
International
Virtual
Observatory

Alliance

On the Use of Capabilities in the VO

Version 1.0

IVOA Note 2019-03-15
Working group

Registry
This version

http://www.ivoa.net/documents/caproles/20190315
Latest version

http://www.ivoa.net/documents/caproles
Previous versions

This is the first public release
Author(s)

Demleitner, M.
Editor(s)

Demleitner, M.
Version Control

Revision 5416, 2019-04-29 15:47:04 +0200 (Mon, 29 Apr 2019)
https://volute.g-vo.org/svn/trunk/projects/registry/caproles/caproles.tex

http://www.ivoa.net/documents/caproles/20190315
http://www.ivoa.net/documents/caproles
https://wiki.ivoa.net/twiki/bin/view/IVOA/MarkusDemleitner
https://volute.g-vo.org/svn/trunk/projects/registry/caproles/caproles.tex

Abstract
The data model VOResource and its extensions imply for services in the

Virtual Observatory (VO) is a four-layered hierarchy of VO resources having
capabilities having interfaces having access or mirror URLs. This model has
to be aligned to the real (deeply graph-like) structure of services accessible
through various machine- and human-readable endpoints that often have to
be combined in some way by clients in order to operate a service. Since in
the early days of the VO, most services simply had a 1:1:1:1 relationship all
the way between services and access URLs, the details of mapping endpoints
to the VOResource model did not matter too much. With the advent of
complex, multi-endpoint services, authenticated interfaces, and failover end-
points, this has changed, and some of the early design decisions prove to be
problematic. This note investigates some problems identified and suggests a
roadmap to remedy them.

Status of this document
This is an IVOA Note expressing suggestions from and opinions of the

authors. It is intended to share best practices, possible approaches, or other
perspectives on interoperability with the Virtual Observatory. It should not
be referenced or otherwise interpreted as a standard specification.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/documents/.

Contents

1 Introduction 3
1.1 Terminology . 3
1.2 A Brief History of the VOSI Problem 4

2 The Problem Setting 7
2.1 The Service Model in VORegistry 7
2.2 A Sketch of the Current Practice 8
2.3 What is a Capability? . 9
2.4 A Structuralist Approach to the Registry 12

2.4.1 VOSI capabilities . 12
2.4.2 VOSI tables . 13
2.4.3 VOSI availability . 13
2.4.4 DALI sync and async 14
2.4.5 DALI examples . 14

2

http://www.ivoa.net/documents/

3 A Roadmap for Adopting these Findings 15
3.1 VODataService . 15
3.2 RegTAP . 16
3.3 TAPRegExt . 16
3.4 VOSI . 17
3.5 VOResource . 18
3.6 DALI . 19
3.7 Datalink . 19
3.8 SIAP2 . 20
3.9 SimpleDALRegExt . 21
3.10 VOSpace . 22

A Changes from Previous Versions 22

Acknowledgments

The core of this note was conceived during a workshop on authentication
and authorisation in the VO held 2019-01-29 through 2019-01-30 at the Os-
servatorio Astronomico di Trieste in the context of the Horizon 2020 project
ASTERICS (grant agreement number 653477).

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard RFC2119 (Bradner, 1997).

The Virtual Observatory (VO) is a general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

1 Introduction

1.1 Terminology

Before we can state the problem to be discussed here, we need to define
the meanings we will assume for some terms that have not always been
consistently used by different standards and communities. Readers finding
this section somewhat abstract or even hair-splitting can skip it, referring
back to it as necessary. The specific interpretation of some of these terms in
the VO Registry is given in 2.1.

3

http://www.ivoa.net

resource The URI standard RFC 3986 (Berners-Lee and Fielding et al., 2005)
defined a resource as essentially anything that can be referenced. This
sense of resource we will call “URI resource” here. In contrast, VORe-
source (Plante and Demleitner et al., 2018) defined a resource to be
something registered in the VO Registry. In this note, we are interested
in the special (but overwhelmingly typical) case of registered services,
which today may be fairly complex entities comprising many different
endpoints. We will call this a “VO resource” in the following. While
the terms are not contradictory – an entry in the VO registry can be
referenced by a URI, and RFC 3986 explicitly states that a collection
of other resources can again be a resource –, VO resource is a much
narrower term, and certainly not all statements about VO resources
are true for URI resources.

endpoint As used here, an endpoint is understood to be the smallest service
element the Registry talks about, i.e., as a rule something that has
a single URL immediately ready for use by clients. It is hence a URI
resource belonging to a service, and very typically this resource’s repre-
sentation will vary by time or by parameters passed in. In VOResource,
the URLs of these will appear usually in accessURL or mirrorURL ele-
ments, although certain types of endpoints have been defined elsewhere
(e.g., the URL of a footprint endpoint).

service Here, a service is understood to be a special type of VO resource,
specifically a VO resource registered with capability children. From
a client perspective, it is a collection of endpoints, each of which has
a defined role in relation to some subset of the other endpoints, the
grouping being implied by interfaces and capabilities, all cooperating
in order to provide a given functionality.

interface Without qualification, “interface” is taken to mean an interface in
the VOResource sense (i.e., a particular instance of a capabilty with a
well-defined access mode). In the rare cases when we mean “abstract
set of modalities for service use”, we speak of “client interfaces” (for
machine use) or “user interfaces” (for human use).

1.2 A Brief History of the VOSI Problem

In 2011, the Virtual Observatory standard “IVOA Support Interfaces” (VOSI
in the following) appeared in version 1.0 (Graham and Rixon et al., 2011). It
defined three endpoints useful in VO operations. One (“VOSI capabilities” in
the following) returns an enumeration of way to access a service, one (“VOSI
tables” in the following) to obtain the structure of underlying or delivered
tables, and one (“VOSI availability”) to interrogate whether the service is

4

down and if so, when it is expected to come back. In section four of VOSI,
it said

An availability endpoint shall be represented by an element
named capability, of type [vr:]Capability (defined by the standard
VOResource XML schema [(Plante and Benson et al., 2008)]).
The value of the standardID attribute of the capability shall be
ivo://ivoa.net/std/VOSI#availability.

