International
Virtual
Observatory

Alliance

Discovering Data Collections Within
Services

Version 1.1

Proposed Endorsed Note 2016-11-11

Working group
Registry
This version
http://www.ivoa.net/documents,/discovercollections /20161111

Latest version
http://www.ivoa.net /documents/discovercollections
Previous versions

NOTE-1.0
Author(s)

Markus Demleitner, Mark Taylor
Editor(s)
Markus Demleitner
Version Control
Revision 4572, 2017-11-13 17:05:28 +0100 (Mon, 13 Nov 2017)

https://volute.g-vo.org/svn/trunk/projects/registry/discovercollections/discovercollections. tex

Abstract

This note proposes a general mechanism through which data collections ex-
posed by services aggregating several of them can be registered and efficiently
discovered in the Virtual Observatory Registry. We discuss the problem setting
— in short, that the Registry must support both VO-wide discovery of services by
type (“service enumeration”) and discovery by data collection (“data discovery”)
— and some attempts for a solution that were found to be unsatisfactory. Based
on this, a scheme employing special identifiers to annotate simple capabilities
associated with data collections is described. We also detail the implications
for both standard authors and Registry clients, possible shortcomings of the
scheme, as well as measures required to ensure a smooth transition to the new
scheme.

http://www.ivoa.net/documents/discovercollections/20161111
http://www.ivoa.net/documents/discovercollections
http://ivoa.net/documents/Notes/DataCollect
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarkusDemleitner
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarkTaylor
https://volute.g-vo.org/svn/trunk/projects/registry/discovercollections/discovercollections.tex

Status of This Document

This is an IVOA Proposed Endorsed Note for review by IVOA members and
other interested parties. It is appropriate to reference this document only as
a Proposed Endorsed Note that is under review and may change before it is
endorsed or may not be endorsed.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/Documents/.

Contents
1 Introduction 3
1.1 The Problem Setting, 3
1.2 Non-solutions 3
1.2.1 The Full-Capability Approach 3
1.2.2 The Split-Metadata Approach 4
2 A Proposal for Discovering Data Collections 5
2.1 Auxiliary Capabilities L. 5
2.1.1 Backgroundo 5
2.1.2 StandardIDs for Auxiliary Capabilities 6
2.1.3 Relationship to the Main Service 7
2.1.4 Passing Extra Information in the Access URL 8
2.2 Implications for Registry Clients 8
2.3 Implications for Registry Operators. 9
2.4 Potential Issues L 10
3 Considerations for the Transition Phase 11
A Examples 11
A.1 A TAP-accessible Data Collection 11
A2 An Auxiliary Image Service L. 13
B Changes from Previous Versions 15
B.1 Changes from PEN-2016-11-11 15
B.2 Changes from NOTE-1.0. 15

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”, and
“OPTIONAL” (in upper or lower case) used in this document are to be inter-
preted as described in IETF standard RFC2119 (Bradner, 1997).

The Virtual Observatory (VO) is general term for a collection of federated
resources that can be used to conduct astronomical research, education, and
outreach. The International Virtual Observatory Alliance (IVOA) is a global
collaboration of separately funded projects to develop standards and infrastruc-
ture that enable VO applications.

http://www.ivoa.net/Documents/
http://www.ivoa.net

1 Introduction

1.1 The Problem Setting

In early VO services, there was generally a one-to-one relationship between a
data service and a data collection — a cone search service exposing the 2MASS
point source catalogue, or a Simple Spectral Access service (SSA) for the spectra
of the ELODIE spectrograph. In actual practice, several more interfaces were
usually added, for instance, a browser-based interface, which nicely meshed with
the CAPABILITY model of VOResource (Plante and Benson et al., 2008); but even
then, one service record in the Registry covered exactly one data collection.

Consequently, early considerations to have separate registry records for data
collections and access services were shelved, and no existing Registry client sup-
ports this concept, although the Registry data model still provides the necessary
building blocks (in particular through RELATIONSHIP).

With the widespread adoption of standards like TAP (Dowler and Rixon
et al., 2010) and ObsTAP (Louys and Bonnarel et al., 2011), more and more
services expose a large number of different data collections. VizieR’s TAP ser-
vice!, for instance, at the time of writing gives access to close to 30000 tables
from almost 14 000 different data collections; as these are registered as separate
cone search services, their metadata actually already is available in the Registry,
but no link is made to the TAP service that opens them up for complex queries.

