ADQL Reference

Select Clause

SELECT [DISTINCT|ALL] [TOP n]
<select list>
FROM <table expression>
[WHERE <conditions>]
[GROUP BY <column> {, <column>}]
[HAVING <conditions>]
[ORDER BY <column> {, <column>} [ASC|DESCI]]

ADQL Functions

Chopping numbers

ABS(x), CEILING(x), FLOOR(X),
ROUND (X[, places]), TRUNCATE(Xx)

Transcendental functions

EXP(X), LOG(x), LOG1O(Xx), POWER(X, ¥), SQRT(X),
ACOS(x), ASIN(x), ATAN(x), ATAN2(y, x), COS(X),
COT(x), SIN(x), TAN(X)

Other

PI(), DEGREES(x), RADIANS(X)
MOD(numerator, denominator)

-- remainder on integer division

RAND(), RAND (seed) -- random numbers

ADQL Aggregate Functions

These are functions taking sets of rows, either the
total result set or from GROUP:

COUNT, MAX, MIN, SUM, AVG
Special case:

SELECT COUNT(*) FROM table
counts the rows.

ADQL Geometry Functions

<csys>, the coordinate system, should normally

just be the empty string (' '). All angles are in
degrees.

AREA(<geometry value>)
BOX(<csys>, ra, dec, width, height)
CENTROID(<geometry value>)

CIRCLE(<csys>, ra, dec, radius)
CONTAINS(<geometry value>, <geometry
value>) -returns0or 1

COORD1(<point or such>)

COORD2(<point or such>)

DISTANCE(<point or such>, <point or such>)
- in degrees

INTERSECTS(<geometry value>, <geometry
value>)
-returns 0 or 1

POINT(<csys>, ra, dec)

POLYGON(<csys>, ral, decl, ra2, dec2
{, ran, decn})

ADQL Predicates

Predicates are expressions you can use in WHERE
clauses.
The "usual" math comparisons work:
, 5 w5258, 2
a [NOT] BETWEEN x AND y
EXISTS (subquery)

a IS [NOT] NULL

Caution: stuff like
a=NULL, a!=NULL, or a>NULL
is always false!

Introduction

This reference card is about the IVOA Astronomical
Data Query Language ADQL, a dialect of SQL for
querying astronomical databases understood
across many servers. ADQL is sent to the servers
using the table access protocol TAP.

A fairly gentle introduction to both topics is
available at http://docs.g-vo.org/adql.

TAP Matters
TAP upload in TOPCAT ...

Table Access Protocol (TAP) Query
Window TAP Edi erop Help

Select Service | Use Service | Resume Job [Running Jobs |

Find: [ppmd | ®Service | @Sschema | ®Table | ®Columns | O Foreign Keys
[¥IName []Descrip [or] Name DataType| Indexed| Unit Desc
& Gavo Do TAP (3144) Hipix dentifier (Q3C ipix of the :ﬁh
+ Dl ppmd £272) 122000 eg ight Ascension |2000,0, ep
dej2000 eg eclination J2000.0, epoch 3
FE ppmx.main e _raepra eg lean error in RA*cos(delta) ||
8 ppmd.usnocorr e_deepde eg lean error in Dec at mean &
¢ [ucac (173) prira eg ion in RA*cos{delt
B prde &g, roper Mation in Dec [
e prra eg, lean error in pmRA*cos(delt
e_pmde eg, lean error in pmDE |
nobs umber of observations ugel
epra ean Epoch (RAY |
fepde lean Epoch (Dec) 1
mag selected defavlt magnitudel
0 =]

| [»]

Service Capabiliti
Query Language: [ADQL-2.0 =] Max Rows: [2000 (default) [~] uploads: 20mb

@2 [E]o]a]e =]

ADQL Text:

wose: Syncronous [~

1

SELECT

TOP 1000 *

FROM TAP_LPLOAD, t1

Service-Provided » [RunQuery |

TAP_SCHEMA
ObsTAP
RegTAP

... and in scripts

stilts tapquery
tapurl="'http://dc.zah.uni-heidelberg.de/tap'
adqgl="SELECT
TOP 1000 *
FROM TAP_UPLOAD.t1"

Sample Queries

Basic Query
A one-table query showing off many frequently-used
features.