Similar language follows for the two other endpoints. This seemed reason-
able at the time, and it set the tone on how to use the concept of capability
in VOResource for a long time.

Some implementers still had what seemed like corner cases that would
not quite work with these capabilities. For instance, when the data in a
service was available through both Obscore and SSAP, what should the tables
endpoint (i.e., what accessURL in the interface in the tables capability points
to) return? The Obscore or the SSAP schema? Or perhaps some internal
representation that both of these are generated from? Or should there be
two tables capabilities? But if so, how would clients find out which one to
use?

Later, when services started to have mirrors, it was noticed that the
availability endpoint as specified was rather useless, as it could only indicate
global up or global down. This will clearly not enable failover scenarios,
where clients could fall back to mirrors or even other protocols if only parts
or a single deployment of a service are failing.

The expectation was that such corner cases could be dealt with more
throrougly later, and so what we might call the “VOSI model” (i.e., using
capabilities for all kinds of aspects of service operation) was picked up by
the Data Access Layer Interface specification (DALI) in its 1.0 version that
became an IVOA recommendation in 2013 (Dowler and Demleitner et al.,
2013). It went further in at least insinuating that synchronous and asyn-
chronous operation of “a” service ought to be two different capabilities, too.1

Meanwhile, IVOA’s very successful Table Access Protocol (TAP) in its
version 1.0 went a different way (Dowler and Rixon et al., 2010): It just
declared a common “root” access URL in a single capability (and interface)
and defined a fixed hierarchy of child endpoints. For instance, clients of
a TAP 1.0 service can always retrieve the service’s current capabilities at
<root url>/capabilities. While this was not in direct conflict with VOSI,

1Section 2 of DALI actually speaks of “resources”, which there is clearly meant in
a URI sense rather than a VOResource sense. DALI’s Section 2.5 maps at least some
of these “resources” to VOResource capabilities, which further complicates matters: the
“resource” (in the DALI sense) in, say, sync, is can have multiple endpoint URLs in multiple
interfaces. Thus, the are not really URI resources either, since those are required to be
uniquely identifiable.

5

it made declaring the VOSI capabilities a rather redundant exercise, as no
client would use the registry or some capability endpoint to discover the
endpoints it needed for a task – why should they, when some simple string
manipulation was sufficient?

By the mid-2010s, the awkward dichotomy of an orthodoxy consisting
of VOSI and DALI that was ignored by the clients and a practice consist-
ing of TAP that ignored the orthodoxy was exarcerbated when SIAP 2.0
(Dowler, Bonnarel and Tody, 2015) and Datalink (Dowler, Bonnarel, Michel
and Demleitner, 2015) followed the DALI recommendation and required dif-
ferent capabilities for sync and async operation, as well as showing VOSI
capabilities in example registry records. Since SIAP 2.0 uptake was rel-
atively slow and datalink use usually bypasses both the Registry and the
capability endpoint, the contradictions still could be ignored.

The problem really came to light as the consequence of two other de-
velopments. For one, more and more services came online that published a
whole set of other resources. To cope with them, the concept of an auxiliary
capability was introduced in DDC, the note on discovering data collections
(Demleitner and Taylor, 2016), which changed the relationship between re-
sources and capabilities from (practically) 1:1 to n:1. This was still relatively
manageable while auxiliary capabilities were only used for TAP and other
DAL protocols predating DALI. Declaring auxiliary capabilities for a stan-
dard like SIAP 2.0, where the example registry record lists a handful of
different capabilities will at least be a lot more complicated than the simple
examples shown in the DDC note.

Finally, in 2017, TAP 1.1 tackled the long-dormant issue of services with
access restrictions. By VOResource, access restrictions are indicated by
adding securityMethod elements to interface declarations. If the access
URLs vary by authentication technology, this introduces a 1:n relationship
at least between capability and interface. This, in turn, meant that puzzling
together the endpoints required for a full DALI-described services (sync,
async, VOSI capabilities, VOSI tables, possibly examples) became a non-
trivial exercise. It was also found that certain ways of declaring the ensuing
resource trees had a significant impact on existing registry discovery patterns
(Demleitner, 2017).

This note proposes a way how to, in a nutshell, combine the simplicity
of the TAP 1.0 approach with the flexibility of the VOSI-DALI approach
in a world of n:m:s:p resources, that is, resources that are served by mul-
tiple capabilities (and capabilities that may serve multiple resources), with
client interfaces composed of multiple endpoints and capabilties that may be
exposed through multiple interfaces (e.g., because of authentication).

In the next section, we will more precisely define the problem we are
trying to solve, with a brief treatment of what different conceptions of capa-
bility would mean in 2.3 and a method for obtaining well-fit service models in

6

2.4. Section 3 then discusses what standards are affected and what measures
should be taken to correct them.

2 The Problem Setting

2.1 The Service Model in VORegistry

VOResource (Plante and Demleitner et al., 2018) defines services on four
levels:

1. The resource. Conceptually, a VOResource resource is not necessar-
ily a service. There are, for instance, authorities, which are used in
identifier management, or organisations. In this note, however, we
are only concerned with service-like resources, i.e., those that do have
capabilities.

2. Capabilities. Since a clear definition of this term is not easy (but
fundamental for adequate resource descriptions) we defer it to sect. 2.3.

3. Interfaces. Interfaces collect a set of equivalent URLs. Rather than
attempt a precise definition, we enumerate the use cases for having
different interfaces on a capability:

• Different authentication methods; in VOResource, securityMethod
is a child of interface.

