
1. ADQL and TAP

Markus Demleitner (msdemlei@ari.uni-heidelberg.de)

Agenda

• Why bother?

• A first query

• ADQL

• The finer points of TAP

T(able) A(ccess) P(rotocol)

A(stronomical) D(ata) Q(uery) L(anguage)

Open a browser on http://docs.g-vo.org/adql

2. Data Intensive Science

Data-intensive science means:

1. Using many data collections

2. Using large data collections

Point (1) requires standard formats and access protocols to the data, point (2) means moving
the data to your box and operating on it with FORTRAN and grep becomes infeasible.

The Virtual Observatory (VO) in general is about solving problem (1), TAP/ADQL in particular
about (2).

1

3. A First Query

To follow the examples, start TOPCAT and select TAP in the VO menu.

At Keywords type gavo. Wait until the results are filtered and select the entry “GAVO DC TAP”.
Then click “Use Service”.

You already made use of the VOs Google-like service: the Registry. A rough introduction of the
registry how you can use it for data discovery will be explained in chapter “Data Discovery”. In
the query pane, enter:

⊲ 1 SELECT TOP 1 1+1 AS result FROM ivoa.obscore

and then click “Ok”. This should give you a table with a single 2 in it. If that hasn’t worked
complain.

Copying and Pasting from http://docs.g-vo.org/adql1 is legal.

Note that in the top part of the dialog there’s metadata on the tables exposed by the service (in
particular, the names of the tables and the descriptions, units, etc., of the columns). Use that
when you construct queries later.

There are other TAP clients than TOPCAT – after all, we’re talking about a standard protocol.
Another TAP client widely used is Aladin2.

You can also use an ipython notebook, and with a bit of creativity, you can even follow this
course in this kind of interface. Attached to this page or pdf is a notebook showing some of the
more common features.

Most of the queries here assume you’re querying against the server with the IVOA id

ivo://org.gavo.dc/ system /tap/run.

To get that, typing server ivo://org.g and then completing with Tab should be sufficient.

You can also use TAPHandle3, which runs entirely in your browser.

For running a TAP client in scripts there is STILTS4 or PyVO5

More TAP clients can be found on the IVOA applications page6.

See PDF attachment(s): tap-in-pyvo.ipynb

1
http://docs.g-vo.org/adql

2 http://aladin.u-strasbg.fr/
3 http://saada.u-strasbg.fr/taphandle/
4 http://www.star.bris.ac.uk/~mbt/stilts/
5 http://pyvo.readthedocs.io/en/latest/index.html
6 http://www.ivoa.net/astronomers/applications.html

2

4. Why SQL?

The SELECT statement is written in ADQL, a dialect of SQL (“sequel”). Such queries make up
quite a bit of the science within the VO.

SQL has been chosen as a base because

• Solid theory behind it (relational algebra)

• Lots of high-quality engines available

• Not Turing-complete, i.e., automated reasoning on “programs” is not very hard

5. Relational Algebra

At the basis of relational data bases is the relational algebra, an algebra on sets of tuples
(“relations”) defining six operators:

• unary select – select tuples matching to some condition

• unary project – make a set of sub-tuples of all tuples (i.e., have less columns)

• unary rename – change the name of a relation (this is a rather technical operation)

• binary cartesian product – the usual cartesian product, except that the tuples are concaten-
ated rather than just put into a pair; this, of course, is not usually actually computed but
rather used as a formal step.

• binary union – simple union of sets. This is only defined for “compatible” relations; the
technical points don’t matter here

• binary set difference as for union; you could have used intersection and complementing as
well, but complementing is harder to specify in the context of relational algebra

Good News: You don’t need to know any of this. But it’s reassuring to know that there’s a
solid theory behind all of this.

6. SELECT for real

ADQL defines only one statement, the SELECT statement, which lets you write down expressions
of relational algebra. Roughly, it looks like this:

SELECT [TOP setLimit] selectList FROM fromClause [WHERE conditions] [GROUP BY columns] [OR-
DER BY columns]

In reality, there are yet a few more things you can write, but what’s shown covers most things
you’ll want to do. The real magic is in selectList, fromClause (in particular), and conditions.

TOP

setLimit: an integer giving how many rows you want returned.

⊲ 2 SELECT TOP 5 * FROM rave.main

⊲ 3 SELECT TOP 10 * FROM rave.main

3

7. SELECT: ORDER BY

ORDER BY takes columns: a list of column names (or expressions), and you can add ASC (the
default) or DESC (descending order):

⊲ 4 SELECT TOP 5 *

FROM rave.dr2

ORDER BY rv
⊲ 5 SELECT TOP 5 *

FROM rave.dr2

ORDER BY rv DESC
⊲ 6 SELECT TOP 5 *

FROM rave.dr2

ORDER BY fiber_number, rv

Note that ordering is outside of the relational model. That sometimes matters because it may
mess up query planning (a rearrangement of relational expressions done by the database engine
to make them run faster)

Problems

(7.1) Select the (rows of) the 20 brightest stars in the table fk6.part1.

8. SELECT: what?

The select list has column names or expressions involving columns.

SQL expressions are not very different from those of other programming languages.

⊲ 7 SELECT TOP 10

POWER(10, phot_g_mean_mag) AS rel_flux,

SQRT(POWER(ra_error, 2)+POWER(dec_error, 2)) AS errTot

FROM gaia.dr3lite

The value literals are as usual:

• Only decimal integers are supported (no hex or such)

• Floating point values are written like 4.5e-8

• Strings use single quotes (’abc’). Double quotes mean something completely different for
ADQL (they are

”
delimited identifiers“).

The usual arithmetic, comparison, and logical operators work as expected:

• +, −, *, /; as in C, there is no power operator in ADQL. Use the POWER function instead.

• = (not ==), <, >, <=, >=

• AND, OR, NOT

• String concatenation is done using the || operator. Strings also support LIKE that supports
patterns. % is “zero or more arbitrary characters”, “exactly one arbitrary character” (like
* and ? in shell patterns).

Here’s a list of ADQL functions:

• Trigonometric functions, arguments/results in rad: ACOS, ASIN, ATAN, ATAN2, COS, SIN,
TAN; atan2(y, x) returns the inverse tangent in the right quadrant and thus avoids the
degeneracy of atan(y/x).

• Exponentiation and logarithms: EXP, LOG (natural logarithm), LOG10

• Truncating and rounding: FLOOR(x) (largest integer smaller than x), CEILING(x) (smallest
integer larger than x), ROUND(x) (commercial rounding to the next integer), ROUND(x,
n) (like the one-argument round, but round to n decimal places), TRUNCATE(x), TRUN-
CATE(x,n) (like ROUND, but discard unwanted digits).

4

• Angle conversion: DEGREES(rads), RADIANS(degs) (turn radians to degrees and vice versa)

• Random numbers: RAND() (return a random number between 0 and 1), RAND(seed) (as
without arguments, but seed the the random number generator with an integer)

• Operator-like functions: MOD(x,y) (the remainder of x/y, i.e., x%y in C), POWER(x,y)

• SQRT(x) (shortcut for POWER(x, 0.5))

• Misc: ABS(x) (absolute value), PI()

Note that all names in SQL (column names, table names, etc) are case-insensitive (i.e., VAR
and var denote the same thing). You can force case-sensitivity (and use SQL reserved words as
identifiers) by putting the identifiers in double quotes (that’s called delimited identifiers). Don’t
do that if you can help it, since the full rules for how delimited identifiers interact with normal
ones are difficult and confusing.