CADC’s ObsTAP table? contains data sets from approximately one hundred
instruments. A VO user might reasonably expect that when interrogating the
registry for services publishing data originating from, say, the UHS8K Mosaic
Camera or from SCUBA-2, they should see CADC’s ObsTAP service.

The problem of the mismatch between service records and data collection
records not only occurs for TAP services. For instance, an image service col-
lecting various observations of gravitationally lensed quasars within GAVO’s
data centre® exposes data from four different observation campaigns on four
different instruments with four different data collection creators. Each of these
collections should be discoverable independently of each other.

The class of problems just outlined is referred to as the “data discovery” use
case in the following. In short: How can the Registry support discovering the
VizieR tables, the data collections that contributed to CADC’s ObsTAP service
or to the SIAP service that is collecting data from different observatories and
groups joined only by the common topic?

1.2 Non-solutions
1.2.1 The Full-Capability Approach

An obvious solution might be to simply register each data collection as if it
were a standalone service. While for the four STAP services in the example of
the Lens Archive this proliferation of services of a certain type might appear
tolerable, the examples of CADC’s 100 separate instrument data collections

livo://cds.vizier/tap
2ivo://cadc.nrc.ca/tap
3ivo://org.gavo.dc/lensunion/q/im

and VizieR’s 14000 separate TAP services, each declaring the full capability
metadata, already suggest that such a design is questionable.

Much more serious is that the Registry must support the enumeration of
all services of a certain type with minimal repetition (the “service enumeration”
use case; note that this essentially is what the current Registry does). The
most common user-facing task for which that is relevant are all-VO queries as
performed by, for instance, clients like Aladin (Bonnarel and Fernique et al.,
2000) or Splat (Draper, 2014). In a scenario where a service containing N
resources would have NN resource records with the respective capability, the
clients would have to make sure they filter out duplicate access URLs on their
service enumeration queries; for VizieR, they would retrieve 14 000 records to
end up with one access URL. Legacy clients not written to de-duplicate access
URLs would, in addition, potentially be overwhelmed by the large number of
services to query or present to the user.

While more powerful Registry interrogation interfaces might mitigate this
particular problem, hiding the fact that there is indeed a collective service with
metadata of its own leads to various problems in the user interface even of clients
aware of a de-duplication requirement. Additional use cases for unique service
enumeration — e.g., validators — also require the services to exist as first-class
Registry objects, not just as something implied by capabilities on other records.

1.2.2 The Split-Metadata Approach

As mentioned above, early designs of the VO Registry had envisioned separate
registry records for data collections and services. Such designs would clearly
solve the problem rather elegantly, as clients doing data discovery would only
search for data collection records and only locate services serving those in a sec-
ond step. Registry clients doing service enumeration could, analogously, directly
query for service records.

While attractive for its conceptual clarity, a number of concerns caused us
to abandon the split-metadata approach:

1. Tt is hard to migrate from the current state to the split-metadata model
non-disruptively. Even if the major operators of publishing registries could
be moved to update their records, old-style records would still need to be
maintained for a considerable time.

2. In the still-typical case of a 1:1 relation between services and data collec-
tions, this model doubles the number of registry records, which is non-
trivial given that the VO currently has more than 15000 records, quite a
few of which are maintained manually.

3. The distribution of query-relevant metadata over two separate resource
records that are linked through RELATIONSHIP makes for clumsy, non-
obvious query patterns in common Registry access protocols; for instance,
a query for data from the CALIFA project created by J. Doe in a datalink
service taking a parameter Wavelength would have to look for the project
and creator names in the data record, whereas information on capability
type and parameter semantics would have to be searched in the service
record (see also Demleitner and Harrison et al. (2015), where Fig. 4 illus-
trates the split between resource-bound, capability-bound, and ambiguous

parts of VOResource metadata). Translating this to RegTAP, great care
must be exercised when writing the JOIN expressions to ensure the seman-
tics is as intended. In addition, getting the JOINs wrong will not result in
error messages, just in result sets not matching the intended constraints.