• Different transport layers; for instance, it was originally envi-
sioned that VO services might have plain HTTP and SOAP in-
terfaces. In practice, this was only tried in Registry Interfaces 1.0
(Benson and Plante et al., 2009) with its OAISOAP and OAI-
HTTP interface types. Still, analogous cases are conceivable,
for instance in VOEvent, where multiple transport layers (VTP,
XMPP) have been in use in parallel (but never registered).

• Different versions of protocols. While VOResource 1.1 encourages
differentiating protocol versions using standard identifiers on ca-
pability, individual protocols might opt to still use the version
attribute on interface.

We believe this enumeration is conclusive for now and may thus stand
in for a rigorous definition of interface (that otherwise appears to be
hard).

4. Access URLs. VOResource 1.0 suggested representing full mirrors (or
perhaps services on machines with multiple network interfaces) by giv-
ing multiple accessURL elements within an interface. Even data
providers who operated mirrors did not use this, perhaps because no

7

Resources

Gaia DR2 timeseries

GAVO DC TAP

ivoa.net authority

ESO obscore

Capabilities

Gaia DR2 TS SSAP

Gaia DR2 TS Tables

Datalink on Gaia TS

GAVO DC TAP

Interfaces

Gaia DR2 TS SSAP

Gaia DR2 TS Browser

GAVO TAP no-auth

GAVO TAP+auth

Endpoints

SSAP main site

SSAP .cl mirror

TAP main site

TAP Potsdam mirror

Figure 1: A sketch of a few resources and their various ancestors in VORe-
source’s service model. To keep the figure reasonable, we have elided many
branches. Elided branches are marked with an empty arrowhead.

procedure through which clients would choose an access URL was de-
fined. VOResource 1.1 therefore discourages the practice. Instead, it
prescribes a single access URL per interface for a “primary” site and
has mirror endpoint URLs in mirrorURL rlements. These latter have
title attributes intended to support users in making informed choices
of mirrors suitable to their location or usage profile.

2.2 A Sketch of the Current Practice

Figure 1 gives a sketch of how a tiny part of the VO Registry might look
like. As resources, there are time series from Gaia Data Release 2 (Gaia TS
in the following), a TAP service from GAVO, an authority (as an example
for a capability-less resource), and ESO’s obscore service (which would have
another tree of capabilties).

The Gaia TS service has an SSAP capability for querying the data collec-
tion, a VOSI tables capability for retrieving the table schema, and a Datalink
capability to retrieve ancillary data and perhaps different serialisation for-
mats of the time series.

The dashed line to the GAVO DC TAP capability – which is also a
capability of the GAVODC TAP resource – represents an auxiliary capability
(Demleitner and Taylor, 2016). These come into play when many different
data collections are exposed through a single service. In a sense, many “data-
like” VO resources may effectively share one capability with this scheme.
While this is not the place to go into more detail, for the purpose of this
treatment it is important to keep in mind that in today’s VO the relationship
between resources and capabilities is n : m.

Fig. 1 goes on to show that capabilities can have multiple interfaces.
The SSAP capability in the example has one “standard” interface for use
by SSAP clients, and one interface claiming to be targeted at browsers (a

8

common practice which we would like to discourage; see below). On the TAP
capability, there are two interfaces, one with and one without authentication.

At the finest level of description (right end of the figure), both the SSAP
and the TAP interfaces are available through a main site and a mirror each;
these correspond to the actual endpoints that clients communicate with,
although in the case of TAP the URLs given in the accessURL element need
to be modified in protocol-specific ways to obtain usable endpoint URLs.

2.3 What is a Capability?

We believe that some of the difficulties initially sketched have their roots in
a lack of consensus what a “capability” of a service should be. VOResource
1.0, which has introduced the concept in the VO, attempts something like a
definition in several places:

• “behavioral characteristics and limitations” of a service (in the schema
annotation for capability children of service)

• “describes the service’s interface as well as information regarding its
behavior” (sect. 2.2.1)

• “each [capability] describing a different major functionality”; “describes
the behavior of service capability and how to access it” (sect. 2.2.2)

VOResource 1.1, accepted as recommendation in 2018, does little to
sharpen the meaning of the term.

In consequence, capabilities are currently used for at least three different
purposes:

1. expose different ways to access roughly the same functionality (in the
example above, TAP and SSAP as two modes to query the Gaia TS
collection). Examples for such functionalities include “publish spectra
from instrument X”, “publish images of objects of class Y”, or “provide
access to tables published in the journals, A, B and C” – where we
would admit both TAP-style querying and, perhaps, full-table down-
load in the last case.

2. provide the building blocks in a complex, multi-faceted client interface
like VOSpace (and some drafts of TAP 1.1) for assembly by clients
when building a full client interface.

3. attach functionally different endpoints to one service. The clearest
example for this in the above example is the datalink capability on the
Gaia DR2 TS service; this has nothing to do with the “main function”
of the service, which is data discovery and retrieval as offered by SSAP

9

and the TAP auxiliary capability. However, the datalink capability
is not, as in (2), an integral part of the client interface but offers an
entirely distinct user or client interface serving a different purpose.

We suggest that it would be desirable to reduce the capabilty concept
to meaning (1) in order to have a more orthogonal Registry ecosystem with
fewer ways to model a given technical system. One clear advantage of this
scheme is that when a client inspects a capabilities element, it can assume
that the alternatives offered are conecptually equivalent and it can choose
the one most convenient for the task at hand.