Also note how I used AS to rename a column. You can use the names assigned in this way in,
e.g., ORDER BY:

⊲ 8 SELECT TOP 10

gaia_edr3_id,

SQRT(POWER(pmra, 2)+POWER(pmra, 2)) AS pmTot

FROM cns5.main

ORDER BY pmTot

Don’t do that on large catalogues without a very good reason – even with the TOP 10, the
database will have to compute pmTots for all items in the table and then sort by that, which
will take a long time with, for instance, Gaia DR3’s 1.8 billion rows.

To select all columns, use *

⊲ 9 SELECT TOP 10 * FROM rave.main

In general, try to only select the columns you actually need; there is no point retrieving a hundered
columns when five would do, and carrying all these superfluous columns around has a very real
cost in terms of ease-of-use and resources (in particular when it comes to uploads).

TOPCAT makes picking the columns really easy: Control-click the columns you want in the
Columns tab, and then use the “Cols” button above the the query input to insert their names.

Use COUNT(*) to figure out how many items there are.

⊲ 10 SELECT count(*) AS numEntries FROM rave.main

COUNT is what’s called an aggregate function in SQL: A function taking a set of values and
returning a single value. The other aggregate functions in ADQL are (all these take an expression
as argument; count is special with its asterisk):

• MAX, MIN

• SUM

• AVG (arithmetic mean)

Note that on most services, COUNT(*) is an expensive operation. If you just want to get an
estimate of how many rows a table has, on many services a peek into the Table pane in TOPCAT
when you have selected a table will tell you.

Problems

(8.1) Select the absolute magnitude and the common name for the 20 stars with the greatest visual magnitude in
the table fk6.part1 (in case you don’t remember: The absolute magnitude is M = 5+5 log π+m with the parallax
in arcsec π and the apparent magnitude m (check the units!). (L)

5

9. SELECT: WHERE clause

Behind the WHERE is a logical expression; these are similar to other languages as well, with
operators AND, OR, and NOT.

⊲ 11 SELECT name FROM rave.dr2

WHERE

obsDate>’2005-02-02’

AND imag<12

AND ABS(rv)>100

Problems

(9.1) As before, select the absolute magnitude and the common name for the 20 stars with the greatest visual
magnitude, but this time from the table fk6.fk6join. This will fail for reasons that should tell you something about
the value of Bayesian statistics. Make the query work. (L)

10. SELECT: Grouping

For histogram-like functionality, you can compute factor sets, i.e., subsets that have identical
values for one or more columns, and you can compute aggregate functions for them.

⊲ 12 SELECT

COUNT(*) AS n,

ROUND(mv) AS bin,

AVG(color) AS colav

FROM dmubin.main

GROUP BY bin

ORDER BY bin
Note how the aggregate functions interact with grouping (they compute values for each group).

Also note the renaming using AS. You can do that for columns (so your expressions are more
compact) as well as for tables (this becomes handy with joins).

For simple GROUP applications, you can shortcut using DISTINCT (which basically computes the
“domain”).

⊲ 13 SELECT DISTINCT comp, FK FROM dmubin.main

A common operation is trying some statistical qualification over the entire sky or a significant
part of it. Since healpixes have equal areas and are well-beheaved at the poles and across the
stitching line of a spherical coordinate system, they are particularly well suited for work like this.
An introduction to this with sample queries is given on a poster by Mark Taylor7. Not all services
support the necessary functions (in TOPCAT, you can check in the “service” tab).

While for large catalogues, such queries will have long runtimes, you can try it for smallish
catalogues even in a course situation, for instance:

⊲ 14 SELECT ivo_healpix_index(5, raj2000, dej2000) AS bin,

COUNT(*) AS n,

AVG(rv) AS meanrv,

MAX(rv)-avg(rv) AS updev,

AVG(rv)-min(rv) AS lowdev

FROM rave.main

WHERE e_rv<20

GROUP BY bin

HAVING COUNT(*)>5

Plot this in TOPCAT using the sky plot, Layers/Add Healpix Control. Use bin as Healpix index,
set the healpix level to 5, and the select what you want to see plotted. As annotation for healpix
columns improves, plotting these things should involve less manual work.

7 http://www.star.bris.ac.uk/~mbt/papers/adassXXVI-P1-31-poster.pdf

6

Problems

(10.1) Get the averages for the total proper motion from lspm.main in bins of one mag in Jmag each. Let the
output table contain the number of objects in each bin, too. (L)

11. SELECT: JOIN USING

The tricky point in ADQL is the FROM clause. So far, we had a single table. Things get interesting
when you add more tables: JOIN.

⊲ 15 SELECT TOP 10 lat, long, flux

FROM lightmeter.measurements

JOIN lightmeter.stations

USING (stationid)

Check the tables in the Table Metadata shown by TOPCAT: flux is from measurements, lat and
long from stations; both tables have a stationid column.

JOIN is a combination of cartesian product and a select.
measurements JOIN stations USING (stationid)

yields the cartesian product of the measurement and stations tables but only retains the rows in
which the stationid columns in both tables agree.

Note that while the stationid column we’re joining on is in both tables but only occurs once in
the joined table.

12. SELECT: JOIN ON

If your join criteria are more complex than simple equality, you can join ON.

⊲ 16 SELECT dateobs as lswdate, t_min as appdate

FROM lsw.plates AS a

LEFT OUTER JOIN applause.main AS b

ON (dateobs BETWEEN t_min AND t_max)

WHERE dateobs BETWEEN 36050 and 36100

This particular query compares two archives of scanned plates, lsw.plates (from the Königstuhl ob-
servatories) and applause.main (from various other German observatories) and sees if lsw.plate’s
observation date (dateobs) is within the exposure time of the other’s (which is between t min
and t max).

The LEFT OUTER JOIN makes it so that every match on the lsw.plates side is retained. Where
there is a simultaneous observation in Applause, the second column will have its MJD. Where
there is no match, that second column will be NULL.

Of course, I have picked a WHERE clause for didactic reasons. If you drop it, you will get a large
table with only very few matches in between (and you may need to go async; see below).

There are various kinds of joins, depending on what elements of the cartesian product are being
retained. First note that in a normal join, rows from either table that have no “match” in the
other table get dropped. Since that’s not always what you want, there are join variants that let
you keep certain rows. In short (you’ll probably have to read up on this):

• t1 INNER JOIN t2 (INNER is the default and is usually omitted): Keep all elements in the
cartesian product that satisfy the join condition.

• t1 LEFT OUTER JOIN t2: as INNER, but in addition for all rows of t1 that would vanish
in the result (i.e., that have no match in t2) add a result row consisting of the row in t1

with NULL values where the row from t2 would be.

• t1 RIGHT OUTER JOIN t2: as LEFT OUTER, but this time all rows from t2 are retained.

7

• t1 FULL OUTER JOIN t2: as LEFT OUTER and RIGHT OUTER performed in sequence.

13. Geometries

The main extension of ADQL wrt SQL is addition of geometric functions. Unfortunately, these
were not particularly well designed, but if you don’t expect too much, they’ll do their job.