2 A Proposal for Discovering Data Collections

2.1 Auxiliary Capabilities

This section contains the main normative content endorsed: The form of the
standard identifiers for the auxiliary capabilities (sect. 2.1.2) and the require-
ment for an IsServedBy relationship to the main service (sect. 2.1.3).

2.1.1 Background

There is no obvious way to avoid the problems of the split-metadata approach
without a redesign of major parts of the Registry ecosystem. The main defi-
ciency of the full-capability approach — very limited support for service enu-
meration —, however, can be repaired relatively straightforwardly by essentially
marking capabilities as “main” or “auxiliary”, where for service enumeration
clients would use the main capabilities, whereas data discovery would look at
metadata for services having either one of main or auxiliary capabilities.

Marking resources as primary and auxiliary can be easily effected using the
vr:Capability type’s standardID attribute. Consider the following snippet
from an XML-serialised registry record:
<capability standardID="ivo://ivoa.net/std/SIA"

xsi:type="sia:SimpleImageAccess">

<interface role="std" xsi:type="vs:ParamHTTP">

<accessURL use="base">http://example.com/q/im/siap.xml?</accessURL>

<queryType>GET</queryType>

<resultType>application/x—votable+xml</resultType>

<param std="true">
<name>POS</name>

[
</interface>
<imageServiceType>Pointed</imageServiceType>
<maxRecords>1000000</maxRecords>

[
</capability>
<capability standardID="ivo://ivoa.net/std/V0SI#availability">
<interface xsi:type="vs:ParamHTTP">
<accessURL use="full">http://example.com/q/im/availability</accessURL>
</interface>
</capability>

Shown here are two capabilities; based on their standardIDs, clients can
work out that the first one is a service speaking the simple image access pro-
tocol, whereas the second provides an endpoint for VOSI’s availability infor-
mation. The first capability, additionally, overrides the type of the capability
element to give extra metadata. In the case of sia:Simplelmagedccess, that
is information like the service type, certain resource limits, a test query, etc.

The second capability does not override the type, which means that essen-
tially the capability just gives zero or more interfaces, in this case one of the
type vs:ParamHTTP (a type suitable for all endpoints for current VO protocols).

2.1.2 StandardIDs for Auxiliary Capabilities

This note proposes to mark the auxiliary capabilities by a special value in the
standardID attribute of a capability element. This will in general be of
type vr:Capability (i.e., not contain extra metadata and hence not override
zsi:type), but that is not important to this proposal; later standards might
furnish such auxiliary capabilities with additional metadata without impact on
the functioning of the mechanism proposed here.

New-style standard identifiers as defined in version 2 of the Identifiers Stan-
dard (Demleitner and Plante et al., 2015) should have the form

ivo://.../stdname#tag-version;
for a synchronous SITAv2 service, this would be
ivo://ivoa.net/std/sia#tquery-2.0.

For such new-style standard ids, the ids of the auxiliary capabilities are simply
generated by inserting aux- in front of the version number, for instance

ivo://ivoa.net/std/sia#fquery-aux-2.0.

This particular form for the protocol identifier is chosen to work well with the
intended way to discover services with such new-style standard identifiers. As
discussed in sect. 4.2 of the Identifiers standard, services supporting the major
version n of the protocol std would query for, using SQL patterns,

ivo://ivoa.net/std/stdname# tag-n.%,

where the wildcard allows the simultaneous discovery of all minor versions. This
is the intended behaviour, since by IVOA versioning policies a client for version
n should be able to operate all of n.0, n.1, and so on.

If auxiliary ids were built by appending the -aux, this pattern would match
auxiliary capabilities as well, thus making the enumeration use case extremely
cumbersome to cover. Prepending the aux-, on the other hand, would require
embedded wildcards in the pattern of the data discovery use case — where both
primary and auxiliary capabilities should be investigated while protocol versions
are typically a secondary concern —, which at the very least is an efficiency
concern. See sect. 2.2 for the recommended discovery patterns.

Data collections not otherwise already registered that are part of an-
other service (that already is in the Registry) would be registered as a
vs:CatalogService, where record authors are strongly encouraged to provide
a tableset element. After the next revision of VODataService, vs:DataCol-
lection-typed records will admit capabilities, too, at which point they would
be preferred for this purpose.