The main reason for avoiding use (2) is that when distributing building
blocks over mutiple capabilities, it becomes hard to assemble these build-
ing blocks when there are multiple interfaces or mirror URLs. It has been
proposed to introduce certain uniqueness requirements (e.g., only one url
per authentication method and mirror title) in order to allow deterministic
endpoint assembly, but these seemed rather brittle. An alternative would be
to furnish endpoint URL elements and perhaps interfaces with some sort of
key that would let clients assemble parts by grouping them by this key. This
still poses serious challenges for service operators and client authors that we
would like to avoid unless strong reasons are found to maintain the building
blocks meaning of capabilities.

As to purpose (3), our main concern is that significantly different func-
tionalities as a rule should not have common resource-level metadata (say,
titles) in the first place. Continuing the example from above, “images of
observatory X” and “storage at observatory X” should hardly have the same
resource description or title. One could escape this argument by claiming
that capabilities generate titles of their own by prepending to the resource ti-
tle; so, resources could have capabilities “Obscore at. . . ” and “Storage at. . . ”;
a resource with the title “Observatory X” would yield our hypothetical ex-
ample capbilities.

No Registry client works like this, though, and the implications such a
wide-ranging emancipation of capabilities would have are profound. It seems
to us very much preferable to model such situations with two resources,
perhaps with bespoke relationships between them.

Still, whether definition (1) is too narrow to cover all use cases for capa-
bilities we have of course remains to be seen.

To this end, let us investigate the consequences of the narrow defini-
tion “capabilities declare functionally equivalent, technically different access
modes to a resource” for some of the endpoints that are or were proposed to
be declared in separate capabilties. Without significantly limiting generality,
we will generally employ the Gaia TS SSAP service mentioned above as an
example. The “main function” hence would be time series discovery.

• sync/async. Current DALI represents endpoints for direct, ParamHTTP

10

(sync) and UWS-based (async) access to the same service in differ-
ent capabilities. Our narrow definition would allow this, as, ignoring
mode-dependent usage limits and the like, sync and async are requried
to be functionally equivalent where both are present (but we will see
in sect. 2.4 why they should still not be separate capabilities).

• VOSI capabilities. Since no time series can be discovered through a
VOSI capabilities endpoint, it does not perform the “main function” of
the service and hence should not be a capability itself.

• An auxiliary TAP capability containing the table underlying the SSAP
service. Given the right parameters, essentially all data that can be
discovered through SSAP can be located through TAP as well. This
would suggest that this can stay a capability under the definition pro-
posed here.

However, in general many more pieces of data will be findable through
the TAP service, as it probably contains more data collections. We
suspect that some statement to the effect that “usual” capabilities may
be specialisations rather than equivalents of auxiliary ones should be
made close to where we specialise to meaning (1).

• A web page enabling data discovery using a plain web browser. Again,
time series that can be found through the SSAP service would gen-
erally be available through such a form, too, so the browser-oriented
endpoint could reside in a capability of its own. We would not con-
sider additional functionality of a web form-based service (e.g., some
visualisation, perhaps extra discovery modes) a major change in the
client interface’s “main function”; to us, this would be not very much
different to using different clients to operating the SSAP service.

• A passive description of the data (“reference URL”). While the page at
the reference URL will in general point users to where the time series
can be found, it will typically not itself offer facilities for locating or
downloading data. Hence, it is not functionally equivalent to the SSAP
service and should not reside in a capability of its own (which indeed
it does not in current VOResource; there is a separate element for
reference URLs in VOResource).

• A datalink endpoint (Dowler, Bonnarel, Michel and Demleitner, 2015).
Datalink offers no data discovery at all. So, while an SSAP service
might use a Datalink service, SSAP and Datalink capabilities should
not be siblings. Whether an independent registration of the Datalink
endpoint in a separate service is useful remains to be seen.

• A footprint endpoint. This would be an endpoint that returns some
representation of the spatial coverage of a service, as in VODataSer-

11

vice’s coverage/footprint element. This does not let users do any
discovery or retrieval or actual data and is hence not functionally equiv-
alent to the SSAP service. It should hence not be modelled through a
capability.

• A HiPS (?) of the spectral collection. This would, again, offer search
and retrieval on the full set of the time series. Modelling it as a capa-
bility would therefore be in line with meaning (1).

Nothing in these considerations appears to be a major arguments for
keeping meanings (1) and (2). Still, several practices that are mentioned –
partly as normative behaviour – in VO standards would be frowned upon
when limiting capabilties to meaning (1). Sect. 3 assesses what changes and
adjustments in the VO ecosystem would become necessary.

2.4 A Structuralist Approach to the Registry

We further suggest that there should be a clear method to decide at which
level in the hierarchy between VO resource and access URL a description
of some network endpoint should reside. Indeed, we claim that simple sub-
stituion testing as in structuralist morphology provides such a method, as
in:

To determine where a network endpoint’s description should
reside in the hierarchy VO resource (top) – capability – interface
– endpoint URL (bottom), starting from capability going down
determine at which level one can substitute one instance with
another with no changes to the endpoint’s result. The endpoint
should then be described one hierarchy level higher. If it changes
at every level, it must be described at the access URL level.

This is a fairly abstract formulation for a rather straightforward proce-
dure. Let us try it on some example endpoints.

2.4.1 VOSI capabilities

The VOSI capabilities endpoint returns a sequence of all capabilities that
are in a VO resource’s Registry record.

Consider the Gaia TS example above. To determine where VOSI capa-
bilities should sit, first substitute the different capabilities for each other and
see if the desired result changes. For instance, the VOSI capabilities docu-
ment for the tables endpoint and the one for the SSAP endpoint will be the
same: A document enumerating all capabilities of the Gaia TS resource. The
situation for the auxiliary TAP capability is somewhat special, as what it
references is a capability of a different service (the GAVO DC TAP service);

12

a client interested in alternative ways to access Gaia TS data will still want
to see the SSAP capability, and thus even for that, it is desirable to return
the same answer as on the other capabilities.