⊲ 17 SELECT TOP 500 rv, e_rv, p.radial_velocity,

p.ra, p.dec, p.pmra, p.pmdec

FROM gaia.dr3lite AS p

JOIN rave.main AS rave

ON 1=CONTAINS(

POINT(p.ra,p.dec),

CIRCLE(rave.raj2000, rave.dej2000, 1.5/3600.))

For historical reasons some geometrical functions accept an optional string value as the first
argument e.g.

⊲ 18 POINT(’ICRS’,p.raj2000,p.dej2000)

As of ADQL 2.1 this option is marked as deprecated. Many services still only support ADQL 2.0
and hence require this argument.

There are more geometry functions defined in ADQL:

AREA, BOX, CENTROID, CIRCLE, CONTAINS, COORD1, COORD2, COORDSYS, DISTANCE,
INTERSECTS, POINT, POLYGON

Problems

(13.1) Compare the radial velocities given by the rave.main and arihip.main catalogues, together with the respective
identifiers (hipno for arihip, name for rave). Use the POINT and CIRCLE functions to perform this positional
crossmatch with, say, a couple of arcsecs. (L)

14. DISTANCE

ADQL has a DISTANCE function to compute the spherical distance between two points:

DISTANCE(lon1, lat1, lon2, lat2)

You can also use distance with the POINT geometry, like this:

⊲ 19 DISTANCE(POINT (lon1, lat1), POINT (lon2, lat2))

– but this probably only makes sense if you have native POINT-s in a table.

The DISTANCE function can be used to make cone selections and is the prefered way to perform
crossmatches on sky positions in ADQL 2.1.

⊲ 20 SELECT TOP 1000

raj2000, dej2000, parallax

FROM arihip.main

WHERE

DISTANCE(raj2000, dej2000,

189.2, 62.21) < 10

Note that there are still many TAP services out there that do not support DISTANCE or be-
come very slow when you use it. You can always fall back to the CONTAINS/CIRCLE pattern
introduced above in such cases.

8

15. Subqueries

One of the more powerful features of SQL is that you can have subqueries instead of tables
within FROM. Just put them in parentheses and give them a name using AS. This is particularly
convenient when you first want to try some query on a subset of a big table:

⊲ 21 SELECT COUNT(*) AS n, ROUND((u-z)*2) AS bin

FROM (

SELECT TOP 4000 * FROM sdssdr16.main) AS q

GROUP BY bin ORDER BY bin

Another use of subqueries is in the connection with EXISTS, which is an operator on queries
that’s true when a query result is not empty.

Beware – people coming from other languages have a tendency to use EXISTS when they should
be using JOIN (which typically is easier to optimise for the database engine). On the other hand,
EXISTS frequently is the simpler and more robust solution.

As an example, to get arihip stars that happen to be in RAVE DR5, you could write both

⊲ 22 SELECT TOP 10 *

FROM arihip.main as a

WHERE

EXISTS (

SELECT 1

FROM rave.main as r

WHERE DISTANCE(

r.raj2000, r.dej2000,

a.raj2000, a.dej2000) < 1/3600.)

or

⊲ 23 SELECT TOP 10 a.*

FROM arihip.main AS a

JOIN rave.main AS r

ON DISTANCE(

a.raj2000, a.dej2000,

r.raj2000, r.dej2000) < 1/3600.

(but see the exercise to this problem before making a pattern out of this).

Problems

(15.1) Sit back for a minute and think whether the JOIN and the EXIST solution are actually equivalent. You’re
not supposed to see this from staring at the queries – but comparing the results from the two queries ought to give
you a hint; retrieve a few more objects if your results happen to be identical. (L)

9

16. Common table expressions

Quite a useful construct is WITH. This lets you name a subquery result for later use in your main
query. Thus the queries are much easier to understand.

It may also let you override a catastrophic query plan:

⊲ 24 WITH withrvs AS

(SELECT TOP 200

ra, dec, source_id,

a.radial_velocity, b.rv as raverv

FROM gaia.dr3lite AS a

JOIN rave.main AS b

ON (

DISTANCE(a.ra, a.dec,

b.raj2000, b.dej2000) < 1/3600.))

SELECT *

FROM gdr3spec.spectra

JOIN withrvs

USING (source_id)

Each ADQL query will be translated in a sequence of steps the database will process in order
to perform the whole query. This query plan may switch the order of steps which were defined
in the scripts to enhance the performance. The query planner bases this plan on estimates of
table sizes and the “selectivities” of predicates (basically: how often they will be true). If they
get these estimates wrong, the query plans can be wrong, too, sometimes catastrophically so. In
these cases, forcing the planner using CTEs may save the day.

In our example, we crossmatch Gaia and Rave and pull radial velocities from both. Then we want
to add BP/RP spectra (which here come in arrays) with a simple join on the Gaia source id;
since at least in 2022, the backend database gets the estimate of the selectivity of the distance
condition grossly wrong, without the CTE the database would first match the 200 million rows of
of the Gaia spectra to the Gaia catalogue before turning to the half a million rave rows, turning
a reasonably fast query into a matter of hours.

17. TAP: Uploads

TAP lets you upload your own tables into the server for the duration of the query.

Note that not all servers already support uploads. If one doesn’t, politely ask the operators for
it.

Example: Add proper motions to an object catalogue giving positions reasonably close to ICRS;
grab some table, e.g., ex.vot from the HTML version of this page, load it into TOPCAT, go to
the TAP window and there say:

⊲ 25 SELECT mine.*, refcat.pmra, refcat.pmde FROM

gaia.dr3lite AS refcat

JOIN tap_upload.t1 AS mine

ON DISTANCE (

POINT(refcat.ra, refcat.dec),

POINT(mine.raj2000, mine.dej2000)) < 0.001

You must replace the 1 in tap upload.t1 with the index of the table you want to match.

You may also need to adjust the column names of RA and Dec for your table, and the match
radius.

Always take into account that positions in you upload table use the same coordinate system as
the remote table, and also pay attention to the epoch.

10

Problems

(17.1) If you have some data of your own, try getting it into TOPCAT and try this with it (but that’s really more
of a TOPCAT problem).

See PDF attachment(s): ex.vot

18. Almost real world

Just so you get an idea how SQL expressions can evolve to span several pages:

Suppose you have a catalogue giving alpha, delta, and an epoch of observation sufficiently far
away from J2000. To match it, you have to bring the reference catalogue on our side to the
epoch of your observation. For larger reference catalogues, that would be quite an expensive
endeavour. Thus, it’s usually better to just transform a smaller selection of candidate stars.

To do this, you decide how far one of your stars can have moved (in the example below 0.1
degrees, the inner crossmatch), and you generate a crossmatch there. From that crossmatch,
you select the rows for which the transformed coordinates match to the precision you want.

To play this through, load matchme.vot8 from the HTML or PDF attachment into TOPCAT.
The rough crossmatch with Gaia is standard fare:
select

alpha, delta, epoch,

source_id, ra, dec, pmra, pmdec

from tap_upload.t1

join gaia.dr3lite

on distance(alpha, delta, ra, dec)<0.1

That is returning some 10000 pairs, almost all of which are wrong (there are certainly fewer than
55 true matches, as there are just 54 rows in matchme). We will thus have to filter more strictly
constraining the positions. For that, we have to apply proper motions.

There is nothing in ADQL’s core that can do that. For the small distances we are talking about
here, you could write something like

ra+pmra/cos(radians(dec))*(epoch-2016)

as palpha,

dec+pmde*(epoch-2016) AS pdelta,

as a workable approximation.