SELECT TOP 10

POWER(10, alfa_Fe) AS ppress,

SQRT (SQUARE (e_pmde) +SQUARE (e_pmra))
AS errTot

FROM rave.main

WHERE obsDate>'2005-02-02'

AND imag<12

AND ABS(rv)>100

ORDER BY ppress

Grouping/Histograms
Here, we make a histogram by visual magnitude
and compute color averages for each bin.
SELECT
COUNT(*) AS n,
ROUND(mv) AS bin,
AVG(color) AS colav
FROM dmubin.main
GROUP BY bin
ORDER BY bin

Subqueries

Used here to try a query with a subset of a large
table; also note how we're extracting digits from a
compound flag here.
SELECT
COUNT(*)
FROM (
SELECT TOP 4000 *
FROM arigfh.id) AS g
WHERE 4=MOD(q.decflags/10000, 10))

of Education
and Research

GERMAN ASTROPHYSICAL * — Federal Ministry

GAVO

VIRTUAL OBSERVATORY

Created 2012 by the GAVO project, in particular
Kristin Riebe and Markus Demleitner. GAVO is
Germany's contribution to the Virtual Observatory
effort, funded by Federal Ministry of Education and
Research. For details see http://www.g-vo.org.

Joining Tables

Join with USING

(join tables by giving the names of the columns that must match)
SELECT TOP 10 lat, long, flux

FROM lightmeter.measurements

JOIN lightmeter.stations

USING (stationid)

Join with ON

(give a boolean expression; here's a crossmatch using ADQL
geometries, matching objects from ppmxl.main to those in rave
with a radius of 1.5 arcseconds)

SELECT TOP 5

rv, e_rv,

p.raj20e0, p.dej2000,

p.pmRA, p.pmDE

FROM ppmxl.main AS p

JOIN rave.main AS rave
ON 1=CONTAINS(
POINT('", rave.raj2000, rave.dej2000),
CIRCLE('', p.raj2000, p.dej2000,

1.5/3600.))

NATURAL join
(use all matching names; this query will give you TAP services
giving columns with a certain UCD in tables with a certain
keyword)

SELECT ivoid, access_url, name, ucd,
description

FROM rr.capability

NATURAL JOIN rr.interface

NATURAL JOIN rr.table_column

NATURAL JOIN rr.res_table

WHERE standard_id='ivo://ivoa.net/std/TAP'
AND 1=ivo_hasword(table_description,
'quasar') AND ucd='phot.mag;em.opt.V'

Using EXIST
(this filters all objects present in a second table)

SELECT * FROM ppmxl.main AS g

WHERE NOT EXISTS (

SELECT * FROM dmubin.main AS d

WHERE 1=CONTAINS (
POINT('', d.raj2000, d.dej2000),
CIRCLE('', p.raj2000, p.dej2000, 0.001)))

Common Obscore columns

The table ivoa.obscore describes observations
("datasets") in a generic way. Commonly used
columns in that table include:

dataproduct_type -- image, cube, spectrum, sed,
timeseries..

obs_publisher did -- a VO-unique identifier for
the dataset

access _url -- where to get the data
target_name -- what did they want to observe?
s ra, s_dec -- ICRS center of observation

s_region -- (sometimes) an ADQL geometry of sky
area covered

t_min, t_max, t_exptime --time covered (M]D),
exposure time (s)

em_min, em_max -- waveband covered (in meters)
o_ucd -- UCD for the observable

facility_name, instrument_name -- where did
the dataset come from?

Important TAP_SCHEMA tables

tables - table_name, description tell you what
tables there are

columns - column_name, description, ucd, unit;
also check for indexed

keys - from_table, target_table give you
key ids for foreign keys ("links") between tables.
The actual columns that are part of the foreign
key are in key columns.

This work is distributed under the Creative Commons Attribution

3.0 license. For the source and the latest @
ﬁ.E

version, see http://docs.g-vo.org/adqlref.
Image Credit: NASA