Hence, the right place to model a capabilities endpoint is at the VO
resource level. This could be, as in the current practice, through a capability
element. Considering the discussion in section 2.3, one might, however, prefer
to use a dedicated method to express “get this VO resource’s capabilites here”.

2.4.2 VOSI tables

VOSI 1.1 says that a “service which uses tables in its interface should define
a VOSI endpoint from which table metadata can be read”. This leaves ample
room of interpretation, in particular considering the discussion above on how
this applies to TAP and SIAP.

Some clarification can be effected by considering possible use cases. For
TAP, that is obviously enabling clients to discover what tables and columns
are available for queries. For a SIAP service, however, this certainly does not
apply. On the other hand, knowing about extra columns returned might be
useful. Also, when VODataService is extended to show the domains values
in the various result columns can take, a tables endpoint associated with
a SIAP endpoint could greatly help in the construction of the SIAP query.
Accepting this, a SIAP service’s tables endpoint would return the columns
present in its SIAP response, and hence the tables response would vary by
capability.

What about interface? Going through the different use cases for inter-
faces given in sect. 2.1 yields:

• It is conceivable that authenticated users see extra columns, and so
different authentication methods (None vs. something) might change
a VOSI tables response.

• Different transport layers should not change the structure of the tables
queried or returned.

• Response schemas can be expected vary with protocol version and
hence by interface.

Finally, since responses from the different endpoints or an interface must
be identical, so must their table schemas.

Hence, VOSI tables endpoints should be associated with interfaces.

2.4.3 VOSI availability

Capability: In the Gaia TS example, the auxiliary TAP might be down
while SSAP still works (e.g., trouble in the ADQL translation layer), and

13

the tables endpoint might keep working when the database is offline. Hence,
availability responses vary with capability.

Interface: Authenticated endpoints might be inoperative because of fail-
ures in the authentication infrastructure while non-authenticated endpoints
still work. Hence, availability responses vary with interface.

Endpoint URL: A mirror might be down while the main site still works
(or vice versa). Hence, availability responses vary with endpoint URL.

This means that availability endpoints need to be associated with the
endpoint URLs, concretely, with the accessURL and mirrorURL elements in
VOResource.

2.4.4 DALI sync and async

DALI forsees that services in general offer synchronous and asynchronous
(i.e., UWS) endpoints. They can be treated in parallel, as the considerations
are identical in both cases.

Capability: A given search and the response to it will be very much dif-
ferent for a TAP capability than on an SSAP capability. Hence, sync/async
vary by capability.

Interface: Both protocol version and authentication can influence service
responses. Hence, sync/async vary by interface.

Endpoint URL: Since all access URLs for a given interface are expected
to have identical behaviour, a given query should yield the same result on all
endpoint URLs of an interface. Note that as regards async, this statement is
only true as regards job creation. Once a job is created, its URI is fixed, and
clients cannot replace an access URL with a mirror URL. This is, however,
irrelevant for the present discussion centered on service discovery: A client
that has a job URI obviously already is beyond discovery and has successfully
operated the service.

Hence, both sync and async should be described on the interface level.
An alternative viewpoint on this finding is that when they are modelled at
the capability level as forseen by DALI 1.1, some means of grouping together
sync and async endpoints belonging together is necessary, leading to extra
modelling and interpretation effort.

2.4.5 DALI examples

Capability: For a machine client, DALI examples returns sets of parame-
ters that operate a service using a specific protocol. Names and values of
these parameters depend on this specific protocol. Hence, DALI examples
responses vary by capability.

Interface: Names and values of the parameters should be invariant
against different transport layers. It is, however, conceivable that authenti-

14

cated interfaces should give more examples (e.g., for features only available to
authenticated clients). Likewise, the availability of new features might make
more (or different) examples desirable. Hence, DALI examples responses
vary by interface.

Access URL: Since all endpoint URLs for a given interface are expected
to have identical behaviour, a given example should have the same effect
regardless of which access URL a client chooses.

This means that DALI examples should be associated with interfaces.

3 A Roadmap for Adopting these Findings

Since VOSI 1.0 pioneered the use of capabilities for infrastructure function-
alities in 2011, several standards have taken up the pattern. Fortunately,
few implementations have actually made use of techniques resulting from
the pattern (which is perhaps not very surprising given the above discus-
sion). This means that while a substantial number of standards are affected
when one more carefully locates endpoints in the VOResource hierarchy, the
effects on software that is actually deployed should be minimal.

This section lists the affected standards roughly in the sequence we be-
lieve work on them should commence.

3.1 VODataService

As discussed in the introduction, we consider the pattern set in TAP 1.0 –
in effect, a single interface collecting VOSI, DALI and service endpoints –
as what future service standards requiring complex interfaces should adopt.
However, it is clear that the complex interface defined by TAP 1.0 is not
a vs:ParamHTTP interface, contrary to what TAPRegExt 1.0 used in the
examples provided.

Hence, a new interface type is called for, and the natural location for
this type is VODataService. We propose to add to its schema an interface
type vs:DALIInterface. In addition to the members of the vr:Interface,
it should contain one or more endpoint elements of type xs:token. These
tokens would give the names of endpoints below the declared access URLs,
which, for TAP, would include sync, async, tables, capabilities, and possibly
examples. For easy extensibility, these names should be managed in a vo-
cabulary; the descriptions of the vocabulary terms would then point to the
standards defining their functionality, which initially is exclusively DALI.

We propose to reserve names with dashes in them, in the sense that
such names will never become part of the IVOA vocabulary. This lets
data center operators adopt experimental extensions (e.g., cadc-manage or
gavo-getplan) with minimal risk of collision. In order to avoid a situation

15

comparable to the inflation of private CSS properties (which used a simi-
lar scheme for a while), authors of interoperable clients would be severely
discouraged from using such extensions. It is hoped that such a policy will
provide sufficient incentive to make the creators of such extensions work
towards a standardisation of their extensions.