More and more TAP services, however, have an ADQL extension function (UDF; see TOPCAT’s
“Service” tab for a per-service list of those) ivo epoch prop pos that will do a precise job. We
will use it here:

⊲ 26 SELECT alpha, delta, parallax, pmra, pmdec, source_id

FROM (

SELECT

alpha, delta, parallax, pmra, pmdec, source_id,

ivo_epoch_prop_pos(ra, dec, parallax,

pmra, pmdec, radial_velocity, 2016, epoch) as tpos

FROM tap_upload.t1

JOIN gaia.dr3lite

ON DISTANCE(alpha, delta, ra, dec)<0.1) AS q

WHERE DISTANCE(POINT(alpha, delta), tpos)<2/3600.

(don’t forget to adapt the table name behind tap upload!).

If you’ve tried it, you’ll have noticed that 53 rows were returned for 54 input rows. For “real”
data you’d of course not have this; there’d be objects not matching at all and probably objects

8 http://docs.g-vo.org/adql/html/matchme.vot

11

matching multiple objects. The reason this worked so nicely in this case is that the sample data
is artificial: I made that up using ADQL, too. The statement was:

⊲ 27 select coord1(tpos) alpha, coord2(tpos) as delta, epoch from (

select

ivo_epoch_prop_pos(ra, dec, parallax,

pmra, pmdec, radial_velocity, 2016, epoch) as tpos,

epoch

from (

select d3l.*, 1900+75*rand() as epoch

from gaia.dr3lite as d3l tablesample(1)

where

power(pmra,2)+power(pmdec,2)>500*500) as gs) as transgs

This is rather subquery-heavy and in addition uses two features that we have not seen yet. For
one, rand() returns a random number between 0 and 1, which we use here to generate a random
source epoch.

And there’s TABLESAMPLE; this is a prototype extension that may go into ADQL 2.2, perhaps
somewhat modified. As used here, you pass in how many percent of the table you want to look
at. Over a TOP 100 or so, this has the advantage that you get different rows every time you use
it. It’s not some statistically valid sampling, though.

Still. . . we have lost one object. Can you find it? And can you guess why we have lost it?

See PDF attachment(s): matchme.vot

19. TAP: Async operation

TAP jobs can take hours or days. To support that, you usually run your TAP jobs asynchronous.
This means you do not have to keep a connection open all the time.

With TOPCAT, change the Mode selector to “Asynchronous” and run a query (any will do). In
“Running Jobs”, select the URL and paste it somewhere.

Then restart TOPCAT, open the TAP window and paste the URL back into the URL field. If
the job has finished, you can retrieve the result.

There’s a bit more to async operation; for example, the server will not keep your jobs indefinitely
(see “destruction time” in the resume tab). TAP lets you change these values, though TOPCAT
doesn’t offer an interface to that as of now. PyVO (for instance) does, and so does stilts.

12

20. TAP: the TAP schema

TAP services try to be self-describing about what data they contain. They provide information
on what tables they contain in special tables in TAP SCHEMA. Figure out what columns are in
there by querying TAP SCHEMA itself:

⊲ 28 SELECT * FROM tap_schema.tables

WHERE table_name LIKE ’tap_schema.%’

Of the tables you get there, you’ll be most interested in tap schema.tables and tap schema.columns.
From the former, you can obtain names and descriptions of tables, from the latter, about the
same for columns.

To see what columns there are in tap schema.columns, say:

⊲ 29 SELECT * FROM tap_schema.columns

WHERE table_name=’tap_schema.columns’

You’ll see there’s description, unit, and type. The indexed column says if the column is part of
an index. While that information is, in general, not enough to be sure, on large tables querying
against indexed columns can steer you clear of the dreaded “sequential scan”, which is when the
database engine has to go through all rows (which is slow and may take hours for really large
tables).

The ucd column is also interesting. UCD stands for Unified Content Descriptor and defines a
simple semantic for physical quantities. For more information, see the UCD IVOA standard9. To
get an idea what UCDs look like, try:

⊲ 30 SELECT DISTINCT ucd FROM tap_schema.columns ORDER BY ucd

Problems

(20.1) How many tables are there on the server? How many columns? How many columns with UCDs starting
with phot.mag?

21. Data Discovery 1: the Registry

The VO has a “Registry” that keeps an inventory of the services and data kept within the VO.
TAP services communicate basically what’s in TAP SCHEMA to the registry.

There are a few ways to search the registry. In TOPCAT we already used the keyword search in
the TAP service window. Another way to search the registry is WIRR10. With the Web Interface
to the Relational Registry (WIRR) you can search the VO registry in a more elaborate way.
WIRR is not limited to search TAP services only, but also services using other VO protocols like
SIAP or SCS. For now our use case will be to find tables talking about quasars having a column
containing redshifts:

In the query field on top select

“Text Fields” - “match” - “quasar”

then click “+” and in the new appearing row select

“Service Type” - “is” - “TAP(SQL)” ,

again click “+” and in the new row select

“Column UCD” - “like” - “redshift”

Note that WIRR offers help what the queries mean if you click on “Info” at the end of each row.

9 http://www.ivoa.net/Documents/latest/UCDlist.html
10 http://dc.zah.uni-heidelberg.de/wirr/q/ui/

13

Problems

(21.1) Find out the UCDs for redshifts and proper motion. (L)

22. Data Discovery 2: use ADQL

The relational registry11 says how to query this data set using ADQL. All tables are in the rr
schema and can be combined through NATURAL JOIN. The same use case in ADQL looks like:

⊲ 31 SELECT ivoid, access_url, name,

ucd, column_description

FROM rr.capability

NATURAL JOIN rr.interface

NATURAL JOIN rr.table_column

NATURAL JOIN rr.res_table

WHERE standard_id=’ivo://ivoa.net/std/tap’

AND 1=ivo_hasword(table_description, ’quasar’)

AND ucd=’src.redshift’

As you can see, I’m using UCD to express physics. It’s instructive to compare the query above
with the following one:

⊲ 32 SELECT ivoid, access_url, name, ucd, column_description

FROM rr.capability

NATURAL JOIN rr.interface

NATURAL JOIN rr.table_column

NATURAL JOIN rr.res_table

WHERE standard_id=’ivo://ivoa.net/std/tap’

AND 1=ivo_hasword(table_description, ’quasar’)

AND 1=ivo_hasword(column_description, ’redshift’)

– the difference here is that we don’t use the controlled UCD vocabulary but do a freetext query
similar to the query we performed with WIRR. You notice that precision is down (in late 2013,
two columns containing not redshifts but references are returned) but recall is up (in late 2013,
you find redshift columns from SDSS catalogues that weren’t there with the UCD query).

That’s fairly typical. The recommended remedy: Complain to data providers that have lousy
metadata, and make sure metadata is good on data that you publish yourself. High-quality
metadata is of utmost importance for the VO – but on the other hand: Even shoddily published
data is better than entirely unpublished data.

There are a few sample queries in the standard document – with those to start with, it’s unlikely
you’ll ever going to need to resort to graphical interfaces to the registry like WIRR12.

11 http://www.ivoa.net/documents/RegTAP/
12 http://dc.g-vo.org/WIRR

14

23. Simbad

Simbad has a TAP interface at http://simbad.u-strasbg.fr/simbad/sim-tap.

