
International
Virtual
Observatory

Alliance

IVOA Server-side Operations for Data
Access

Version 1.0

IVOA Working Draft 2015-12-12

Working group
DAL

This version
http://www.ivoa.net/documents/SODA/20151212

Latest version
http://www.ivoa.net/documents/SODA

Previous versions
WD-AccessData-1.0-20151021
WD-AccessData-1.0-20140730
WD-AccessData-1.0-20140312

Author(s)
François Bonnarel, Markus Demleitner, Patrick Dowler, Douglas
Tody

Editor(s)
François Bonnarel

Abstract
This document describes the SODA web service capability. SODA is a

low-level data access capability or server side data processing that can act
upon the data files, performing various kinds of operations: filtering/subsec-
tion, transformations, pixel operations, and applying functions to the data.

http://www.ivoa.net/documents/SODA/20151212
http://www.ivoa.net/documents/SODA

Status of This Document
This is an IVOA Working Draft for review by IVOA members and other

interested parties. It is a draft document and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use IVOA
Working Drafts as reference materials or to cite them as other than “work in
progress”.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/Documents/.

Contents

1 Introduction 3
1.1 The Role in the IVOA Architecture 3
1.2 Motivating Use Cases . 4

1.2.1 Retrieve Subsection of a Datacube 4
1.2.2 Retrieve subsection of a 2D Image 4
1.2.3 Retrieve subsection of a Spectrum 4

1.3 Provide the data in different formats 4
1.3.1 Flatten a Datacube into a 2D Image 4
1.3.2 Flatten a Datacube into a 1D Spectrum 4
1.3.3 Rebin Data by a Fixed Factor 5
1.3.4 Reproject Data onto a Specified Grid 5
1.3.5 Compute Aggregate Functions over the Data 5
1.3.6 Apply Standard Function to Data Values 5
1.3.7 Apply Arbitrary User-Specified Function to Data Values 5
1.3.8 Run Arbitrary User-Supplied Code on the Data 5

1.4 SODA Operation . 5
1.4.1 Pure Datalink discovery 6
1.4.2 Datalink Discovery with Backward Compatiblity . . . 7
1.4.3 Sidestepping Datalink 8

2 Resources 9
2.1 {sync} resource . 10
2.2 {async} resource . 10
2.3 Examples: DALI-examples . 10
2.4 Availability: VOSI-availability 11
2.5 Capabilities: VOSI-capabilities 11
2.6 Parameter Description and Three-Factor Semantics 12

2.6.1 Three-factor Semantics 12
2.6.2 Discovery of Supported Parameter. Implementation

strategies . 13

2

http://www.ivoa.net/Documents/

2.6.3 SODA Service Descriptor 14
2.6.4 Client Handling of Discovered Parameters 14

3 Parameters for {sync} and {async} 15
3.1 Common Parameters . 15

3.1.1 ID . 15
3.2 Filtering Parameters . 15

3.2.1 POS . 15
3.2.2 BAND . 16
3.2.3 TIME . 17
3.2.4 POL . 18

4 {sync} Responses 18
4.1 Successful Requests . 19
4.2 Errors . 19

5 {async} Responses 19

A Changes from Previous Versions 19
A.1 Changes from WD-SODA-1.0-20151212 19
A.2 Changes from WD-SODA-1.0-20151120 20
A.3 Changes from WD-AccessData-1.0-20151021 20
A.4 Changes from WD-AccessData-1.0-20140730 20
A.5 Changes from WD-AccessData-1.0-20140312 20

Acknowledgments

The authors would like to thank all the participants in DAL- WG discussions
for their ideas, critical reviews, and contributions to this document.

1 Introduction

The SODA web service interface defines a RESTful web service for perform-
ing server-side operations and processing on data before transfer.

1.1 The Role in the IVOA Architecture

TODO: new diagram from TCG
SODA services conform to the Data Access layer Interface (Dowler et al.,

2013) specification, including the Virtual Observatory Support Interfaces
(Grid and Web Services Working Group, 2011) resources.

3

1.2 Motivating Use Cases

Below are some of the more common use cases that have motivated the
development of the SODA specification. While this is not complete, it helps
to understand the problem area covered by this specification.