Under this scheme, a TAP service might declare its interface as follows:

<interface xsi:type="vs:DALIInterface">
<accessURL>http://example.edu/tap</accessURL>
<endpoint>sync</endpoint>
<endpoint>async</endpoint>
<endpoint>tables</endpoint>
<endpoint>examples</endpoint>
<endpoint>capabilities</endpoint>

</interface>

VODataService is under review at the time of writing. Provided sufficient
community interest, VODataService 1.2 could become recommendation by
late 2019.

3.2 RegTAP

RegTAP 1.0 recommends constraining the interface.intf_type column to
vs:paramhttp when discovering VO standard services; this had the function
to weed out web browser-targeted interfaces that some data providers put
into standard capabilities, while some of the standard interfaces were missing
role="std".

As of this writing, this is no longer a problem. On the other hand, we
may need to be more flexible in declaring new interface types in the future.
It is therefore desirable not to abuse the interface type to, essentially, say
“this interface is the one that actually implements the standard.” Instead,
RegTAP’s example queries should revert to the role attribute that was
(essentially) created for this purpose.

RegTAP is under review at the time of writing. The changes can be
introduced quickly and can probably become recommendation by late 2019.

3.3 TAPRegExt

TAPRegExt 1.0 implied that TAP services should use vs:ParamHTTP-typed
elements to declare their interfaces, which is inconsistent with what the de-
clared endpoints actually do, since TAP leaves undefined the behaviour when
dereferencing the access URL given and instead requires to append endpoint
names; even with the appended endpoint names, the resulting endpoints are
not always vs:ParamHTTP interfaces (e.g., async).

16

However, current clients use these vs:ParamHTTP interfaces to discover
TAP services. Hence, while TAPRegExt 1.1 should prescribe the use of
vs:DALIInterface, it will probably have to require the parallel declaration
of vs:ParamHTTP interfaces (but without role set to std). This will give full
and unique listings of services for both clients matching against the interface
type (legacy) and the interface role (new).

TAPRegExt is under review at the time of this writing. Work on assessing
the consequences of the introduction of DALIInterface should start as soon as
a VODataService draft is available. Since careful evaluation of client impact
is required, TAPRegExt 1.1 will probably not be ready for recommendation
until early 2020.

3.4 VOSI

The standard text of VOSI needs fairly substantial changes, probably too
many for a simple erratum. Here is a tentative list of changes to be applied;
we reference page numbers from the PDF for version 1.1.

• p. 6, “The endpoints and interface types for the support interface shall
be defined in the service’s registration using one capability element
for each interface. The values of the standardID attribute for these
Capabilities are given in section 4.” – this and the following para-
graph should be replaced by language like: “The support interfaces
are generally used within other VO standards. The DALI standard
gives a way to associate capabilities and tables endpoints with main
service endpoints. Other arrangements are possible. The association
of availability interfaces to access URLs is unspecified at the time of
writing.”

• p. 8, “In the REST binding, the service metadata shall be a single web
resource with a registered URL.” – here, “with a registered URL” should
be removed, as there is no scenario for separate discovery of tables
endpoints. In the same paragraph, another instance of “registered URI”
should be replaced with “endpoint URI”.

• p. 9, “In the REST binding, the availability shall be a single web re-
source with a registered URL.” – here, “with a registered URL” should
be removed; while there is an important scenario for discovery of avail-
ability endpoints (“Where can I learn why this service is down and
when it will be back?”), no such scheme is defined at this point.

• p. 10, “In the REST binding, the TableSet metadata shall be a hierar-
chical web resource with a registered URL.“ – here, “with a registered
URL” should be removed, as there is no scenario for separate discovery
of tables endpoints.

17

• p. 11f, “Registration of VOSI endpoints” – the entire section should be
replaced by language like: “Previous versions of this document have
recommended registering VOSI endpoints using separate capabilities.
This scheme has been found inadequate as the VO grew more complex
(citation to this note). This document no longer recommends defin-
ing capabilities for VOSI endpoints. Other standards (like DALI and
VOResource) define how the endpoints defined here are associated with
the services they support.”

• p. 14, end of the example of a SIAP service’s capability response: re-
move the two VOSI capabilities.

Incidentally, in today’s VO, speaking of a “REST binding” is confusing
without giving a discernable benefit. We suggest to use the opportunity of
the review to continue the program of removing references to the “SOAP
binding” (as mentioned in the Changelog for VOSI 1.1) and simply remove
all instances of “in the REST binding” and “for the REST binding” in the
document. This will obviously require some additional the minor work to
repair sentences damaged in the process.

3.5 VOResource

As discussed above, the capabilities endpoint can be implemented service-
wide, and several use cases exist for services to obtain capabilities directly
from a service rather than from the registry. For this, we could continue to
employ a capability element with the VOSI standardID. However, given the
considerations in sect. 2.3, we would prefer if capability elements were not
(regularly) abused to declare support functionality.

Hence, we suggest to declare the location of a copy of a service’s capabili-
ties document separately. Concretely, we propose adding a capabilitiesURL
child to vr:Service in VOResource. This could be done in a small update
to VOResource.

Furthermore, as argued above, VOSI availability endpoint URLs would
need to be associated with vr:accessURL and vr:mirrorURL. Technically,
this would probably be effected by defining a base vr:monitoredURL type
that would have an availabilityURL attribute (or perhaps even child, if
multiple URLs to fetch availability from were found advantageous). This
base type could then also be used to define content/referenceURL or even
VODataService’s coverage/footprint.