Here’s how I found that out:

⊲ 33 SELECT ivoid, access_url

FROM rr.capability

NATURAL JOIN rr.interface

NATURAL JOIN rr.resource

WHERE standard_id=’ivo://ivoa.net/std/tap’

AND 1=ivo_hasword(res_title, ’simbad’)

Change your TAP URL to there and inspect Simbad’s table metadata. See what the main entries
look like:

⊲ 34 SELECT TOP 20 * FROM basic

The possibilities are endless.

Example: Filter out boring stars. To get a sample, use your own data if you have some. Otherwise,
let’s use some HIPPARCOS stars. In TOPCAT, do VO/Cone Search, enter hipparcos as keyword,
use the Hipparcos Main Catalogue resource and search with, say, RA 30, Dec 12, and Radius 10.

With that table open and Simbad’s public.basic metadata in the TAP window, do Ex-
amples/Upload Join. Edit the resulting query to end up like

⊲ 35 SELECT TOP 1000

otype_txt, tc.*

FROM basic AS db

JOIN TAP_UPLOAD.t7 AS tc

ON 1=CONTAINS(POINT(’ICRS’, db.ra, db.dec),

CIRCLE(’ICRS’, tc.ra, tc.dec, 2./3600.))

WHERE otype_txt!=’star’

You take it from here.

For otypes, simbad has a fairly elaborate classification system13 that you’ll need to know to
make useful queries against otype. Another secret they’re not advertising loudly enough at the
moment is that you can append two dots to an object designation to query against “thing and
descendants”, as in otype=’V*..’ to catch all variable stars.

24. Onward

If you get stuck or a query runs forever, the operators are usually happy to help you. To find out
who could be there to help you, check TOPCAT’s Service tab or use – the relational registry. If
you have the ivoid of the service, say

⊲ 36 SELECT role_name, email, base_role

FROM rr.res_role

WHERE ivoid=’ivo://org.gavo.dc/__system__/tap/run’

– if all you have is the access URL, do a natural join with interfaces.

If we have done a good job, you now know how. . .

