliary capabilities” that are fully described elsewhere; a practice for
doing that is discussed in an Endorsed Note on discovering data collections
within services (Demleitner and Taylor, 2019).

When following this pattern, data collections records should provide an
isServedBy relationship to the resources providing the access services for the
data collction (like a TAP or a SIAP service).

45

While the access URLs can typically be established from the auxiliary
capabilities themselves, several use cases require finding out more about the
publishing service. To locate its metadata, inspect rr.relationship and
use it to select records from rr.capability; this requires an explicit join
condition, as in this case the capabilities are for the related record, not for
the originally matched one.

SELECT ∗
FROM rr.relationship AS a

JOIN rr.capability AS b
ON (a.related_id=b.ivoid)

WHERE
relationship_type='isservedby'
AND a.ivoid='ivo://cds.vizier/j/a+a/649/a25'

10.13 Constraints on Space, Time, and Spectrum

Problem: Give me resources that cover M 101 (α = 210.80, δ = 54.35,
Diameter about 0.3◦) in the mid-infrared around 5µm in August 2010.

Without further database support, clients need to manually convert the
spectral coordinate to energy (hc/λ ≈ 3.97× 10−20 J) and time (August 1st,
2010 starts MJD 55409.0) to the quantities RegTAP expects.

This would yield a query like (the explicit MOC conversion is a common
device to speed the query up; without it, the database would convert the
circle once for each coverage, to the respective order):

SELECT ivoid
FROM rr.stc_spatial

NATURAL JOIN rr.stc_spectral
NATURAL JOIN rr.stc_temporal

WHERE
1=CONTAINS(MOC(8, CIRCLE(210.80, 54.35, 0.3)), coverage)
AND 1=ivo_interval_overlaps(time_start, time_end, 55409, 55440)
AND 3.97e-20 between spectral_start and spectral_end

In particular when more complex geometries are desired, clients will want
to pass in MOCs directly. Conversely, RegTAP services may provide the
additional user-defined functions that allow specifying temporal and spectral
constraints in different, perhaps human-friendlier ways. For instance, once
support for the relevant UDFs is established using the TAP capabilities, the
above query could also be written as (the MOC given is the circle above at
order 8):
SELECT ivoid
FROM rr.stc_spatial

NATURAL JOIN rr.stc_spectral

46

NATURAL JOIN rr.stc_temporal
WHERE
1=CONTAINS(MOC('8/182947␣182950␣182952-182953␣182955-182956␣8/'), coverage)
AND 1=ivo_interval_overlaps(
time_start, time_end,
gavo_to_mjd('2010-08-01'), gavo_to_mjd('2010-08-31'))

AND gavo_specconv(5e-6, 'm', 'J') between spectral_start and spectral_end

A XPaths for res_detail

This appendix defines the res_detail table (see section 8.13 for details)
by giving xpaths for which xpath/value pairs MUST (where marked with
an exclamation mark) or SHOULD be given if the corresponding data is
present in the resource records. This list is normative for metadata defined
in IVOA recommendations current as of the publication of this document
(see section 1.2). As laid down in section 8.13, new VOResource extensions
or new versions of existing VOResource extensions may amend this list.

In case there are conflicts between this list and xpaths derived from
schema files using the rules given in section 6, the conflict must be considered
due to an editorial oversight in the preparation of this list, and the xpaths
from the schema files are normative. Errata to this list will be issued in such
cases.

The xpaths are sufficient for locating the respective metadata as per sec-
tion 6. With the explanations we give the canonical prefixes for the XML
namespaces from which the items originate, which is where further informa-
tion can be found.

/accessURL (!) For legacy VODataService vs:DataCollection-typed records,
this is the URL that can be used to download the data contained. Do
not enter accessURLs from interface elements into res_detail (vs).

/capability/executionDuration/hard The hard run time limit, given in sec-
onds (tr).

/capability/complianceLevel The category indicating the level to which this
instance complies with the SSA standard (ssap).

/capability/creationType (!) The category that describes the process used to
produce the dataset; one of archival, cutout, filtered, mosaic, projec-
tion, specialExtraction, catalogExtraction (ssap).

/capability/dataModel (!) The short, human-readable name of a data model
supported by a TAP service; for most applications, clients should
rather constrain /capability/dataModel/@ivo-id (tr).

47

/capability/dataModel/@ivo-id (!) The IVOID of the data model supported
by a TAP service (tr).

/capability/dataSource (!) The category specifying where the data originally
came from; one of survey, pointed, custom, theory, artificial (ssap).

/capability/defaultMaxRecords (!) The largest number of records that the
service will return when the MAXREC parameter is not specified in
the query input (ssap).

/capability/executionDuration/default The run time limit for newly-created
jobs, given in seconds (tr).