However, before actually standardising anything here, we suggest that
a clear consumer for this information must come forward. That, to our
knowledge, no client consumes availability data even about ten years after
the endpoint’s conception might suggest that the specification effort might
better be spent elsewhere. Also, we believe that a preferable architecture

18

might be to enable clients to reliably the status of the services themselves
and without relying on out-of-band metadata. This could be effected, for
instance, by communicating a sample query and result per interface. The
testQueryString element introduced in VOResource 1.1 might be the fist
step on that path.

Since capabilities with a VOSI capabilities standardId are functionally
sound, reworking VOResource is more a matter of orthogonality and hence
not terribly urgent as long as no new code starts relying on VOSI capabiliites
endpoints. We do not believe that a review of VOResource should be started
just to introduce capabilitiesURL.

3.6 DALI

Large parts of section 2 of DALI would need to be changed; in particular,
what is called “resource” in the standard should be changed to endpoints
within DALIInterfaces (except for availability).

The textual differences are too large to list here. Since the regulations
in question are mostly just patterns for concrete specifications, we suggest
the update should be performed while an actual standard is being updated
in order to immediately have implemenation feedback.

3.7 Datalink

In Datalink 1.0, the issues discussed here concern the introductions to sec-
tions 2, 2.2, 2.3. In the remaining document, the terms “resource” and “ca-
pability” are used more or less synonymously. We would suggest to unify
terminology to “endpoint” throughout (unless actual VO resources or ser-
vices are meant).

In the introduction to section 2, references to VOSI-availability and
VOSI-capabilities should be removed. We suggest to revisit the question
whether datalink services need a representation in the Registry at all based
on implementation experience.

If use cases for that are found, the introduction to section 2 could be
reformulated like this:

A minimal Datalink endpoint conforms to DALI-sync with
parameters described below. In most usage scenarios, clients
discover the Datalink endpoint while using other services, and
hence there is no need to represent them in the Registry.

Where registration of Datalink services is desired, they should
contain at least one capability element with a standardId of
ivo://ivoa.net/std/Datalink#links-1.1. This must contain
at least one interface with role="std". This interface must be
of type vs:DALIInterface, where the sync endpoint responds

19

to this specification. The optional async endpoint accepts the
same parameters; its successful result corresponds to what is
specified in section 3. No more than one interface element with
role="std" without a securityMethod child can be given.

If we go into the trouble to discuss Datalink representation in VORe-
source, we should also say what a client is expected to do with the informa-
tion discovered in this way.

Section 2.2 should simply be removed; if we express availability as sug-
gested in sect. 3.5, this would automatically solve the association of avail-
ability endpoints to registered datalink endpoints .

Section 2.3 should be removed. If we find a VOResource capability dec-
laration is desirable, an example capability declaration could be included in
an appendix.

3.8 SIAP2

SIAP 2.0 uses the term “capability” in a generic way (“something you can
use”). While this is probably defensible, we would like to discourage such
usage and suggest that perhaps something like “facility” would express the
intended meaning just as well without colliding with VOResource technical
terms.

The specification has only minor dependencies on VOSI capabilities, at
least when letting SIAP 2.0 remain the “simple” service that its predecessor
was. This means SIAP 2.0 is operated through a vs:ParamHTTP interface and
no VOSI features are required by clients. Judging by the formulated used
cases and actual use, this is the case. Hence, we propose a simple erratum
would suffice to bring SIAP2 into compliance with the principles formulated
here. The erratum content could be:

The entire introduction to section 2 (PDF p. 11) is replaced by
“SIAP 2.0 is a implemented through a single endpoint described
below.”

In section 2.1, first paragraph, the sentence “the client will
find the resource path using the VOSI-capabilities resource” is
replaced by “SIAP 2.0 endpoints are located by querying a reg-
istry for endpoints in interface elements marked with role="std"
in capabilities with a standardID of ivo://ivoa.net/std/SIA#
query-2.0. This specification does not define the types of their
interface or capability for SIAP 2.0.”

Section 2.2 is removed; SIAP 2.0 services are no longer re-
quired to provide a VOSI availability capability

Section 2.3 is removed; SIAP 2.0 services are no longer re-
quired to provide a VOSI capabilities capability. To still provide

20

ivo://ivoa.net/std/SIA#query-2.0
ivo://ivoa.net/std/SIA#query-2.0

a sample capability, the following material is added as a non-
normative Appendix A:

To register a SIAP 2.0 service, use a VODataSer-
vice CatalogService with a minimal capability defini-
tion like
<capability
standardID="ivo://ivoa.net/std/SIA#query-2.0">
<interface xsi:type="vs:ParamHTTP"
role="std" version="2.0">
<accessURL>
http://example.com/sia2/query
</accessURL>

</interface>
</capability>

As specified above, extension types of capability
and interface may be used. In particular, the SIA-
Capability from SimpleDALRegExt 1.1 can be used
together with SIAP 2.0 as well.

3.9 SimpleDALRegExt

SimpleDALRegExt is only indirectly affected by the considerations presented
here. While rectifying some undesirable practices in the Registry, however,
we should use the opportunity to discourage the related practice of having
vr:WebBrowser interfaces within standard capabilities (which, in effect, is
an abuse of interface rather than capability). This could be effected in an
erratum of roughly the following content:

In appendix A, the fragment “as well as a web browser inter-
face on the 1.0 endpoint” is replaced by “and also has a separate
capability for querying with non-VO-aware web browsers”.

The example in appendix A is changed as follows:
(a) remove the vr:WebBrowser-typed interface from the SIAP

version 1 capabilitiy.
(b) add an extra capability like this:

<capability>
<!-- This is a non-standard interface to the data
that can be operated by a normal web browser. -->
<interface type="vr:WebBrowser">
<accessURL use="full">
http://example.com/asvc/form.html

</accessURL>
</interface>

</capability>

21

3.10 VOSpace

The VOSpace specification (in version 2.1) mentions capabilities quite a bit,
but not always very consistently. For instance, the introduction to section
3.3 defines that a “Capability is a third-party interface to a node”, while it
later speaks of “standard capabilities” (sect. 3.3.5). It would be desirable to
streamline the terminology in a future version.