In the special case of TAP, we recommend that services that have auxiliary
resources should not repeate the respective metadata in the main TAP record;

apart from the unnecessary information duplication (that then will have to be
filtered by clients), such registry records can grow to several megabytes and
more. Also, each time any piece of this large body of metadata changes, the
entire information would have to be re-retrieved and reprocessed by searchable
registries. On the other hand, having table-sets in the data collection records
with the auxiliary capabilities allows targeted and efficient updates through the
standard OAI-PMH protocol. Obviously, this consideration does not necessarily
apply to TAP services only serving one or a few tables; for them, having the
tableset in the TAP record remains a viable option.

2.1.3 Relationship to the Main Service

Prototyping has shown that for common user interfaces, a reference to the main
service is highly desirable in addition to the access URL as given in the auxil-
iary capability’s interface. Ideally, the relationship between the auxiliary and
the main capability would be expressed as a relationship between capabilities.
The current VOResource model, however, does not allow declaring such a rela-
tionship. It does allow, however, relationships between full resources. While in
the future it might be desirable to allow relationships between capabilities (see
below), we believe for the moment service-to-service relationships are sufficient
for the purpose of linking auxiliary and main capabilities.

Therefore, a record declaring support for an auxiliary capability MUST de-
clare an IsServedBy relationship to the main service’s resource record, and the
respective relatedResource element must give the main service’s IVOID. In
legacy VOResource 1.0 records, the RELATIONSHIP TYPE must be served-by, and
clients must accept both terms.

The reverse relationship, the IsServiceFor (VOResource 1.0: service-for)
relationship from the main service to the data collection records, seems less
useful. Although on theoretical grounds, maintaining a symmetry here would
seem desirable, the price of declaring thousands of little-used relationships for
big services would appear too significant a liability given the uncertain benefit.

Note that records may have multiple auxiliary capabilities*, and therefore
not every IsServedBy record declared by a resource necessarily corresponds to
the main service for a given auxiliary capability. We believe that in most relevant
use cases, the clients will know about the IVOIDs of possible main services, such
that they can easily filter out spurious main services.

For clients that do not have an enumeration of the main services for a given
standard id, the main capability (or capabilities) can be found through registry
queries based on the data collection’s IVOID and the main capability’s standard
id (which is known to the client as it knows what protocol it wants to use). In
RegTAP, the query would look like this:

SELECT c.ivoid, cap__index

FROM rr.relationship AS r
JOIN rr.capability AS ¢
ON (r.related id=c.ivoid)

WHERE
r.ivoid="ivo://org.gavo.dc/apo/res/apo/frames’

4An example suitable for testing client behaviour is ivo://org.gavo.dc/apo/res/apo/
frames with auxiliary capabilities for both SIAP and TAP

AND standard _id="ivo://ivoa.net/std/tap’
AND relationship type IN (’served—by’, 'IsServedBy’)

2.1.4 Passing Extra Information in the Access URL

It is not required that the access URL(s) of the auxiliary capability’s interface(s)
are identical to those of the main capability. Clients should therefore in general
use the access URL discovered in the data discovery query rather than the access
URL(s) given in the main capability.

This is intended to allow passing extra constraints to restrict service re-
sults to the discovered data collection when the protocol allows passing suitable
parameters in the URL. A prototypical example is STAv2 with its COLLEC-
TION parameter. For instance, a service sia2-site could publish data from
the northerntel and southerntel data collections. To ensure that from the aux-
iliary SIAv2 capabilities only data from the respective facility is returned, the
COLLECTION constraint can be hardcoded into the access URLs. In sketch
form, the three records involved might contain:

<Record> <!-- main SIAv2 service -->
<identifier>ivo://example/sia2—site</identifier>

<capability standardID="ivo://ivoa.net/std/SIA#query-2.0">
<accessURL>http://example.com/sia.xml?</accessURL>

</capability>
<Record>
<Record> <!-- data collection/service for northerntel -->

<identifier>ivo://example/coll/northerntel</identifier>
<capability standardID="ivo://ivoa.net/std/SIA#query-aux-2.0">
<accessURL>
http: //example.com/sia.xml?COLLECTION=northerntel&
</accessURL>
</capability>
</Record>

<Record> <!-- data collection/service for southerntel -->

<identifier>ivo://example/coll/southerntel</identifier>

<capability standardID="ivo://ivoa.net/std/SIA#query-aux-2.0">
<accessURL>

http: //example.com /sia.xml? COLLECTION=southerntel&

</accessURL>

</capability>

</Record>

This technique is obviously not applicable for all protocols. In TAP, for
instance, there is no way to pass table names in the access URLs. It is expected
that extra metadata required in such cases is transmitted in other ways. For
TAP, the extra metadata is the schema(s) and table(s) for the data collection
discovered, which the discovering client can obtain from the VODataService
table metadata. Other protocols may have to devise other means, possibly even
involving special registry extensions for auxiliary capabilities.