/capability/imageServiceType (!) The class of image service: Cutout, Mo-
saic, Atlas, Pointed (sia).

/capability/interface/securityMethod/@standardID (!) A standard identifier
for an authentication method supported on an interface (vr).

/capability/interface/testQueryString A query string that can be used to val-
idate one of the interfaces of a capability (vr).

/capability/language/name (!) A short, human-readable name of a language
understood by the TAP service (tr).

/capability/language/version/@ivo-id (!) The IVOID of a language sup-
ported by a TAP service (tr).

/capability/maxAperture The largest aperture that can be supported upon
request via the APERTURE input parameter by a service that sup-
ports the special extraction creation method (ssap).

/capability/maxFileSize (!) The maximum image file size in bytes (sia).

/capability/maxImageExtent/lat The maximum size in the latitude (Dec.)
direction (sia).

/capability/maxImageExtent/long The maximum size in the longitude
(R.A.) direction (sia).

/capability/maxImageSize/lat The maximum image size in the latitude
(Dec.) direction in pixels (sia-1.0).

/capability/maxImageSize/long The maximum image size in the longitude
(R.A.) direction in pixels (sia-1.0).

/capability/maxImageSize A measure of the largest image the service can
produce given as the maximum number of pixels along the first or
second axes. (sia).

48

/capability/maxQueryRegionSize/lat The maximum size in the latitude
(Dec.) direction (sia).

/capability/maxQueryRegionSize/long The maximum size in the longitude
(R.A.) direction (sia).

/capability/maxRecords (!) The largest number of items (records, rows, etc.)
that the service will return (cs, sia, vg, ssap).

/capability/maxSearchRadius (!) The largest search radius, in degrees, that
will be accepted by the service without returning an error condition.
Not providing this element or specifying a value of 180 indicates that
there is no restriction. (ssap)

/capability/maxSR (!) The largest search radius of a cone search service (cs).

/capability/outputFormat/@ivo-id (!) An IVOID of an output format (tr).

/capability/outputFormat/alias A short, mnemonic identifier for a service’s
output format (tr).

/capability/outputFormat/mime (!) The MIME type of an output format
(tr).

/capability/outputLimit/default The maximal output size for newly-created
jobs (tr).

/capability/outputLimit/default/@unit The unit (rows/bytes) in which the
service’s default output limit is given (tr).

/capability/outputLimit/hard The hard limit of a service’s output size (tr).

/capability/outputLimit/hard/@unit The unit of this service’s hard output
limit (tr).

/capability/retentionPeriod/default The default time between job creation
and removal on this service, given in seconds (tr).

/capability/retentionPeriod/hard The hard limit for the retention time of
jobs on this services (tr).

/capability/supportedFrame (!) The STC name for a world coordinate sys-
tem frame supported by this service (ssap).

/capability/testQuery/catalog The catalog to query (cs).

/capability/testQuery/dec Declination in a test query (cs)

/capability/testQuery/extras Any extra (non-standard) parameters that
must be provided (apart from what is part of base URL given by the
accessURL element; cs, sia).

49

/capability/testQuery/pos/lat The Declination of the center of the search
position in decimal degrees (ssap, sia).

/capability/testQuery/pos/long The Right Ascension of the center of the
search position in decimal degrees (ssap, sia).

/capability/testQuery/pos/refframe A coordinate system reference frame
name for a test query. If not provided, ICRS is assumed (ssap).

/capability/testQuery/queryDataCmd Fully specified test query formatted as
an URL argument list in the syntax specified by the SSA standard. The
list must exclude the REQUEST argument (ssap).

/capability/testQuery/ra Right ascension in a test query (cs).

/capability/testQuery/size The size of the search radius in an SSA search
query (ssap).

/capability/testQuery/size/lat Region size for a SIA test query in declination
(sia).

/capability/testQuery/size/long Region size for a SIA test query in RA (sia).

/capability/testQuery/sr Search radius of a cone search service’s test query
(cs).

/capability/testQuery/verb Verbosity of a service’s test query (cs, sia).

/capability/uploadLimit/default An advisory size above which user agents
should reconfirm uploads to this service (tr).

/capability/uploadLimit/default/@unit The unit of the limit specified (tr).

/capability/uploadLimit/hard Hard limit for the size of uploads on this ser-
vice (tr).

/capability/uploadLimit/hard/@unit The unit of the limit specified (tr).

/capability/uploadMethod/@ivo-id The IVOID of an upload method sup-
ported by the service (tr).

/capability/verbosity (!) true if the service supports the VERB keyword;
false, otherwise (cs).

/coverage/footprint (!) A URL of a footprint service for retrieving precise
and up-to-date description of coverage (vs).

/coverage/footprint/@ivo-id (!) The URI form of the IVOA identifier for the
service describing the capability refered to by this element (vs).

