
ADS’ Dexter Data Extraction AppletADS’ Dexter Data Extraction Applet
Markus Demleitner, Alberto Accomazzi, Günther Eichhorn, Carolyn S. Grant, Michael J. Kurtz, Stephen S. Murray

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138

Introduction
The Astrophyiscs Data System (ADS, http://adswww.harvard.edu) now

holds 1.3 million scanned pages, containing numerous plots and figures for
which the original data sets are lost or inaccessible. The availability of scans
of the figures can significantly ease the regeneration of the data sets. For this
purpose, the ADS has developed Dexter, a Java applet that supports the user
in this process.

Dexter’s basic functionality is to let the user manually digitize a plot by
marking points and defining the coordinate transformation from the logical
(screen) to the physical (graph) coordinate system. Advanced features include
automatic identification of axes, tracing lines and finding points matching a
template.

This poster demonstrates the operation of Dexter in a little example and
discusses some of the architectural issues.

Operation

Rather than paraphrase the help page for Dexter, we demonstrate Dexter’s
operation with an annotated example session.

Following the link to Dexter on an article page, one can select the portion
of the graph that Dexter is to look at. After the selection, the main Dexter
window pops up:

The next step is to start the au-
tomatic axis recognition; in this
case, it works quite well.

Just for convenience, the lower point of the vertical gauge is
manually adjusted to 0.0.

Now the start and end values of the gauges
are entered. After this, Dexter has all in-
formation it needs to transform points from
the screen coordinate system to the graph
coordinate system and will display graph
coordinates in the status line (cf. the last
panel in this box)

These points were found by Dexter after
being given a reasonably well-defined point
as a template for the automatic point find-
ing.

One could experiment with raising the recognition thresh-
old in the Recognition Options at this point to have Dex-
ter identify the remaining points (or, which would be
more effective in this case, increase the figure’s resolu-
tion), but since only a few points are missing, we set
them manually – the magnifying glass helps here.

After pressing the ”Show Data” button the data is filled in the text field at
the bottom of the window. The ”Send Data” and ”Save Data” buttons can
be used to retrieve the extracted data through the browser.

Architecture

DExtractor

Dexter

ScrollImScrollBar

MainServices

showHelp()

notifySelection(Rectangle bbox)
childClosed()

Recogniser

−recogniseIt()

run()

−analyse()
stopRecogniser()

Debuxter

LineTracer

PointFinder

AutoAxisFinder

DataDeliverer

deliver(String toSend,String fname, int option)

ImageGetter

Image getImage(int scale)
Image getImage(int scale Rectange bbox)

RecogniserSettings

setProp(String key, Object ob)
getProp(String key)

MagGlass

setImage(Image im)
setCoords(Point p)

Gauge

Datapoint

ImageWithPoints

Vector getPoints()
startRecogniser()
addPoint(Datapoint dp)
removePoint(Datapoint dp)

setStart(int ex, int ey)
setEnd(int ex, int ey)

PlainDataDeliverer AppletDataDeliverer

PlainImageGetter AppletImageGetter

Image figure
Vector pointsGaugeGauge hgg,vgg

The diagram above shows a raw sketch of Dexter’s
architecture in a UML-inspired graph. Rectangles
symbolise classes, rounded rectangles stand for in-
terfaces, with dashed arrows from their implemen-
tation. The lines mean that two classes are talking
to each other, with the diamond indicating which
class is embedded by which.

In the central position there is the DExtractor
class that cares about most of the user interface
and contains the logic responsible for the transfor-
mation from screen to graph coordinates through
the GaugeGauge class (that controls the text fields
for entering the start and end values for the graph-
ical gauges). The DExtractor class is derived from
AWT’s Frame class.

The panel with the image of the figure is in a
different class, ImageWithPoints that also embeds
the classes handling the graphical Gauges and the
Datapoints. These latter classes handle clicks on
them themselves. For example, the handling of er-
ror bars is completely encapsulated within the Dat-
apoint class.

The MainServices interface hides the startup
from DExtractor. Two implementations of Main-
Services exist, Dexter, the applet interface, and
the standalone Debuxter that, as the name sug-
gests, was mostly used for debugging. It should
not be difficult, however, to implement MainSer-
vices that would use, for example, ghostscript, to
provide Dexter’s capabilities for PostScript articles.

To build such a PostScript-Dexter, one would
also need to adjust the implementations of the Im-
ageGetter and DataDeliverer interface, the first ac-
cepting requests for scaled and cropped versions of
the image, the second delivering the extracted data
after the user has requested to save the data or get
it sent. Among the implementations of these in-
terfaces, the AppletDataDeliverer is somewhat in-
volved since an (unsigned) applet cannot access the
client’s disk or portably send data directly to the
browser. To save data or display it in a browser
window, it is relayed back to the host and tunnelled
to the client through a pipe on the host.

The Recogniser interface, derived from Java’s
Thread class, defines how classes that try to do
automatic feature extraction interact with both
DExtractor and ImageWithPoints. It also contains

some utility functions, for example to acquire the
pixels from the graph image. These are stored as
bytes for this purpose; the dynamic range from 0 to
127 is more than adequate for the images Dexter
deals with, and the sign is rather useful for flag-
ging purposes, e.g., in the flood filler used in the
PointFinder Recogniser.

Recognisers need to communicate with Image-
WithPoints to access the image and to set points
or gauges they may have found, but also with
DExtractor, giving prompts in the status line and
telling it when they are finished. DExtractor needs
to know this to re-enable some critical operations
that are disabled while a Recogniser is running
(changing the resolution of the graph image, send-
ing data). Most Recognisers will need some sort of
user input, e.g., to get a start point for line trac-
ing or a template for point matching. This is done
under the control of the Recogniser thread, so that
almost all that has to be done from Dexter’s main
thread is a call to the Recogniser’s start Method.

Recognisers do not register themselves auto-
matically with DExtractor, so that some source
code changes in both DExtractor (that controls the
menu bar in which the Recognisers are registered)
and ImageWithPoints (that actually starts Recog-
nisers) are necessary when a new Recogniser is writ-
ten. Given the current scope of the project (about
5000 lines of source code), a more elaborate plugin
scheme did not seem necessary. If Recognisers have
adjustable parameters, they can use the Recognis-
erSettings class, containing both a Hashtable to
store the property values and the logic to display a
dialog to change them.

All three Recognisers currently implemented
(AutoAxisFinder to locate the axes, PointFinder
for point matching, LineTracer for automatically
digitising lines), use rather naive algorithms. The
computational effort for performing Fourier or
Hough transforms on entire images make these ap-
proaches currently unattractive in a tool supposed
to be interactive like Dexter, in particular given the
poor quality of the Java virtual machines on some
architectures.

Dexter’s source code is available under the
General Public License at http://Dexter.source-
forge.net.