2.2 Implications for Registry Clients

Under the new scheme, Registry client implementers will have to analyse
whether their use of the Registry data is service enumeration (“all services of

type X”) or data discovery (“services for data with properties Y”). Depending
on this, the constraints on the capabilities will be, in RegTAP terms,

service enumeration
To enumerate services implementing version 1 of cap defined by a
hypothetical example standard, the constraint would look like

NATURAL JOIN rr.capability WHERE
standard _id LIKE ’ivo://ivoa.net/std /example#cap—1%’

This choice of pattern will not match auxiliary capabilities like
.. .#cap-aux-1.0; it will, however, match . . .#cap-1.0, .. .#cap-1.1,
etc.

Given the use cases for service enumeration it seems unlikely that
queries of this type not constraining the version will be useful. If ever
necessary, we suggest the pattern cap-_._, which will work at least
until an IVOA protocol reaches version 10; we consider it unlikely that
this will happen while current Registry infrastructure remains relevant.
data discovery

To discover data collections accessible through any version of cap de-
fined by a hypothetical example standard, the constraint would look
like

NATURAL JOIN rr.capability WHERE
standard _id LIKE ’ivo://ivoa.net/std /example#cap—%’

This pattern matches everything that the pattern in the enumeration
case matches; that is intended, as it is still perfectly legal to main-
tain the entire metadata in a single resource record. It will, however,
also match auxiliary capability identifiers like . . .#cap-aux-1.0. The
downside is that this does not constrain the version of the capability.

If the query should additionally constrain the protocol version on the
capability, the standard id pattern could look like

ivo://ivoa.net/std/examplettcap-%1.%.

2.3 Implications for Registry Operators

To operators of searchable registries, the current proposal is transparent; no
changes to harvesters, ingestors, or the data organisation should be necessary,
except perhaps enabling indices on the capabilities’ standard ids that are useful
for queries involving SQL patterns.

Operators of publishing registries, on the other hand, will have to change
or create new records if they publish multi-collection services. Where metadata
of the data collections themselves already has registry records, it suffices to
add two basically constant XML elements to the records. The typical case are
services that already offer the majority of their holdings through SCS, with
records properly declaring their tablesets.

To declare the availability of such a piece of data through TAP 1.0 in this
case, each cone search record would receive an extra capability

<capability standardID=
"ivo://ivoa.net/std/TAP#aux">
<interface xsi:type="vs:ParamHTTP" role="std">
<accessURL use="base">(service access URL)<accessURL>
</interface>
</capability>

The necessary relationship declaration then is

<relationship>
<relationshipType>IsServedBy</relationshipType>
<relatedResource ivo-id="(main service IVOID)"
>(terse name of the main service)</relatedResource>
</relationship>

(replace IsServedBy with served-by for VOResource 1.0). In case the re-
source already declares another IsServedBy relationship, only the additional
relatedResource element has to be added to the relationship element.

Operators who have not yet registered their data collections will have to
create new records including the usual VOResource metadata. The two fragment
templates above apply to these, too. See appendix A for examples of such
records.

2.4 Potential Issues

Scalability The SQL patterns given in the sample discovery queries given in
sect. 2.2 are index-friendly as they have long constant prefixes. Sequential scans
of large parts of the capability table might, however, become necessary when
many auxiliary services in multiple major versions are present. However, in such
cases, search terms for the data collections themselves (e.g., key words, author
names, etc.) would typically provide sufficient constraints to enable efficient
query plans. In the remaining cases, it does not appear likely that tables of VO
capabilities will be too large for the occasional sequential scan any time soon.