1.2.1 Retrieve Subsection of a Datacube

Cutout a subsection using coordinate axis values. The input to the cutout
operation will include one or more of the following:

• a region on the sky

• an energy value or range

• a time value or range

• one or more polarization states

The region on the sky should be something simple: a circle, a range of
coordinate values, or maybe a polygon.

1.2.2 Retrieve subsection of a 2D Image

This is a special case of 1.2.1, where the cutout is only in the spatial axes.

1.2.3 Retrieve subsection of a Spectrum

This is a special case of 1.2.1, where the cutout is only in the spectral axis.

1.3 Provide the data in different formats

Examples are images in PNG, or JPEG instead of FITS and spectra in csv,
FITS or VOTable.

1.3.1 Flatten a Datacube into a 2D Image

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.2 Flatten a Datacube into a 1D Spectrum

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

4

1.3.3 Rebin Data by a Fixed Factor

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.4 Reproject Data onto a Specified Grid

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.5 Compute Aggregate Functions over the Data

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.6 Apply Standard Function to Data Values

It could be “denoising” with standard methods or “on the fly” recalibration.
This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.7 Apply Arbitrary User-Specified Function to Data Values

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.3.8 Run Arbitrary User-Supplied Code on the Data

This use case will be developed and supported in the SODA-1.1 (or later)
specification.

1.4 SODA Operation

In contrast to other IVOA protocols, SODA services are not usually discov-
ered through Registry queries. Instead, clients encounter them in Datalink
(Dowler et al., 2015) declarations, which can either be standalone or embed-
ded within other services’ responses.

Since this pattern can appear somewhat confusing at first, this intro-
ductory (non-normative) chapter discusses the usage scenarios for SODA
services. In parallel, we provide advice on the server-side implications of
these scenarios.

In all cases, the first step is a data discovery service; when used below,
this term could refer to, for instance, SIA, SSA, or ObsTAP, but also to some
sort of resolution engine for persistent identifiers.

5

1.4.1 Pure Datalink discovery

In the baseline scenario, the data discovery step has yielded a result with
the media type

application/x-votable+xml;content=datalink.

To the client, this indicates that what is given in the access reference
(e.g., the access_url column in ObsTAP or SIA version 2 or the column
with the UCD VOX:Image_AccessReference in SIA version 1) is a datalink
document. Within that document, there is a SODA service descriptor writ-
ten as specified by Datalink. The whole document would looks somewhat
like this:of course, this

needs descriptions
and ranges; if this
text is accepted
for the main stan-
dard, MD will fill
this in.

of course, this
needs descriptions
and ranges; if this
text is accepted
for the main stan-
dard, MD will fill
this in.

<RESOURCE type="results">
[datalink links , one of them being]
<TR>[id=ivo://example.com/data?ds1 service−def=soda; semantics=#proc]</TR>

</RESOURCE>

<RESOURCE type="meta" utype="adhoc:service" ID="soda">

<PARAM name="standardID" datatype="char" arraysize="*"
value="ivo://ivoa.net/std/SODA#sync-1.0" />

<PARAM name="accessURL" datatype="char" arraysize="*"
value="http://example.com/my-svcs/soda/sync?ID=ivo://example.com/data?ds1" />

<GROUP name="inputParams">
<PARAM name="POS" ucd="phys.angArea;obs" datatype="char"

arraysize="*" />
<PARAM name="BAND" ucd="em.wl" unit="m" datatype="double"

arraysize="*"/>
<PARAM name="TIME" ucd="time.interval;obs.exposure"

unit="d" datatype="double"
arraysize="*" xtype="interval" />

<PARAM name="POL" ucd="meta.code;phys.polarization" datatype="char"
arraysize="*" />

</GROUP>
</RESOURCE>

Of course, the service is free to choose the VOTable ID of the resource
with the utype adhoc:service; the service will only declare the parameters
it (and the underlying data) actually supports.

From the Datalink row with #proc semantics, the client sees that there
is a service for the dataset in question (identified here through its publisher
DID, ivo://example.com/data?ds1), and from the service descriptor’s stan-
dardID PARAM it learns that the service’s parameters follow the rules laid
down here, in particular as regards the three-factor semantics. For instance,
the client is guaranteed that BAND, with UCD em.wl and unit meters ac-
tually denotes the parameter controlling where a cutout on the spectral axis
will happen.