50

/deprecated (!) A sentinel that all versions of the referenced standard are
deprecated. The value is a human-readable explanation for the desig-
nation (vstd).

/endorsedVersion (!) A version of a standard that is recommended for use
(vstd).

/facility (!) The observatory or facility used to collect the data contained or
managed by this resource (vs).

/format (!) The physical or digital manifestation of the information sup-
ported by a (DataCollection) resource. MIME types should be used
for network-retrievable, digital data, non-MIME type values are used
for media that cannot be retrieved over the network (vs).

/format/@isMIMEType If true, then an accompanying /format item is a
MIME Type. Within res_detail, this does not work for services that
give more than one format; since furthermore the literal of vs:Format
allows a good guess whether or not it is a MIME type, this does not
appear a dramatic limitation (vs).

/full If true, the registry attempts to collect all resource records known to
the IVOA (vg).

/instrument (!) The instrument used to collect the data contained or man-
aged by a resource (vr).

/instrument/@ivo-id (!) IVOID of the instrument used to collect the data
contained or managed by a resource (vr).

/managedAuthority (!) An authority identifier managed by a registry (vg).

/managingOrg (!) The organization that manages or owns this authority
(vg).

/rights Free-text information on usage conditions for a resource; clients
should generally use the rights column in rr.resource (vr).

/rights/@rightsURI A formal identifier for a license a resource is made avail-
able under; clients should generally use the rights_uri column in
rr.resource (vr).

/schema/@namespace (!) An identifier for a schema described by a standard
(vstd).

Note that the representation of StandardsRegExt’s status and use at-
tributes as well as its key would require sequences of complex objects, which

51

is impossible using res_detail. Hence, the respective metadata is not queri-
able within the relational registry. Similarly, complex TAPRegExt metadata
on languages, user defined functions, and the like cannot be represented in
this table. Since these pieces of metadata do not seem relevant to resource
discovery and are geared towards other uses of the respective VOResource
extensions, a more complex model does not seem warranted just so they can
be exposed.

B The Extra UDFs in PL/pgSQL

What follows are (non-normative) implementations of four of the User De-
fined Functions specificed in section 9.2 in the SQL dialect of PostgreSQL
(e.g., Postgres Global Development Group (2013)).

Note that PostgreSQL cannot use fulltext indexes on the respective
columns if the functions are defined in this way for (fairly subtle) reasons
connected with NULL value handling. While workarounds are conceivable,
they come with potentially unwelcome side effects, at least as of PostgreSQL
9.x. It is therefore recommended to replace expressions involving the func-
tions given here with simple boolean expressions in the ADQL translation
layer whenever possible.

CREATE OR REPLACE FUNCTION
ivo_hasword(haystack TEXT, needle TEXT)

RETURNS INTEGER AS $func$
SELECT CASE WHEN to_tsvector($1) @@ plainto_tsquery($2)

THEN 1
ELSE 0

END
$func$ LANGUAGE SQL;

CREATE OR REPLACE FUNCTION
ivo_hashlist_has(hashlist TEXT, item TEXT)

RETURNS INTEGER AS $func$
-- postgres can't RE-escape a user string; hence, we' ll have
-- to work on the hashlist (this assumes hashlist is already
-- lowercased).
SELECT CASE WHEN lower($2) = ANY(string_to_array($1, '#'))

THEN 1
ELSE 0

END
$func$ LANGUAGE SQL;

CREATE OR REPLACE FUNCTION
ivo_nocasematch(value TEXT, pattern TEXT)

RETURNS INTEGER AS $func$
SELECT CASE WHEN $1 ILIKE $2

THEN 1
ELSE 0

END

52

$func$ LANGUAGE SQL;

CREATE OR REPLACE FUNCTION
ivo_interval_overlaps(l1 NUMERIC, h1 NUMERIC,
l2 NUMERIC, h2 NUMERIC)

RETURNS BOOLEAN AS $func$
SELECT h1>=l2 AND h2>=l1 AND l1<=h1 AND l2<=h2

$func$ LANGUAGE SQL STABLE;

-- ivo_string_agg directly corresponds to string_agg; this translation
-- should be done in the ADQL translator.