13 http://simbad.u-strasbg.fr/simbad/sim-display?data=otype

15

 Query successful Right ascension (J2000) Declination (J2000) H selected default magnitude J selected default magnitude K selected default magnitude QHSXCsKb8WNASgpzgdfb9UF1jVBBgKn8QXIcrEB0lvDqGDcuQEoKYXwb2lFBVlHsQWGyLUFTEm9A
dJbyckMTe0BKCrf+CK77QXVHrkF/si1BdbItQHSWnVwxWT5ASgpLPD50sEFlmZpBbnrhQWIcrEB0
ln7sOXmeQEoKbH6uW8hBQ9LyQU+hy0E/521AdJa7yxzJZEBKCn1e0G/vQWybpkGCp/BBcD1xQHSW
t/FzdUNASgqcAiml7EFj3ztBgRiTQWKTdUB0lrx+az/qQEoKyN4qwyJBTT99QU+FH0FKuFJAdJat
/4Irv0BKCrNfPX05QVOVgUFaYk5BUhBiQHSW132VVxVASgq6Ymb9ZUF+RaJBglP4QXo5WEB0lspI
+W4WQEoLMJx//edBgHjVQYKRaEF2m6ZAdJbZ0Syt3kBKC1ZcLSeAQX1gQkGEtkZBhPGqQHSW74i5
d4VASgu+wkgOjUFjT99BaPXDQWIUe0B0lsxxkupTQEoLpV0cOslBcCj2QXCfvkFrysFAdJcqaw2V
FEBKCnJ9y926QXNHrkF5rhRBcedtQHSXK+vhZQpASgrIPsiSq0FeGJNBYx64QV5FokB0l0+KTB69
QEoKnZ00WM1Bd64UQYBiTkF32yNAdJdhFEy+H0BKCu3+dbxFQX8OVkGD0OVBffvnQHSXR1cMVlBA
Sgq/XXiBG0FisCFBaR64QWZaHUB0lxvddmg8QEoK8f3evZBBaNkXQW5iTkFko9dAdJc4H5aePUBK
Cu3c580DQXDItEF541RBc2BCQHSXFnqVyFRASgs9IPK+z0FpAgxBbp++QWXztkB0l0vwmVqvQEoL
VFx4pttBY6n8QWkvG0FhysFAdJdnA6+36UBKC7D/EOy3QWrZF0F164VBZ753QHSXa7iADq5ASgvP
gNwzckF47ZFBhAo9QXPrhUB0l4mnfl6rQEoMBmPHT7VBee+eQYPdL0F2wINAdJcPnB+F10BKC7Mg
U1yeQVS0OUFpCj1BUwYlQHSXB3FDOTtASgvAXVLBbkFflYFBf6HLQV564UB0lw5Lh73PQEoLz/6w
dKdBVR64QWpeNUFSl41AdJczru6VdEBKC5Mcp9ZzQXJFokF7tkZBcsi0QHSXKMJhOQBASgv/3nIQ
v0FBdLxBTMScQT5eNUB0lwLBsQ/YQEoL9R77bcpBc41QQXk/fUFvFodAdJZm3vx6OkBKCxuCPIXC
QWXnbUFrlYFBY9LyQHSWagqVhThASguKwY+B6UF2UexBfcKPQW+JN0B0loTxoZhsQEoLuv2Xb/RB
ekWiQYI5WEF2FHtAdJZsoUi6hEBKC7YkE9t/QVvS8kFecrBBWS8bQHSWiH2ys0ZASgwHHFPznUF+
FHtBgq4UQXTMzUB0lrBGhEjPQEoL655JK8NBeLxqQYI/fUF4euFAdJa7b+Lm60BKDCLdepn6QWL9
9EFm4UhBYS8bQHSWt47ihnJASgyfHxSYPUF51wpBgkm6QXD520B0llaQmu1XQEoNOcDr7fpBfFod
QYJwpEFyTdNAdJaV4X40uUBKDPykKu0UQX3XCkGEeuFBgVP4QHSWgarFOwhASg0r3Cbc5EGAnbJB
hRaHQYebpkB0lmce8wpOQEoNUKArhBJBczMzQXu+d0FyKPZAdJcMy8BdU0BKDH8jzI3jQWv3z0F1
64VBZrxqQHSXC/sVtXRASgywY+B6KUF3dLxBf+uFQXg5WEB0ltfhMrVfQEoMwX668QJBeBR7QYC0
OUF2i0RAdJbnlXA/LUBKDPiDM/yHQXZR7EGB989BdKPXQHSXC3solUpASg07IT4+KUFJ87ZBTi0O
QUel40B0l1eD3/PxQEoNMN+b3GpBelodQYEtDkF1gQZAdJc3b212JUBKDVPepGWlQXmZmkF/WBBB
co9cQHSXJnL7oB9ASg2hf0Eov0F8PXFBgzlYQYa6XkB0lwYR/ViGQEoNdWQwK0FBfhysQYKl40F1
++dAdJcwrUb1iEBKDei8FpwkQW45WEF2sCFBbsCDQHSWyylenhtASg3PX05EMUF87ZFBgsaoQYW6
XkB0luq+8Gs4QEoN1B+nZTRBdbItQX2VgUFzEm9AdJbZ1FH8TEBKDhGhEjPfQWw9cUFwUexBaaXj
QHSW46CDmKZASg4pnYg7o0Ftsi1BddsjQWjAg0B0ltXmvGIbQEoOPbwjMV1Bfu2RQYJDlkFui0RA
dJcfw7T2FkBKDoLgGbCrQWwUe0F1KwJBZ9cKQHSW8T8HfMxASg5NXYDkl0FMrAhBV3jVQUnO2UB0
lw1/DtPYQEoPDsMRYihBeeNUQYN0vEFjAgxAdJcWsA/9pEBKDyDh99c9QU0zM0FXaHNBST99QHSX
2bsniNtASgwYm9g4O0F1peNBgel5QXMm6UB0mAP07KaHQEoMhwEQoThBYPXDQWQYk0Ff87ZAdJf+
+/QBxUBKDTr/sE7oQXybpkGEP31BdqPXQHSXsmWt2cJASgy4e9zwMEFmHKxBcIcrQWTZF0B0l5lO
Gj9GQEoNAt4A0bdBTi0OQVWdskFMi0RAdJd9Dx9XtEBKDRR/EwWWQTQQYkE+7ZFBMedtQHSX2D+R
5kdASg2JHiFTN0F9DlZBhisCQXfS8kB0l6naWX1KQEoN3X7Lt/pBa753QXaPXEFpWBBAdJgrGipN
sUBKDLhisny/QX0/fUGD755BfpN1QHSYYREnb7FASg09IPK+z0FMo9dBWSbpQUhumEB0mDhjvuw5
QEoNQj2SMcZBcmJOQXzItEFwo9dAdJg5iVjZtkBKDYUeuFHsQXBumEF0crBBa+dtQHSYbxqfvndA
Sg1JQLux8kFkLQ5BaUvHQWOyLUB0mHVWjoIOQEoNuv2Xb/RBcXzuQXSDEkFo4UhAdJiLWI42j0BK
DcJ+lTFVQVuhy0FkWh1BWkGJQHSYgrtmcvxASg3I4lyBCkFqQYlBgBysQWyPXEB0mGmce8wpQEoO
Eh7mdRRBgNcKQYSNUEF/3ztAdJh+pfhMrUBKDjABT4tZQX1wpEGBtkZBfU/fQHSYGUnogV5ASg2Y
fGMn7kF+gxJBhHzuQXP3z0B0mAJeE7GOQEoN3+MqBmRBcQIMQXpJukFtDlZAdJgcTrVvuUBKDoP9
UCJXQQkvG0EZsi1BAqPXQHSYY77sOXpASg7N4Z/CqUF8+dtBgvGqQXfvnkB0mE065oXbQEoO8r7O
3UhBXwo9QWYUe0FdZFpAdJhg62fCh0BKDvze40/GQXfztkGDMzNBdYk3QHSYaa5PM0RASg8A3kxR
EUFznbJBfTMzQW/ztkB0l3AtWdVeQEoNm6GxlhBBeBiTQYCPXEFwIMVAdJeJw84gikBKDbihnJ1a
QSwYk0E1ztlBKt0vQHSXiI1tO21ASg5W3jMmnkF1DlZBezMzQXV41UB0l7Q9ic5KQEoOTj/+85FB
ZjU/QXDU/kFiCDFAdJfBYFJQL0BKDlNDc/MXQUuyLUFWyLRBSIcrQHSXv/WDpTxASg6kfs/puEF2
sCFBfw5WQXCLREB0l4oZydWiQEoOrsByS3dBbOVgQXDZF0Fq0OVAdJe1oxpL3EBKDzviLl3hQW6f
vkF4hytBbffPQHSXIc3l0YFASg8EHMUypUFyCDFBdjlYQXI9cUB0l1E5QxetQEoPTH80k4ZBf5ma
QYOn8EGBBBlAdJeMEzO5a0BKD04iosI3QXxWBEGDQYlBcTtkQHSXokJKJ2tASg9SwW3z+UF5aHNB
hCbpQXWl40B0l5ld1MdtQEoPg9/z8P5BfOVgQYNumEF2CDFAdJdyNXHR1EBKD2X9itq6QXGp/EF5
jVBBban8QHSXbPldTpBASg/Roh6jWUF6VgRBeOFIQXReNUB0l4DJU5uJQEoP9R77bcpBW7ItQWIY
k0FaNT9AdJfUJv5xi0BKDx0EHMUzQWMOVkFogxJBYfO2QHSXzjrAxi5ASg9K/VRUFUF4o9dBgLhS
QXFT+EB0mAsEq2BrQEoQAJ9iMHdBeZFoQYX1w0F8n75AdJfjNIK+jEBKD8rAgxJvQX+RaEGC/fRB
guNUQHSXsifQKKJASg/solUp/kFLP31BW7peQUXjVEB0l6EFnqVyQEoQQL/jsD5BfXS8QYP99EF2
CDFAdJfWo3rD60BKEFdC3PRiQVqn8EFjWBBBWPGqQHSYHbZezD5AShCs4ku6E0FQfvpBVkWiQU8a
oEB0l/Vx0dR0QEoQ2NvOyFBBV9cKQV60OUFWDEpAdJfsU7CBPUBKENrj5sTGQWrlYEF0Wh1Ba9sj
QHSUJS3solVASgie/Yao/EF0an9Bf8KPQXTpeUB0lDBeokzHQEoJmyPdVNpBZjEnQXFDlkFmm6ZA
dJRfzjFQ20BKCRbB42S/QWiDEkFwKPZBZS8bQHSUdh3JPqNASglX3g1m8UFym6ZBejU/QW8Wh0B0
lGP1ct5EQEoJaoMrmQtBRxqgQVPvnkFDvndAdJSZvDP4VUBKCY1gpjMFQUXbI0FSLQ5BQ1wpQHSU
hoEjgQ9ASgmbgCOmzkFocrBBbpumQWdcKUB0lFZdOZb7QEoJ8n/kvK5BakGJQXbhSEFom6ZAdJRr
sByS3kBKCch9srNGQXP3z0F9N0xBdgAAQHSUe54GD+RASgojQiRnvkFpxqhBdkWiQWXfO0B0lBXq
7iAEQEoJu4PPLPlBaVgQQW+hy0Fm+dtAdJQJSzgMt0BKCgjhUBGQQXPGqEGEVgRBcnbJQHST+hPC
VKRASgoHxBmf5EE2zM1BRYk3QTLEnEB0k+lN1yNoQEoKSoOx0MhBVyLRQWSXjUFTcKRAdJQZA6dU
bUBKCmZeAuqWQXCj10F5521BcDU/QHSUQx33YcxASgpg/keZHEFz2yNBfj1xQXQtDkB0lF3B55Z9
QEoKTmGM4tJBfbItQYPQ5UF1S8dAdJRr7O3UhEBKCo0ALiMpQUlDlkFL3ztBSHKwQHSUKoAGSp1A
SgsGX5WRzUFjHrhBbtDlQWAUe0B0lEYfnwG4QEoK6T4cm0FBeLQ5QYDQ5UFzYEJAdJS2g3974UBK
CdcjZ+QVQX5aHUGFO2RBdVwpQHSUuLvTgEVASgpGe+VTrEE7JulBSP30QTbxqkB0lKN2ki2VQEoK
UUO/cnFBdpN1QX8KPUFv64VAdJTXnhbW3EBKClq8DjioQVKDEkFfQ5ZBTvGqQHSU/9Hc1wZASgqD
wpe/pUE9WBBBQoMSQTyn8EB0lQ7+1jRVQEoKymALApNBfmZmQYQ9cUGGJulAdJTGNJe3QUBKCxh+
fAbiQWfCj0FtEm9BZYUfQHSU8an7521ASguHHmzSkUF93ztBgwYlQXX750B0lHFrEcbSQEoLAqNI
bwVBaT99QWy4UkFkXjVAdJSQw9JSSEBKCwL/jsD5QWtHrkFxfO5BZ8KPQHSUazmfXf9ASgt3IMjN
ZEFvhR9BebpeQW7Ag0B0lIvxpcoqQEoLaaCtihFBHR64QSZFokEbT99AdJSAood+5UBKC668QI2P
QXdgQkGES8dBcKfwQHSUieVcD8tASgupfhMrVkFx1wpBeFHsQXIYk0B0lMGu9vjwQEoLiF0xM39B
YSLRQW141UFhR65AdJTm+0w8GUBKC/Q8fV7QQXF87kF92yNBa6XjQHSUuzY287JASgu3vx6OYUE+
QYlBP4k3QT5FokB0lLCvX9R8QEoMAMDwH7hBTyLRQVtsi0FMan9AdJTXHzYmLUBKDEfDDTBqQW33
z0F6n75Bb9LyQHST4fjjrAxASgrqfOD8L0FttkZBdmJOQW+2RkB0k/vphWo4QEoKrT6SDAdBet0v
QX5++kF0QYlAdJQHObAk9kBKCsAeaKDTQWxqf0FwBBlBaMzNQHST+MAFPi1ASgtaQmu1W0F1gQZB
g52yQXEWh0B0lBGvwEyMQEoK7HyVfNRBcR64QX3jVEF4Wh1AdJQmYSg5BEBKC56+nIhhQXjU/kF8
OVhBb9cKQHST/BnBciZASgu74BV+7UFYdslBX9cKQVkzM0B0lAh0Qsf8QEoLzp5eJHlBfPGqQYSs
CEF85WBAdJQx6v7m+0BKC/igkC3gQXszM0GDDEpBdm6YQHSTt9MK1G9ASgu8AaNuL0FZgQZBYGJO
QVk/fUB0k8gB91EFQEoLsANoak1Bbn76QXcrAkFtmZpAdJPVOsT37EBKC9GAkLQYQVvnbUFh64VB
W/vnQHSTlXiiqQ1ASgvovBacJEF7ul5BgjlYQXNYEEB0k7Dbah6CQEoL+717IDJBf6XjQYSfvkF0
7ZFAdJO9v0h/zEBKDDx9XtBwQYBYEEGEEGJBez99QHSTzzVc2R9ASgw/3WWhRUF0AABBgA5WQXDx
qkB0k/KQq7ROQEoMMZxaPjpBbxqgQXgQYkFvBiVAdJPekHlfZ0BKDEC/47A+QWqwIUFyZmZBZhys
QHST+10DEFZASgxlQMx46kF+KPZBhP30QXnCj0B0k9Z8rqdIQEoM1b7j1f5BcszNQXblYEFogxJA
dJPtfXwsoUBKDO8CgbqAQXqTdUGB7ZFBcmJOQHST9If8uSRASg0e4kNWl0FgtDlBaFYEQWA5WEB0
lF2eQMhHQEoLpV0cOslBYRaHQW52yUFdgQZAdJRo9LYf4kBKC+8f3evZQXRN00GCnbJBg2hzQHSU
YCU5dW1ASgwZn+Q2dkFzoctBdu2RQW5FokB0lEb961LKQEoL8b70nPVBWeuFQWUi0UFVpeNAdJRQ
iA2AG0BKDBJiAlOXQXKXjUF4ZmZBb9cKQHSUYvalDWtASgxJXhfjTEE1MzNBN4EGQTSLREB0lI+F
DfFaQEoMz3yqdYpBZiDFQW7U/kFldLxAdJQwnYxtYUBKDL0jC53DQXA5WEF4hytBa0/fQHSUSAH3
UQVASgzronrpq0E1lYFBOUvHQTQtDkB0lF5Pdl/ZQEoM274BV+9BPbZGQUKXjUE81P5AdJQwW3z+
WEBKDRZ+x4Y8QX5mZkGBcKRBdEGJQHSUTjBEa2pASg2ig00m+kF8n75BgrItQXl41UB0lD0mMOwx
QEoNyd4FA3VBfdsjQYIYk0F6zM1AdJSLORkmQkBKDX8fms/6QXTlYEF/XClBdocrQHSUdj9XLeRA
Sg3rQgLZz0F8gxJBhHKwQWxumEB0lIoH9m6HQEoN3fyf+S9BUxJvQV33z0FQKPZAdJR5Ec81XUBK
DiFj/dZaQXeRaEF+IMVBcul5QHSVK2jO9nNASgtWQwK0D0F0j1xBgTtkQXeyLUB0lSuGKyfMQEoM
CEHt4RpBXdcKQWSPXEFdaHNAdJVvMKTjekBKC/xc3VCpQXibpkGBDlZBcggxQHSVUSElE7ZASgwt
nPE870FzhR9Be++eQXEaoEB0lV13dKukQEoMbkOqebxBh5FoQYPMzUF/nbJAdJVyCFsYVUBKDGDc
uanaQXOFH0F5jVBBcS8bQHSU8DfWMCNASgxAfMfRu0F7hR9BgGhzQXPfO0B0lRG+bmU4QEoMwV0t
AcFBOp++QUjdL0E3cKQ=