6

SODA’s role here is exactly this guarantee of a specific semantics, as op-
posed to a non-standard service that could use BAND in an entirely different
way.

An attractive implementation strategy for small-to-medium sized instal-
lations is to pre-generate the datalink files. In that way, no extra endpoint
is required besides the discovery service and the SODA service.

Here is a sketch of the query pattern in this case:If people think
this is a good
idea, I’ll do SVGs
of these

If people think
this is a good
idea, I’ll do SVGs
of these

Client ---- discovery query ----> DAL service
|

+----- Results with ------------+
| Datalink-valued accrefs
v

DAL client --- retrieves accref ---> e.g., plain HTTP
service

|
+-------- Datalink document with -----------+
| SODA descriptor
v

SODA client -----> SODA instructions ----> SODA service
|

Data viewer <------ sliced-and-diced data -----+

1.4.2 Datalink Discovery with Backward Compatiblity

The problem with the scheme discussed in sect. 1.4.1 is that legacy clients,
i.e., those that do not understand Datalink, will not be able to interpret the
results of the discovery step. While this is probably desirable when services
hand out large data cubes that legacy clients probably will not properly
handle anyway, in many other situations services should deliver conventional
(e.g., FITS) data products to such legacy clients. To still enable SODA
and other Datalink functionality, DAL services can add a serivce descriptor
in the DAL response that indicates the availability of a Datalink service
accompanying the DAL service, looking more or less like this:

<RESOURCE type="results">
[a result from services like TAP, SIA, SSA]
<TABLE>
[in particular , we have one field like]
<FIELD ID="primaryID" name="pubDID" datatype="char" arraysize="*">
<DESCRIPTION>The publisher DID for the dataset</DESCRIPTION>

</FIELD>
...

</TABLE>
</RESOURCE>
<RESOURCE type="meta" utype="adhoc:service">

7

<PARAM name="standardID" datatype="char" arraysize="*"
value="ivo://ivoa.net/std/DataLink#links-1.0" />

<PARAM name="accessURL" datatype="char" arraysize="*"
value="http://example.com/mylinks/get" />

<GROUP name="inputParams">
<PARAM name="ID" datatype="char" arraysize="*"
value="" ref="primaryID"/>

</GROUP>
</RESOURCE>

Note that while this looks very similar to the SODA descriptor above,
this fragment is in the DAL response rather than within a Datalink document
itself, and it also describes a Datalink rather than a SODA service.

It references one (or more) field(s) from the DAL response.1 This is
explained in more detail in section 4.2 of the Datalink recommendation 1.0.
The net result is that datalink-enabled clients can find ancillary data and use
SODA services for data access by virtue of being able to retrieve Datalink
documents, whereas legacy clients still retain basic functionality.

On the service side, this incurs the additional cost of having to provide
a datalink {links} resource, on the client side, some extra dereferencing be-
comes necessary. Hence, this pattern should be preferred over the simpler
pattern from sect. 1.4.1 only if there is a significant advantage in serving
data to legacy clients.

The query pattern in this case looks like this:

Client ---- discovery query ----> DAL service
|

+----- Results with ------------+
| pubDIDs and a {links} descriptor
v

Datalink client ----- ID=pubDID -----> Datalink service
|

+-------- datalink document with -----------+
| SODA descriptor
v

SODA client -----> SODA instructions ----> SODA service
|

Data viewer <------ sliced-and-diced data -----+

1That pattern can be used within the Datalink document as in sect. 1.4.1, too, to refer
to Datalink’s ID column, which lets services use a constant access URL in the SODA
descriptor.

8

1.4.3 Sidestepping Datalink

In some situations, the extra request to retrieve the datalink document for
each dataset is inconvenient, while the client may have sufficient informa-
tion to operate the SODA service based on common metadata. A classic
example would be a service containing relatively homogeneous results of a
single instrument, perhaps a spectrograph where all spectra essentially have
the same spectral coverage and a client may want to only retrieve, say, the
vicinity of a spectral line.