C A View Definition for tap_tables
(non-normative)

While RegTAP operators are free to implement tap_tables as convenient on
their platform, here is a standard SQL query that produces a result compliant
to the constraints in Sect. 8.18 assuming 2024 Registry conventions:
WITH
fromres AS (

-- tables coming in through relationships ; only those declaring
-- an auxiliary capability ∗and∗ a relationship will be considered
-- The GROUP BY and MIN hack is necessary since multiple of these
-- may declare the same table (e.g ., ivoa.obscore for data collections
-- published through obscore).
SELECT

MIN(tabcap.ivoid) as resid,
related_id as svcid ,
table_name,

MIN(table_title) as table_title,
MIN(table_description) as table_description,
MIN(table_utype) as table_utype

FROM rr.res_table as tab
NATURAL JOIN rr.capability as tabcap
NATURAL JOIN rr.relationship
JOIN rr.capability AS svccap

ON (svccap.ivoid=related_id)
WHERE
(table_type!='output' OR table_type IS NULL)
AND svccap.standard_id='ivo://ivoa.net/std/tap'
AND tabcap.standard_id='ivo://ivoa.net/std/tap#aux'
AND relationship_type='isservedby'

GROUP BY related_id, table_name),

fromtap AS (
-- tables directly attached to the TAP service
SELECT rt.ivoid as resid, ivoid as svcid,
table_name, table_title,
table_description, table_utype

FROM rr.res_table AS rt

53

NATURAL JOIN rr.capability
WHERE
(table_type!='output' OR table_type IS NULL)
AND standard_id='ivo://ivoa.net/std/tap'
AND NOT EXISTS (SELECT 1 FROM fromres as fr

WHERE rt.ivoid=fr.svcid
AND rt.table_name=fr.table_name))

-- using WITH here to allow for a lateral union
SELECT ∗ FROM fromtap UNION ALL
SELECT ∗ FROM fromres) q)

D Changes from Previous Versions

D.1 Changes from PR-1.2-20240124

• Removed hedging language from sect. 4.5, “Vocabulary Considera-
tions”, since Vocabularies in the VO 2 is now a REC.

• Consequently, removed Appendix D (“Mandatory translations”). In-
gestors should take these directly from the vocabulary (e.g., via desise).

D.2 Changes from WD-1.2-20220519

• Names in rr.res_table are no longer lowercased (this picks up Reg-
TAP 1.1 erratum 1)

• Several editorial changes like slightly improved column descriptions.

D.3 Changes from REC-1.1

• Adding stc_spatial, stc_temporal, and stc_spectral tables and a
sample query illustrating their use.

• Adding a tap_table view of TAP-queriable tables.

• Requiring ADQL COALESCE, ILIKE, and WITH constructs.

• Requiring an ivo_interval_overlaps ADQL User Defined Function.

• Including VODataService 1.2 resource types.

• table_name is no longer case-folded (RegTAP 1.1 Erratum 1).

• Now recommending an index on res_table.table_utype (for discov-
ering EPN-TAP, LineTAP, ObsLocTAP. . .).

54

D.4 Changes from REC-1.0

• Added the alt_identifier table.

• Added rights_uri to resource. In rights, we now only take data
from the first rights element as hash-joining is not reliable with free
text. This technically might constitute an API change, but since we
don’t believe rights has (properly) been used anywhere, we still believe
we are within the limits of a minor change.

• Added an xpath /capability/interface/testQueryString for use in
res_detail to cover VOResource 1.1’s testQueryString interface
child. Note that this is not really enough to feed validators, as a
capability can have multiple interfaces and res_detail only tells apart
capabilitities. Running a validator off a RegTAP service really requires
an extra table.

• Added a mirror_url column to rr.interface.

• Made type information in the schema tables more generic; we now have
string, integer, real, and string+timestamp.

• Added a column authenticated_only in interface that is true when
the interface cannot be used without authentication. Added this to
the recommended discovery patterns.

• Recommending that when discovering standard services clients should
(again) constrain intf_role to std rather than intf_type to
vs:ParamHTTP. An investigation on 2019-09-01 showed that the
workaround from RegTAP 1.0 is no longer necessary.

• Now requiring that services map deprecated vocabulary terms to pre-
ferred ones.

• Now requiring the data model URI as the utype of the rr schema.

• No longer claiming that RegTAP services do not use the vg:registry
resource type any more, instead referring to RI 1.1.

• Dropping the appendix with recommended string sizes.

• Replaced inline XSLT utype maker with a link to an external resource.

• Updated example queries to match standard ids as recommended by
Identifiers 2.0; also included RegTAP 1.0 erratum 1, and repaired the
bad order of arguments in ivo_hashlist_has in query 10.3.

55

D.5 Changes from PR-2014-10-30

• No changes to specification content (only minor typo fixes).

D.6 Changes from PR-20140627

• Removed reference to a future STC extension.

• Migrated to ivoatex.

D.7 Changes from PR-20140227

• Added a /full details xpath from VORegistry (this had been forgotten
due to limitations in the makeutypes stylesheet).

• Added a /capability/interface/securityMethod/@standardID de-
tails xpath from vr:Interface.

• Added requirement to implement the ivo_string_agg user defined
function.

• Added a section specifying the treatment of non-ASCII characters in
RegTAP columns.

• New rules on string normalization: strings must be whitespace-
stripped, empty strings must be mapped to NULL.