{
 "cells": [
 {
 "cell_type": "markdown",
 "id": "compatible-thickness",
 "metadata": {},
 "source": [
 "This notebook briefly introduces you into doing TAP/ADQL queries interactively using the pyVO package (on Debian-derived systems, do ``apt install python3-pyvo``; otherwise, see http://pypi.org/project/pyvo).\n",
 "\n",
 "Note that for this sort of interactive use, most people prefer TOPCAT (Debian: topcat; otherwise http://www.star.bris.ac.uk/~mbt/topcat)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "inner-highway",
 "metadata": {},
 "outputs": [],
 "source": [
 "import pyvo\n",
 "# Also, shut up a few overzealous warnings\n",
 "import warnings\n",
 "warnings.filterwarnings('ignore', module=\"astropy.io.votable.*\")\n",
 "warnings.filterwarnings('ignore', module=\"pyvo.utils.xml.elements\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "intensive-performance",
 "metadata": {},
 "source": [
 "You typcially first have to discover a TAP service, perhaps based on names (blind discovery, finding tables by topic or coverage, is left as an exercise to the reader; see https://pyvo.readthedocs.io/en/latest/registry for inspration)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "demonstrated-groove",
 "metadata": {},
 "outputs": [],
 "source": [
 "svcs = pyvo.registry.search(servicetype=\"tap\", keywords=\"rave\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "floral-translator",
 "metadata": {},
 "source": [
 "You can now browse the various services matching your constraints."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "dynamic-solomon",
 "metadata": {},
 "outputs": [],
 "source": [
 "svcs.to_table().show_in_notebook()"
]
 },
 {
 "cell_type": "markdown",
 "id": "assigned-activation",
 "metadata": {},
 "source": [
 "Pick one of them by index of short name:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "tested-button",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc = svcs[\"GAVO DC TAP\"].get_service()"
]
 },
 {
 "cell_type": "markdown",
 "id": "convertible-training",
 "metadata": {},
 "source": [
 "Equivalently, if you have the TAP access URL right away, you can directly construct a TAP service like this:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "prompt-camera",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc = pyvo.dal.TAPService(\"http://dc.g-vo.org/tap\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "executive-button",
 "metadata": {},
 "source": [
 "Once you have such a service, you can see what tables are on it:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "adaptive-balloon",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc.tables.describe()"
]
 },
 {
 "cell_type": "markdown",
 "id": "expensive-skirt",
 "metadata": {},
 "source": [
 "...and then inspect the columns of each table:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "desperate-peninsula",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc.tables[\"rave.main\"].columns[:10]"
]
 },
 {
 "cell_type": "markdown",
 "id": "greatest-nature",
 "metadata": {},
 "source": [
 "Based on this, you can now run your queries:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "included-trading",
 "metadata": {},
 "outputs": [],
 "source": [
 "res = svc.run_sync(\"SELECT TOP 5 raveid, raj2000, dej2000, rv FROM rave.main\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "junior-purple",
 "metadata": {},
 "source": [
 "The results's to_table method returns a normal astropy table:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "decimal-soldier",
 "metadata": {},
 "outputs": [],
 "source": [
 "res.to_table().show_in_notebook()"
]
 },
 {
 "cell_type": "markdown",
 "id": "stylish-virgin",
 "metadata": {},
 "source": [
 "For longer-running jobs, you can also run async jobs:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "educational-light",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc.run_async(\"SELECT TOP 5 raveid, raj2000, dej2000, rv FROM rave.main\"\n",
 ").to_table().show_in_notebook()"
]
 },
 {
 "cell_type": "markdown",
 "id": "precious-rotation",
 "metadata": {},
 "source": [
 "Finally, the examples you see in TOPCAT are also available in pyVO, although for browsing you will probably want to go to the service's examples endpoint:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "affiliated-particle",
 "metadata": {},
 "outputs": [],
 "source": [
 "import webbrowser, pprint\n",
 "webbrowser.open(svc.baseurl+\"/examples\")\n",
 "pprint.pprint(svc.examples[:3])"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "dynamic-spice",
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.9.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