In such cases a service may provide a shortcut by including a SODA
descriptor directly in the DAL response. In essence the resulting descrip-
tor looks like a union of the one given in sect. 1.4.1 and the one given in
sect. 1.4.2: It includes the SODA parameters, the ID parameter with the
reference to the column to take the publisher DID from, but it has a SODA
standardID from sect. 1.4.1 rather than the Datalink one from sect. 1.4.2.

While sidestepping the extra datalink request might appear attractive in
principle, the difficulty of determining the useful parameter ranges make this
pattern only interesting in relatively few special cases. Clients must not rely
on the presence of full SODA descriptors in DAL responses. Normal SODA
operation follows the pattern given in sects. 1.4.1 and 1.4.2.

The query pattern here is:

Client ---- discovery query ----> DAL service
|

+----- Results with ------------+
| SODA descriptor
v

SODA client -----> SODA instructions ----> SODA service
|

Data viewer <------ sliced-and-diced data -----+

2 Resources

SODA services are implemented as HTTP REST (Richardson and Ruby,
2007) web services with a {sync} resource that conforms to the DALI- sync
resource description.

A stand-alone SODA service may have one or both of the {sync} and
{async} resources. For either type, it could have multiple resources (e.g.
to support alternate authentication schemes). The SODA service may also
include other custom or supporting resources.

Either the {sync} or {async} SODA capability may be included as part of
other web services. For example, a single web service could contain the SIA-
2.0 {query} capability, the DataLink-1.0 {links} capability, and the SODA
{sync} capability. Such a service must also have the VOSI-availability and

9

resource type resource name required

{sync} service specific
{async} service specific

DALI-examples /examples no
VOSI-availability /availability yes
VOSI-capabilities /capabilities yes

Table 1: Endpoints for AccessData services

VOSI-capabilities resources to report on and describe all the implemented
capabilities.

2.1 {sync} resource

The {sync} resource is a synchronous web service resource that conforms
to the DALI-sync description. Implementors are free to name this resource
however they like, except that the name must consist of one URI segment
only (i.e., contain no slash). This is to allow clients, given the access URL,
can reliably find out the URL of the capabilities endpoint. Clients, in turn,
can find the resource path using the VOSI-capabilities resource, but will
in general be provided the access URLs through a previous data discovery
query or through direct user input.

The {sync} resource performs the data access as specified by the input
parameters and returns the data directly in the output stream. Synchronous
data access is suitable when the operations can be quickly performed and the
data stream can be setup and written to (by the service) in a short period
of time (e.g. before any timeouts).

2.2 {async} resource

The {async} resource is an asynchronous web service resource that conforms
to the DALI-async description. The considerations on naming the resource
given in sect. 2.1 apply for it.

The {async} resource performs the data access as specified by the input
parameters and either (i) stores the results for later transfer or (ii) pushes the
results to a specified destination (e.g. to a VOSpace location). Asynchronous
data access usually introduces resource constraints on the service (which
may be limited) and usually imposes a higher latency before any results can
be seen because the location of results does not have to be valid until the
data access job is complete. Asynchronous data access is intended for (but
not limited to) use when the operations take considerable time and results
must be staged (e.g. some multi-pass algorithms or operations that result in
multiple outputs).

10

2.3 Examples: DALI-examples

SODA services should provide a DALI-examples resource with one example
invocation that shows the variety operations the service can perform. Ex-
ample operations using the {sync} resource and that output a small data
stream are preferred, as the examples may be used by automatic validators
doing relatively frequent (of order daily) queries.

Parameters to be passed to the service must be given using the DALI
generic-parameter term.

2.4 Availability: VOSI-availability

A SODA web service must have a VOSI-availability resource (Grid and Web
Services Working Group, 2011) as described in DALI (Dowler et al., 2013).

2.5 Capabilities: VOSI-capabilities

A web service that includes SODA capabilities must have a VOSI-capabilities
resource (Grid and Web Services Working Group, 2011) as described in DALI
(Dowler et al., 2013). The standardID for the {sync} resource is

ivo://ivoa.net/std/SODA#sync-1.0.

The standardID for the {async} resource is

ivo://ivoa.net/std/SODA#async-1.0.