• Dropped requirements that the _index columns are integers (let alone
small integers); added a section discussing in what sense they are im-
plementation defined.

• Dropped adql: prefixes on TAP_SCHEMA.columns datatypes.

• Now declaring a precedence of xpaths generated by rules over the list
in Appendix A.

• Clarified translation of column/@std and param/@std.

• Now recommending to constrain on intf_type (rather than
intf_role, as before) when locating standard interfaces.

• Redactional changes from RFC (e.g., in column descriptions, some clar-
ifications, typo fixes).

56

D.8 Changes from WD-20131203

• To match our usage with what will later be in the standards record,
changed the data model identifier to ivo://ivoa.net/std/RegTAP#1.0.

• Fixed a typo in a column name: schema.schemaname is now
schema.schema_name as in the prose.

• Recovered /capability/uploadMethod/@ivo-id res_detail keys that
was accidentally lost in a previous version.

• Clarification of nomenclature.

D.9 Changes from WD-20130909

• Updates for REC of SimpleDALRegExt, which contains versions 1.1 of
both the sia and the ssap XML schemas; this means there are now addi-
tional namespace URIs to take into accound, as well as new res_detail
xpaths /capability/maxSearchRadius, /capability/maxImageSize,
and /capability/testQuery/pos/refframe.

• Reinstated makeutypes.xslt script; it’s useful even with the new xpaths.

D.10 Changes from WD-20130411

• The final utype reform: most of our ex-utype strings aren’t
called utypes any more, they’re fairly plain xpaths. Consequently,
res_detail.detail_utype has been renamed detail_xpath.

• Renamed some columns and the subject table to relieve the need of
quoting in MS SQL Server (or, in the case or use_param, maintain
consistency after the renaming):

Old New
resource.version resource.res_version
res_role.address res_role.street_address
subject.* res_subject.*
res_subject.res_subject res_subject.res_subject
table_column.description table_column.column_description
intf_param.description intf_param.param_description
intf_param.use_param intf_param.param_use
validation.level validation.val_level

• rr.intf_param grew the arraysize and delim columns that before acci-
dentally were only present in rr.table_column.

57

ivo://ivoa.net/std/RegTAP#1.0

• Added warnings about having to match case-insensitively in
res_detail.detail_value for IVOID-valued rows.

• Restored the foreign key from interface to capability. Mandating ig-
noring interface elements from StandardsRegExt records really is the
lesser evil.

• resource.region_of_regard now must have unit metadata declared.

• We now explicitely deprecate multiple access URLs per interface and
announce that single access URLs will be enforced in future VORe-
source versions.

D.11 Changes from WD-20130305

• intf_index is now required to be unique within a resource, not a ca-
pability; this is because StandardsRegExt has interfaces outside of ca-
pabilities. In consequence, the intf_param no longer has a cap_index
column, and its foreign key is just ivoid and intf_index.

• Added handling for the StandardsRegExt schema element.

• The list of res_detail utypes was moved to an appendix since it was
too long to be included in the running text.

• Redaction for WD publication.

D.12 Changes from WD-20121112

• Adapted all utypes to better match future VO-DML utypes.

• footprint, data_url, facility, and instrument are no longer in rr.resource
but are instead kept in rr.res_detail rows.

• For VOResource compliance, intf_param has no flag column any more.

• res_role.base_utype is renamed to res_role.base_role and no longer
pretends to be a utype fragment; also, the content is now a simple
word..

• intf_param.use is now called intf_param.use_param to avoid possible
clashes with reserved SQL words.

• Removed all material on STC coverage.

• Added an appendix recommending field sizes.

58

References

Benson, K., Plante, R., Auden, E., Graham, M., Greene, G., Hill, M., Linde,
T., Morris, D., O‘Mullane, W., Rixon, G., Stébé, A. and Andrews, K.
(2009), ‘IVOA Registry Interfaces Version 1.0’, IVOA Recommendation
04 November 2009, arXiv:1110.0513. doi:10.5479/ADS/bib/2009ivoa.spec.
1104B, https://ui.adsabs.harvard.edu/abs/2009ivoa.spec.1104B.

Bray, T., Hollander, D., Layman, A., Tobin, R. and Thompson, H. S. (2009),
‘Namespaces in XML 1.0 (third edition)’, W3C Recommendation. http:
//www.w3.org/TR/2009/REC-xml-names-20091208/.

Campillo, J. J. and Demleitner, M. (2023), ‘Catalogue of ADQL User Defined
Functions Version 1.1’, IVOA Endorsed Note 17 November 2023. https:
//ui.adsabs.harvard.edu/abs/2023ivoa.spec.1117C.