 This schema contains data re-published from the official Gaia mirrors
(such as ivo://uni-heidelberg.de/gaia/tap) either to support combining
its data with local tables (the various Xlite tables) or to make the
data more accessible to VO clients (e.g., epoch fluxes).

Other Gaia-related data is found in, among others, the gdr3mock,
gdr3spec, gedr3auto, gedr3dist, gedr3mock, and gedr3spur schemas.

 If you use public Gaia DR3 data in a paper, please take note of
`ESAC's guide`_ on how to acknowledge and cite it.

.. _ESAC's guide:
https://gea.esac.esa.int/archive/documentation/GDR3/Miscellaneous/sec_credit_and_citation_instructions/

 This is gaia_source from the Gaia Data Release 3, stripped to just
enough columns to enable basic science (but therefore a bit faster and
simpler to deal with than the full gaia_source table).

Note that on this server, there is also The gedr3dist.main, which
gives distances computed by Bailer-Jones et al. Use these in
preference to working with the raw parallaxes.

This server also carries the gedr3mock schema containing a simulation
of gaia_source based on a state-of-the-art galaxy model, computed by
Rybizki et al.

The full DR3 is available from numerous places in the VO (in
particular from the TAP services ivo://uni-heidelberg.de/gaia/tap and
ivo://esavo/gaia/tap).

 Query successful

 For advice on how to cite the resource(s) that contributed to this result, see http://dc.zah.uni-heidelberg.de/tableinfo/gaia.dr3lite#ti-citing

 More information on a resource that contributed to this data is found at http://dc.zah.uni-heidelberg.de/tableinfo/gaia.dr3lite

 -- *TAINTED*: the value was operated on in a way that unit and ucd may be severely wrong

 333.6340140164655 27.849976857459605 1965.7858191799014
 333.63439154152104 27.847405123061925 1947.3519247585068
 37.640932548792456 -15.722883426074057 1970.7613362859495
 15.640617887051132 -31.881568979728115 1938.7438159932215
 318.3940312945749 -19.321046247513873 1972.0091052176801
 57.349591580851666 -3.326745763069553 1962.9485602093544
 10.08306308889046 -59.46174063841194 1942.3577591141157
 10.071623788088228 -59.46362265289873 1926.8545099913676
 8.632337773885284 71.20022343355981 1945.4506167731026
 134.78530929035358 36.45282227746787 1902.1701747353989
 71.95882645149462 48.27898180625064 1961.1810783581943
 308.17298046054367 5.847303573127917 1940.316450898357
 282.4414223127152 -23.832277351526997 1926.5229776949748
 316.61589193043056 38.67331845368693 1921.525472658736
 185.64760924528508 -40.033957760460126 1933.0340149658534
 177.47117195940297 -40.20894686704706 1931.7337387029202
 127.66703999616873 32.70431313196559 1946.3142521041284
 125.61558454964111 7.416129715367857 1968.3133986152607
 118.27728417448131 -14.793122661781078 1952.5157837774932
 129.96316706834125 11.529560242153291 1950.438824708746
 266.66088065304507 -12.965997565691493 1942.4389675114317
 229.83187163328384 23.067880433803026 1937.4327307097165
 208.16982032762863 -50.92087061793369 1921.4381561523028
 208.1617517256657 -50.92086550762734 1962.9586603645034
 227.34014275805797 -19.959301753021517 1958.9875913830242
 8.951982058702276 52.68959526402702 1943.2097281411643
 8.95919839022566 52.695621024043355 1959.1512094428379
 270.7574708312609 75.9582084752584 1950.5022597628474
 44.124398209628296 55.44958708143954 1936.572709014636
 254.71752220896474 68.89309779083949 1913.4494566871606
 265.6172109619817 75.61616196744106 1902.6093151808363
 152.37996453042464 51.29479013901907 1973.9560056023508
 133.88317005174167 70.79658403271424 1973.392616854931
 133.89468833368636 70.79807667551529 1964.2796928702403
 274.3324327736555 68.5717716124557 1962.3805489099857
 117.16711189884757 53.65851586215758 1930.00739348807
 117.170724364647 53.663065606320096 1901.2948549576042
 217.67195825701702 59.722149014004565 1967.4392505929422
 299.2362835032754 -42.25472256197355 1935.5251281548265
 312.83117367077637 -79.28731780277282 1913.0609048993458
 62.13731001403038 50.17996217339884 1956.0809722309855
 183.2653558716693 3.2644351082596477 1926.2454559551074
 195.18525425602405 19.221439088945132 1965.890505736405
 220.38663157588852 -51.96509368354733 1960.9900359149158
 278.8628157269665 -19.725528411088195 1963.9790407796252
 203.01499743926288 -1.3009835552844349 1910.0729652970142
 247.15007724114255 3.2641606982975873 1923.4890432221996
 34.538354208523124 44.27284169091741 1925.0252727929708
 159.6427919671567 35.49494033204997 1971.4734780822916
 354.8107803302858 -20.941480001483324 1908.7872016815916
 351.4219103574577 -18.794354277818243 1900.632318417714
 22.709508881043494 -4.121517588977726 1972.6064576949682
 257.0677087562446 -34.59051259100995 1932.3458402124845
 213.13028261265407 10.148536987117131 1972.4337744759741