All DAL services must implement the /capabilities resource. The
following capabilities document shows the minimal metadata for a stand-
alone SODA service and does not require a registry extension schema:

<?xml version="1.0"?>
<capabilities

xmlns:vosi="http://www.ivoa.net/xml/VOSICapabilities/v1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:vod="http://www.ivoa.net/xml/VODataService/v1.1">

<capability standardID="ivo://ivoa.net/std/VOSI#capabilities">
<interface xsi:type="vod:ParamHTTP" version="1.0">
<accessURL use="full">http://example.com/data/capabilities</accessURL>

</interface>
</capability>
<capability standardID="ivo://ivoa.net/std/VOSI#availability">
<interface xsi:type="vod:ParamHTTP" version="1.0">
<accessURL use="full">

http://example.com/data/availability
</accessURL>

11

Note
As SODA builds upon several concepts of DataLink
(Dowler et al., 2015), that document should be read
before trying to understand the following material.

</interface>
</capability>
<capability standardid="ivo://ivoa.net/std/SODA#sync-1.0">
<interface xsi:type="vod:ParamHTTP" role="std" version="1.0">
<accessurl use="full">
http://example.com/data/sync

</accessurl>
</interface>
<!-- service details from extension schema could go here -->

</capability>
<capability standardid="ivo://ivoa.net/std/SODA#async-1.0">
<interface xsi:type="vod:ParamHTTP" role="std" version="1.0">
<accessurl use="full">
http://example.com/data/async

</accessurl>
</interface>
<!-- service details from extension schema could go here -->

</capability>
</capabilities>

Note that the {sync} and {async} resources do not have to be named
as shown in the accessURL(s) above. Multiple capability elements for the
{sync} and the {async} resources may be included; this is typically used if
the differ in protocol (http vs. https) and/or authentication requirements.

2.6 Parameter Description and Three-Factor Semantics

2.6.1 Three-factor Semantics

Parameters in SODA are defined by triples of name, UCD, and unit (the
“SODA triple”). Data services are free to support as many such parameters
as is appropriate for their datasets, in addition to supporting standard pa-
rameters. With the three factors, it is unlikely that two operators will by
accident use the same three factors for parameters of differing semantics.
In this way, when a new standard parameter is adopted, no existing service
should require changes to remain compliant.

With standard parameters as defined in this document, clients can rely on
certain semantics and exploit that knowledge in the provision of special UIs
or APIs. Standard parameters defined so far are given in table 2. Instructions

12

for how to propose additional standard parameters are given on the landing
page of the IVOA DAL working group2.

Name UCD Unit Semantics

ID meta.ref.url;meta.curation cf. sect. 3.1.1
POS phys.angArea;obs cf. sect. 3.2.1
BAND em.wl m cf. sect. 3.2.2
TIME time.interval;obs.exposure d cf. sect. 3.2.3
POL meta.code;phys.polarization cf. sect. 3.2.4

Table 2: SODA triples for the standard parameters defined here.

Both standard and non-standard parameters should follow DALI conven-
tions if at all possible. Roughly, float-valued parameters should be mapped
to interval-valued parameters (i.e., do not split up minimum and maximum
into separate parameters). Depending on their semantics, integer parameters
should either be intervals or enumerated parameters (which typically can be
repeated). String-valued parameters should always be enumerated.

2.6.2 Discovery of Supported Parameter. Implementation strategies

There are two principal ways a client will be led to a SODA service: From
a service descriptor that is part of a DAL discovery response, or by direct
access mediated or not via a DataLink service. In the latter case an empty
query to the service iwill answer by giving the service descriptor. . In both
cases, clients must obtain the set of supported parameters from the applicable
service descriptor.

In contrast to previous IVOA DAL protocols, SODA is not a data dis-
covery protocol but instead operates on concrete datasets. In a typical case,
some combinations of parameters (e.g., a positional or spectral cutout) may
yield no output at all, as the coverage of an individual dataset is very limited.
To provide meaningful user interfaces, clients would therefore need detailed
information on the service parameters, in particular as regards their domains
(i.e., set of values that are likely to yield non-empty results). This, in regard,
requires efficient and rich service APIs, not unlikely involving service-specific
parameters.

But the double ways towards SODA service execution makes the provid-
ing of this information difficult to describe and is not done in this version.