Clark, J. and DeRose, S. (1999), ‘XML path language (XPath),
version 1.0’, W3C Recommendation. http://www.w3.org/TR/1999/
REC-xpath-19991116.

Demleitner, M., Dowler, P., Plante, R., Rixon, G. and Taylor, M.
(2012), ‘TAPRegExt: a VOResource Schema Extension for Describing
TAP Services Version 1.0’, IVOA Recommendation 27 August 2012,
arXiv:1402.4742. doi:10.5479/ADS/bib/2012ivoa.spec.0827D, https://ui.
adsabs.harvard.edu/abs/2012ivoa.spec.0827D.

Demleitner, M., Gray, N. and Taylor, M. (2023), ‘Vocabularies in the VO
Version 2.1’, IVOA Recommendation 06 February 2023. https://ui.adsabs.
harvard.edu/abs/2023ivoa.spec.0206D.

Demleitner, M., Plante, R., Linde, T., Williams, R. and Noddle, K. (2016),
‘IVOA Identifiers Version 2.0’, IVOA Recommendation 23 May 2016,
arXiv:1605.07501. doi:10.5479/ADS/bib/2016ivoa.spec.0523D, https://ui.
adsabs.harvard.edu/abs/2016ivoa.spec.0523D.

Demleitner, M., Plante, R., Stébé, A., Benson, K., Dowler, P., Graham,
M., Greene, G., Harrison, P., Lemson, G., Linde, T. and Rixon, G.
(2021), ‘VODataService: A VOResource Schema Extension for Describ-
ing Collections, Services Version 1.2’, IVOA Recommendation 02 Novem-
ber 2021. doi:10.5479/ADS/bib/2021ivoa.spec.1102D, https://ui.adsabs.
harvard.edu/abs/2021ivoa.spec.1102D.

Demleitner, M. and Taylor, M. (2019), ‘Discovering Data Collections Within
Services Version 1.1’, IVOA Endorsed Note 20 May 2019. doi:10.
5479/ADS/bib/2019ivoa.rept.0520D, https://ui.adsabs.harvard.edu/abs/
2019ivoa.spec.0520D.

59

https://doi.org/10.5479/ADS/bib/2009ivoa.spec.1104B
https://doi.org/10.5479/ADS/bib/2009ivoa.spec.1104B
https://ui.adsabs.harvard.edu/abs/2009ivoa.spec.1104B
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1117C
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1117C
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
https://doi.org/10.5479/ADS/bib/2012ivoa.spec.0827D
https://ui.adsabs.harvard.edu/abs/2012ivoa.spec.0827D
https://ui.adsabs.harvard.edu/abs/2012ivoa.spec.0827D
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.0206D
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.0206D
https://doi.org/10.5479/ADS/bib/2016ivoa.spec.0523D
https://ui.adsabs.harvard.edu/abs/2016ivoa.spec.0523D
https://ui.adsabs.harvard.edu/abs/2016ivoa.spec.0523D
https://doi.org/10.5479/ADS/bib/2021ivoa.spec.1102D
https://ui.adsabs.harvard.edu/abs/2021ivoa.spec.1102D
https://ui.adsabs.harvard.edu/abs/2021ivoa.spec.1102D
https://doi.org/10.5479/ADS/bib/2019ivoa.rept.0520D
https://doi.org/10.5479/ADS/bib/2019ivoa.rept.0520D
https://ui.adsabs.harvard.edu/abs/2019ivoa.spec.0520D
https://ui.adsabs.harvard.edu/abs/2019ivoa.spec.0520D

Dower, T., Demleitner, M., Benson, K., Plante, R., Auden, E., Graham,
M., Greene, G., Hill, M., Linde, T., Morris, D., O‘Mullane, W., Rixon,
G., Stébé, A. and Andrews, K. (2018), ‘Registry Interfaces Version 1.1’,
IVOA Recommendation 23 July 2018. doi:10.5479/ADS/bib/2018ivoa.
spec.0723D, https://ui.adsabs.harvard.edu/abs/2018ivoa.spec.0723D.

Dowler, P., Demleitner, M., Taylor, M. and Tody, D. (2017), ‘Data Access
Layer Interface Version 1.1’, IVOA Recommendation 17 May 2017. doi:10.
5479/ADS/bib/2017ivoa.spec.0517D, https://ui.adsabs.harvard.edu/abs/
2017ivoa.spec.0517D.

Dowler, P., Rixon, G. and Tody, D. (2010), ‘Table Access Protocol Version
1.0’, IVOA Recommendation 27 March 2010, arXiv:1110.0497. doi:10.
5479/ADS/bib/2010ivoa.spec.0327D, https://ui.adsabs.harvard.edu/abs/
2010ivoa.spec.0327D.