Content-wise, VOSpace is the only current VO standard that opera-
tionally uses meaning (2) of “capability” as defined in sect. 2.3, i.e., it builds a
complex client interface from several VOResource capabilities, the standard
identifiers of which are given on p. 36 of the PDF version of VOSpace 2.1.

We are still researching if and how clients make use of the declaration of
the various endpoints and if there are relevant advantages to managing them
in capabilities rather than, say, endpoints within an interface.

Hence, we have no definite answer as to how VOSpace would be impacted
by the findings presented here.

A Changes from Previous Versions

No previous versions yet.

References

Benson, K., Plante, R., Auden, E., Graham, M., Greene, G., Hill, M., Linde,
T., Morris, D., O‘Mullane, W., Rixon, G., Stébé, A. and Andrews, K.
(2009), ‘IVOA Registry Interfaces Version 1.0’, IVOA Recommendation
04 November 2009, arXiv:1110.0513.
http://adsabs.harvard.edu/abs/2009ivoa.spec.1104B

Berners-Lee, T., Fielding, R. and Masinter, L. (2005), ‘Uniform Resource
Identifier (URI): Generic syntax’, RFC 3986.
http://www.ietf.org/rfc/rfc3986.txt

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
http://www.ietf.org/rfc/rfc2119.txt

Demleitner, M. (2017), ‘TAP service discovery’, Talk given at October 2017
IVOA Interoperability Conference, Santiago de Chile.
http://wiki.ivoa.net/internal/IVOA/InterOpOct2017GWS/
tapdiscovery.pdf

Demleitner, M. and Taylor, M. (2016), ‘Discovering data collections within
services’, IVOA Note.
http://www.ivoa.net/documents/Notes/DataCollect

22

http://adsabs.harvard.edu/abs/2009ivoa.spec.1104B
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc2119.txt
http://wiki.ivoa.net/internal/IVOA/InterOpOct2017GWS/tapdiscovery.pdf
http://wiki.ivoa.net/internal/IVOA/InterOpOct2017GWS/tapdiscovery.pdf
http://www.ivoa.net/documents/Notes/DataCollect

Dowler, P., Bonnarel, F., Michel, L. and Demleitner, M. (2015),
‘IVOA DataLink Version 1.0’, IVOA Recommendation 17 June 2015,
arXiv:1509.06152.
http://adsabs.harvard.edu/abs/2015ivoa.spec.0617D

Dowler, P., Bonnarel, F. and Tody, D. (2015), ‘IVOA Simple Image Access
Version 2.0’, IVOA Recommendation 23 December 2015.
http://adsabs.harvard.edu/abs/2015ivoa.spec.1223D

Dowler, P., Demleitner, M., Taylor, M. and Tody, D. (2013), ‘Data Access
Layer Interface Version 1.0’, IVOA Recommendation 29 November 2013,
arXiv:1402.4750.
http://adsabs.harvard.edu/abs/2013ivoa.spec.1129D

Dowler, P., Rixon, G. and Tody, D. (2010), ‘Table Access Protocol Version
1.0’, IVOA Recommendation 27 March 2010, arXiv:1110.0497.
http://adsabs.harvard.edu/abs/2010ivoa.spec.0327D

Graham, M., Rixon, G. and Grid and Web Services Working Group (2011),
‘IVOA Support Interfaces Version 1.0’, IVOA Recommendation 31 May
2011, arXiv:1110.5825.
http://adsabs.harvard.edu/abs/2011ivoa.spec.0531G

Plante, R., Benson, K., Graham, M., Greene, G., Harrison, P., Lemson, G.,
Linde, T., Rixon, G., Stébé, A. and IVOA Registry Working Group (2008),
‘VOResource: an XML Encoding Schema for Resource Metadata Version
1.03’, IVOA Recommendation 22 February 2008, arXiv:1110.0515.
http://adsabs.harvard.edu/abs/2008ivoa.spec.0222P

Plante, R., Demleitner, M., Benson, K., Graham, M., Greene, G., Harrison,
P., Lemson, G., Linde, T. and Rixon, G. (2018), ‘VOResource: an XML
Encoding Schema for Resource Metadata Version 1.1’, IVOA Recommen-
dation 25 June 2018.
http://adsabs.harvard.edu/abs/2018ivoa.spec.0625P

23

http://adsabs.harvard.edu/abs/2015ivoa.spec.0617D
http://adsabs.harvard.edu/abs/2015ivoa.spec.1223D
http://adsabs.harvard.edu/abs/2013ivoa.spec.1129D
http://adsabs.harvard.edu/abs/2010ivoa.spec.0327D
http://adsabs.harvard.edu/abs/2011ivoa.spec.0531G
http://adsabs.harvard.edu/abs/2008ivoa.spec.0222P
http://adsabs.harvard.edu/abs/2018ivoa.spec.0625P

	Introduction
	Terminology
	A Brief History of the VOSI Problem

	The Problem Setting
	The Service Model in VORegistry
	A Sketch of the Current Practice
	What is a Capability?
	A Structuralist Approach to the Registry
	VOSI capabilities
	VOSI tables
	VOSI availability
	DALI sync and async
	DALI examples

	A Roadmap for Adopting these Findings
	VODataService
	RegTAP
	TAPRegExt
	VOSI
	VOResource
	DALI
	Datalink
	SIAP2
	SimpleDALRegExt
	VOSpace

	Changes from Previous Versions