As a consequence of this, when the SODA service is driven from a data
discovery phase, parameters domains can be inferred by the end-user from
the discovery reponse. In the other case, it may happen that these parame-
ters have to be furnished blindly by the end-user.

2At the time of writing, this is http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaResReg.

13

http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaResReg

2.6.3 SODA Service Descriptor

The DataLink (Dowler et al., 2015) specification describes a mechanism for
describing a service within a VOTable resource and recommends that services
can describe themselves with a special resource with name="this". SODA
responses for empty sync queries should include a descriptor describing both
standard and custom query parameters (if applicable). The descriptor for a
service with standard parameters (see sect. 3) would be:

<RESOURCE type="meta" utype="adhoc:service" name="this">

<PARAM name="standardID" datatype="char" arraysize="*"
value="ivo://ivoa.net/std/SODA#sync-1.0" />

<PARAM name="accessURL" datatype="char" arraysize="*"
value="http://example.com/SODA/sync" />

<GROUP name="inputParams">
<PARAM name="ID" ucd="meta.ref.url;meta.curation" datatype="char"
arraysize="*" />
<PARAM name="POS" ucd="phys.angArea;obs" datatype="char"
arraysize="*" />
<PARAM name="BAND" ucd="em.wl" unit="m" datatype="double"
arraysize="*"/>
<PARAM name="TIME" ucd="time.interval;obs.exposure"
unit="d" datatype="double"
arraysize="*" xtype="interval" />
<PARAM name="POL" ucd="meta.code;phys.polarization" datatype="char"
arraysize="*" />

</GROUP>
</RESOURCE>

This VOTable resource should be output for empty sync queries; Thus
all inputs and outputs would be fully described.

2.6.4 Client Handling of Discovered Parameters

To keep SODA clients useful even when advanced data products are being
accessed, the following procedure should be followed by clients:

1. Obtain the parameter triples domains as described in sect. 2.6.2.

2. Identify standard parameters understood by the client and provide
suitable input widgets (e.g., a rubberband on top of a sky rendering, or
a spatial_cutout method possibly allowing library-specific coverage
objects) for them.

3. For the remaining parameters, provide generic UI or API elements
(e.g., sliders or text boxes with domains annotated for intervals, pop-
up menus for enumerated values).

14

3 Parameters for {sync} and {async}

The {sync} and {async} resources accept the same set of parameters.

3.1 Common Parameters

3.1.1 ID

The ID parameter is used to specify the dataset or file to be accessed. The
values for the ID parameter are generally discovered from data discovery or
DataLink requests. The values must be treated as opaque identifiers that
are used as-is. The DataLink specification (Dowler et al., 2015) describes
mechanisms for conveying opaque parameters and values in service descriptor
resources that can be used by clients to set the ID parameter.

The ID parameter is single-valued in {sync} requests, so {sync} soda
requests access a single dataset or file. Multiple ID parameters may be
submitted in {async} requests on order to bundle access to multiple datasets
or files in a single job.

The ID ucd is “meta.ref.url;meta.curation”, and its unit is blank. In
addition its datatype “char”, with arraysize “*”.

3.2 Filtering Parameters

Filtering parameters are used to extract subsets of larger datasets or data
files. In general, filtering parameters are single-valued in {sync} requests and
multi-valued in {async} requests (exceptions noted below). When multiple
values of filtering parameters are used in an {async} job, each combination of
values produces zero or one result. For example, if an {async} job included
two POS and two BAND values, there could be as many as four results (or
fewer if some combinations do not produce a result because the filter does
not intersect the bounds of the data).

3.2.1 POS

The POS parameter defines the positional region(s) to be extracted from
the data. The value is made up of a shape keyword followed by coordinate
values. The allowed shapes are:

Shape Coordinate values

CIRCLE <longitude> <latitude> <radius>
RANGE <longitude1> <longitude2> <latitude1> <latitude2>
POLYGON <longitude1> <latitude1> ... (at least 3 pairs)

Table 3: POS Values in Spherical Coordinates

15

As in DALI, open intervals use -Inf or +Inf as one limit.
Examples for POS values:

• A circle at (12,34) with radius 0.5:

POS=CIRCLE 12 34 0.5

• A range of [12,14] in longitude and [34,36] in latitude:

POS=RANGE 12 14 34 36

• A polygon from (12,34) to (14,34) to (14,36) to (12,36) and (implicitly)
back to (12,34):

POS=POLYGON 12 34 14 34 14 36 12 36

The inside is always assumed to be the smaller of the region to the
left and the region to the right so only polygons smaller than half the
sphere can be specified.