Fernique, P., Nebot, A., Durand, D., Baumann, M., Boch, T., Greco, G.,
Donaldson, T., Pineau, F.-X., Taylor, M., O’Mullane, W., Reinecke, M.
and Derrière, S. (2022), ‘MOC: Multi-Order Coverage map Version 2.0’,
IVOA Recommendation 27 July 2022. https://ui.adsabs.harvard.edu/abs/
2022ivoa.spec.0727F.

Gray, N., Cecconi, B., Demleitner, M., Derrière, S., Gray, N., Louys, M. and
Ochsenbein, F. (2023), ‘Units in the VO Version 1.1’, IVOA Recommen-
dation 15 December 2023. https://ui.adsabs.harvard.edu/abs/2023ivoa.
spec.1215G.

Hanisch, R., IVOA Resource Registry Working Group and NVO Meta-
data Working Group (2007), ‘Resource Metadata for the Virtual
Observatory Version 1.12’, IVOA Recommendation 02 March 2007,
arXiv:1110.0514. doi:10.5479/ADS/bib/2007ivoa.spec.0302H, https://ui.
adsabs.harvard.edu/abs/2007ivoa.spec.0302H.

Harrison, P., Burke, D., Plante, R., Rixon, G., Morris, D. and IVOA Registry
Working Group (2012), ‘StandardsRegExt: a VOResource Schema Exten-
sion for Describing IVOA Standards Version 1.0’, IVOA Recommenda-
tion 08 May 2012, arXiv:1402.4745. doi:10.5479/ADS/bib/2012ivoa.spec.
0508H, https://ui.adsabs.harvard.edu/abs/2012ivoa.spec.0508H.

Harrison, P., Demleitner, M., Major, B. and Dowler, P. (2018), ‘XML Schema
Versioning Policies Version 1.0’, IVOA Endorsed Note 29 May 2018. doi:10.
5479/ADS/bib/2018ivoa.spec.0529H, https://ui.adsabs.harvard.edu/abs/
2018ivoa.spec.0529H.

Lagoze, C., de Sompel, H. V., Nelson, M. and Warner, S. (2002), ‘The
open archives initiative protocol for metadata harvesting, version 2.0’.
http://www.openarchives.org/OAI/openarchivesprotocol.html.

60

https://doi.org/10.5479/ADS/bib/2018ivoa.spec.0723D
https://doi.org/10.5479/ADS/bib/2018ivoa.spec.0723D
https://ui.adsabs.harvard.edu/abs/2018ivoa.spec.0723D
https://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517D
https://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517D
https://ui.adsabs.harvard.edu/abs/2017ivoa.spec.0517D
https://ui.adsabs.harvard.edu/abs/2017ivoa.spec.0517D
https://doi.org/10.5479/ADS/bib/2010ivoa.spec.0327D
https://doi.org/10.5479/ADS/bib/2010ivoa.spec.0327D
https://ui.adsabs.harvard.edu/abs/2010ivoa.spec.0327D
https://ui.adsabs.harvard.edu/abs/2010ivoa.spec.0327D
https://ui.adsabs.harvard.edu/abs/2022ivoa.spec.0727F
https://ui.adsabs.harvard.edu/abs/2022ivoa.spec.0727F
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215G
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215G
https://doi.org/10.5479/ADS/bib/2007ivoa.spec.0302H
https://ui.adsabs.harvard.edu/abs/2007ivoa.spec.0302H
https://ui.adsabs.harvard.edu/abs/2007ivoa.spec.0302H
https://doi.org/10.5479/ADS/bib/2012ivoa.spec.0508H
https://doi.org/10.5479/ADS/bib/2012ivoa.spec.0508H
https://ui.adsabs.harvard.edu/abs/2012ivoa.spec.0508H
https://doi.org/10.5479/ADS/bib/2018ivoa.spec.0529H
https://doi.org/10.5479/ADS/bib/2018ivoa.spec.0529H
https://ui.adsabs.harvard.edu/abs/2018ivoa.spec.0529H
https://ui.adsabs.harvard.edu/abs/2018ivoa.spec.0529H
http://www.openarchives.org/OAI/openarchivesprotocol.html

Louys, M., Tody, D., Dowler, P., Durand, D., Michel, L., Bonnarel, F.,
Micol, A. and IVOA DataModel Working Group (2017), ‘Observation
Data Model Core Components, its Implementation in the Table Access
Protocol Version 1.1’, IVOA Recommendation 09 May 2017. doi:10.
5479/ADS/bib/2017ivoa.spec.0509L, https://ui.adsabs.harvard.edu/abs/
2017ivoa.spec.0509L.

Mantelet, G., Morris, D., Demleitner, M., Dowler, P., Lusted, J., Nieto-
Santisteban, M. A., Ohishi, M., O’Mullane, W., Ortiz, I., Osuna, P.,
Shirasaki, Y. and Szalay, A. (2023), ‘Astronomical Data Query Lan-
guage Version 2.1’, IVOA Recommendation 15 December 2023. https:
//ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215M.

Plante, R., Demleitner, M., Benson, K., Graham, M., Greene, G., Harri-
son, P., Lemson, G., Linde, T. and Rixon, G. (2018), ‘VOResource: an
XML Encoding Schema for Resource Metadata Version 1.1’, IVOA Rec-
ommendation 25 June 2018. doi:10.5479/ADS/bib/2018ivoa.spec.0625P,
https://ui.adsabs.harvard.edu/abs/2018ivoa.spec.0625P.

Plante, R., Demleitner, M., Plante, R., Salgado, J., Harrison, P. and Tody, D.
(2017), ‘Describing Simple Data Access Services Version 1.1’, IVOA Rec-
ommendation 30 May 2017. doi:10.5479/ADS/bib/2017ivoa.spec.0530P,
https://ui.adsabs.harvard.edu/abs/2017ivoa.spec.0530P.

Postgres Global Development Group (2013), ‘PostgreSQL 9.2.1 documenta-
tion’, Web page, retrieved 2023-06-27. http://www.postgresql.org/docs/
9.2/static/index.html.

Taffoni, G., Schaaf, A., Rixon, G. and Major, B. (2017), ‘SSO - Single-Sign-
On Profile: Authentication Mechanisms Version 2.0’, IVOA Recommen-
dation 24 May 2017, arXiv:1709.00171. doi:10.5479/ADS/bib/2017ivoa.
spec.0524T, https://ui.adsabs.harvard.edu/abs/2017ivoa.spec.0524T.

The Unicode Consortium (2012), ‘The Unicode standard, version 6.1 core
specification’. http://www.unicode.org/versions/Unicode6.1.0.

61

https://doi.org/10.5479/ADS/bib/2017ivoa.spec.0509L
https://doi.org/10.5479/ADS/bib/2017ivoa.spec.0509L
https://ui.adsabs.harvard.edu/abs/2017ivoa.spec.0509L
https://ui.adsabs.harvard.edu/abs/2017ivoa.spec.0509L
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215M
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215M
https://doi.org/10.5479/ADS/bib/2018ivoa.spec.0625P
https://ui.adsabs.harvard.edu/abs/2018ivoa.spec.0625P
https://doi.org/10.5479/ADS/bib/2017ivoa.spec.0530P
https://ui.adsabs.harvard.edu/abs/2017ivoa.spec.0530P
http://www.postgresql.org/docs/9.2/static/index.html
http://www.postgresql.org/docs/9.2/static/index.html
https://doi.org/10.5479/ADS/bib/2017ivoa.spec.0524T
https://doi.org/10.5479/ADS/bib/2017ivoa.spec.0524T
https://ui.adsabs.harvard.edu/abs/2017ivoa.spec.0524T
http://www.unicode.org/versions/Unicode6.1.0

	Introduction
	Terminology and Syntactic Conventions
	The Relational Registry within the VO Architecture

	Design Considerations
	Primary Keys
	Notes on string handling
	Whitespace Normalization
	NULL/Empty String Normalization
	Case Normalization
	Non-ASCII Characters
	Vocabulary considerations

	QNames in VOResource attributes
	Xpaths
	Discovering Relational Registries
	RegTAP Tables
	The resource Table
	The res_role Table
	The res_subject Table
	The capability Table
	The res_schema Table
	The res_table Table
	The table_column Table
	The interface Table
	The intf_param Table
	The relationship Table
	The validation Table
	The res_date Table
	The res_detail Table
	The alt_identifier Table
	The stc_spatial Table
	The stc_temporal Table
	The stc_spectral Table
	The tap_table View

	RegTAP Requirements on TAP services
	ADQL Optional Features Required for RegTAP
	User Defined Functions Required for RegTAP

	Common Queries to the Relational Registry
	TAP accessURLs
	Image Services with Spirals
	Infrared Image Services
	Catalogs with Redshifts
	Names from an Authority
	Records Published by X
	Records from Registry
	Locate RegTAP services
	TAP with Physics
	Theoretical SSA
	Find Contact Persons
	Related Capabilities
	Constraints on Space, Time, and Spectrum

	XPaths for res_detail
	The Extra UDFs in PL/pgSQL
	A View Definition for tap_tables (non-normative)
	Changes from Previous Versions
	Changes from PR-1.2-20240124
	Changes from WD-1.2-20220519
	Changes from REC-1.1
	Changes from REC-1.0
	Changes from PR-2014-10-30
	Changes from PR-20140627
	Changes from PR-20140227
	Changes from WD-20131203
	Changes from WD-20130909
	Changes from WD-20130411
	Changes from WD-20130305
	Changes from WD-20121112

	References