• A band around the equator:

POS=RANGE 0 360 −2 2

• The north pole:

POS=RANGE 0 360 89 +Inf

All longitude and latitude values (plus the radius of the CIRCLE) are
expressed in degrees in the ICRS. A future version of this specification may
allow the use of other reference systems (specifically the native system of the
data).

The POS parameter is single-valued for {sync} requests and multi-valued
for {async} jobs.

Since it is string-valued, POS is unitless (although the values contained
in the the string are all in decimal degrees). The ucd is “phys.angArea;obs”.
However the datatype of the POS parameter is “char”.

3.2.2 BAND

The BAND parameter defines the energy interval(s) to be extracted from
the data. The value is an open or closed numeric interval of values in the
native spectral axis coordinate system and units of the data. The intervals
always include the bounding values. As in DALI, open intervals use -Inf or
+Inf as one limit.

If there is one single value the interval is assumed to be infinitely small
(a scalar value).

16

• The closed interval [500,550]:

BAND=500 550

• The open interval (-inf,300]:

BAND=−Inf 300

• The open interval [750,inf):

BAND=750 +Inf

• The scalar value 550, equivalent to [550,550]:

BAND=550

Extracting using a scalar value should normally extract a single pixel
along the energy axis of the data; extracting using an interval should extract
one or more pixels.

All energy values are expressed as barycentric wavelength in meters. A
future version of this specification may allow the use of other reference sys-
tems (specifically the native system of ther data).

The BAND parameter is single-valued for {sync} requests and multi-
valued for {async} jobs.

The ucd of the BAND parameter is “em.wl”, the unit is “m”. Its datatype
is double with an arraysize of 2, and the xtype is “interval” as defined in
DALI.

3.2.3 TIME

The TIME parameter defines the time interval(s) to be extracted from the
data. The value is an open or closed interval with either numeric values
(interpreted as Modified Julian Dates). As in DALI, open intervals use -Inf
or +Inf as one limit.

If there is one single value the numeric interval is assumed to be infinitely
small (a scalar value).

• An open interval from the MJD 55100.0 and all later times:

TIME= 55100.0 +Inf

• A range of MJD values:

TIME=55123.456 55123.466

• An instant in time using Modified Julian Date:

17

TIME=55678.123456

Time values are always UTC. The TIME parameter is single-valued for
{sync} requests and multi-valued for {async} jobs.

The ucd of the TIME parameter is “time.interval;obs.exposure” and the
unit is “d”. The datatype is “double” with an arraysize of 2, and the xtype
is, again, “interval” as defined in DALI

3.2.4 POL

The POL parameter defines the polarization state(s) (Stokes) to be extracted
from the data.

• Extract the unpolarized intensity:

POL=I

• Extract the standard circular polarization:

POL=V

• The POL parameter is multi-valued; multiple values can be included
in a single request and all will be extracted. Extract only the IQU
components:

POL=I
POL=Q
POL=U

The POL is multi-valued for both {sync} and {async} requests. Unlike
general filtering parameters, all values of POL are combined into a single
filter; for example, if the request includes the three values above, the job
would generate one result with some or all of these polarization states (per
combination of ID and other filtering parameters).

The ucd of the POL PARAMETER is “meta.code;phys.polarization” and
the unit is blank. The datatype is “char” with arraysize “*”.

4 {sync} Responses

All responses from the {sync} resource follow the rules for DALI-sync re-
sources, except that the {sync} response allows for error messages for indi-
vidual input identifier values.

18

4.1 Successful Requests

Successfully executed requests should result in a response with HTTP status
code 200 (OK) and a response in the format requested by the client or in
the default format for the service.

If the values specified for cutout parameters do not include any pixels
from the target dataset/file, the service must respond with HTTP status
code 204 (No Content) and no response body.

The service should set the following HTTP headers to the correct values
where possible.

Content-Type mime-type of the response
Content-Encoding encoding/compression of the response (if applicable)

Since the response is usually dynamically generated, the Content-Length
and Last-Modified headers cannot usually be set.

4.2 Errors

The error handling specified for DALI-sync resources applies to service fail-
ure. Error documents should be text using the text/plain content-type and
the text must begin with one of the following strings:

Error General error (not covered below)
AuthenticationError Not authenticated
AuthorizationError Not authorized to access the resource
ServiceUnavailable Transient error (could succeed with retry)

UsageError Permanent error (retry pointless)

Table 4: error messages with their meaning

5 {async} Responses

The {async} resource conforms to the DALI-async resource description,
which means the job is a UWS job with all the job control features available.
All result files are to be listed as children of the UWS results resource. The
service provider is free to name each result.

A Changes from Previous Versions

A.1 Changes from WD-SODA-1.0-20151212

• POS is now unitless

• Aligned parameter UCDs with what is in Obscore

19

• Removed gratuitous xtypes.

A.2 Changes from WD-SODA-1.0-20151120

Change the name of the protocol. Suppression of SELECT and COORD.
xtype description are in DALI. Reference to this has been added.

A.3 Changes from WD-AccessData-1.0-20151021

Added general introduction on PARAMETER description to section 3. Mod-
ified SELECT and COORD sections in order to detach them from SimDal.
Added Appendix on xtype description with BNF syntax.

A.4 Changes from WD-AccessData-1.0-20140730

• Removed REQUEST parameter since the DAL-WG decision to not
include it when there is only one value.

• Clarified that ID and filierting parameters are single valued for {sync}
and multi-valued for {async}, wth POL being multi-valued but still
being treated as a single filter.

A.5 Changes from WD-AccessData-1.0-20140312

This is the initial document version.

References

Dowler, P., Bonnarel, F., Michel, L. and Demleitner, M. (2015), ‘IVOA Rec-
ommendation: IVOA DataLink’, IVOA Working Draft, arXiv:1509.06152.
URL: http://www.ivoa.net/documents/DataLink/

Dowler, P., Demleitner, M., Taylor, M. and Tody, D. (2013), ‘Data access
layer interface, version 1.0’, IVOA Recommendation.
URL: http://www.ivoa.net/documents/DALI

Grid and Web Services Working Group (2011), ‘IVOA support interfaces
version 1.0’.
URL: http://www.ivoa.net/documents/VOSI/index.html

Richardson, L. and Ruby, S. (2007), RESTful Web Services, O’Reilly.

20

	Introduction
	The Role in the IVOA Architecture
	Motivating Use Cases
	Retrieve Subsection of a Datacube
	Retrieve subsection of a 2D Image
	Retrieve subsection of a Spectrum

	Provide the data in different formats
	Flatten a Datacube into a 2D Image
	Flatten a Datacube into a 1D Spectrum
	Rebin Data by a Fixed Factor
	Reproject Data onto a Specified Grid
	Compute Aggregate Functions over the Data
	Apply Standard Function to Data Values
	Apply Arbitrary User-Specified Function to Data Values
	Run Arbitrary User-Supplied Code on the Data

	SODA Operation
	Pure Datalink discovery
	Datalink Discovery with Backward Compatiblity
	Sidestepping Datalink

	Resources
	{sync} resource
	{async} resource
	Examples: DALI-examples
	Availability: VOSI-availability
	Capabilities: VOSI-capabilities
	Parameter Description and Three-Factor Semantics
	Three-factor Semantics
	Discovery of Supported Parameter. Implementation strategies
	SODA Service Descriptor
	Client Handling of Discovered Parameters

	Parameters for {sync} and {async}
	Common Parameters
	ID

	Filtering Parameters
	POS
	BAND
	TIME
	POL

	{sync} Responses
	Successful Requests
	Errors

	{async} Responses
	Changes from Previous Versions
	Changes from WD-SODA-1.0-20151212
	Changes from WD-SODA-1.0-20151120
	Changes from WD-AccessData-1.0-20151021
	Changes from WD-AccessData-1.0-20140730
	Changes from WD-AccessData-1.0-20140312