Data model discovery When a TAP service supports data models like Ob-
score or the Relational Registry, it declares so by adding a dataModel element
in a tr:TAPCapability-typed capability element. The auxiliary capabilities as
proposed by this note do not have the type tr:T4PCapability and thus will not
expose the extra TAP metadata. In consequence, a query of the type “Give me
all ObsTAP services with data from Instrument X” will not work as expected.
This deficiency could be alleviated by recommending or requiring the use of the
full, typed capabilities with an auxiliary standard id for such records and keep
using capability/dataModel for data model discovery. However, we believe
the anomaly actually is the result of a modelling error. Adherence to a data
model is not a property of a service, which potentially contains many data col-
lections conforming to different data models. The early examples (ObsTAP and
RegTAP) have suggested the contrary only because they described singletons.
In reality, data model adherence need to be declared where a data model is
realised, i.e., at the level of table or schema. We defer the details of discovering
such data models to the respective specifications, mentioning EPN-TAP (?) as
an example how it can be effected.

10

3 Considerations for the Transition Phase

Most Registry clients reviewed in Demleitner and Harrison et al. (2015) essen-
tially do service enumeration and are hence unaffected by this proposal. Their
authors might consider adding data discovery capabilities to them; an attrac-
tive alternative would be to simply add support for the SAMP MTypes allowing
exchange of resource records and leave data discovery to external components
like WIRR?.

This proposal builds on the form of standard identifiers specified by the
Identifiers 2 standard made a recommendation in May 2016. The transition to
identifiers formed in this way is going to happen as the respective standards are
reviewed.

In order to offer a solution for legacy standards and standard identifiers
already in use in the VO, we propose to form auxiliary identifiers for legacy
standard ids by just appending an aux fragment identifier. With the endorse-
ment of this note, the respective StandardsRegExt records are amended with the
necessary keys; the description of the keys will be, modulo editorial changes, “An
auxiliary capability for (protocol label), i.e., a collective service making avail-
able, among others, data from this resource. See (link to the endorsed note) for
details.”.

The following keys are defined by this document:

e ivo://ivoa.net/std/conesearch#aux (SCS 1.03)

e ivo://ivoa.net/std/siataux (SIAP 1.0)

e ivo://ivoa.net/std/siatquery-aux-2.0 (SIAP 2.0)
e ivo://ivoa.net/std/ssattaux (SSA 1.%)

e ivo://ivoa.net/std/tap#aux (TAP 1.0)

The query patterns from sect. 2.2 still apply for those.
Future DAL protocols, as well as updates to existing ones, should define
their own identifiers for their auxiliary capabilities.

A Examples
A.1 A TAP-accessible Data Collection

A resource record for a TAP-accessible data collection consisting of two tables
looks like this, using the transitional identifier for TAP 1.0 auxiliary services
(look for the capability element with a standardID attribute containing #aux
to see the mechanisms proposed here in context):

<ri:Resource
created="2011-05-06T11:10:00Z"
status="active"
updated="2015-01-16T11:43:32"
xsi:type="vs:CatalogService"
xmlns:ri="http://www.ivoa.net/xml/RegistryInterface/v1.0"

Shttp://dc.g-vo.org/WIRR

11

http://dc.g-vo.org/WIRR

xmlns:vr="http://www.ivoa.net/xml/VOResource/v1.0"
xmlns:vs="http://www.ivoa.net/xml/V0ODataService/v1.1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<title>ARIGFH object catalogue</title>
<identifier>ivo://org.gavo.dc/arigfh/q/gthtables</identifier>
<curation>
<publisher>The GAVO DC team</publisher>
<creator>
<name>Schwan, H.; Demleitner, M.; Wielen, R.; et al</name>
</creator>
<date role="updated">2015—01—16T11:43:32</date>
<contact>
<name>Markus Demleitner</name>
<address>Mönchhofstrasse 12—14, D—69120 Heidelberg</address>
<email>msdemlei@ari.uni—heidelberg.de</email>
<telephone>+-+49 6221 54 1837</telephone>
</contact>
</curation>
<content>
<subject>Stars: Positions</subject>
<subject>History and philosophy of astronomy</subject>
<subject>Catalogues</subject>
<subject>Astrometry</subject>
<description>The "Geschichte des Fixsternhimmels" is an attempt to
collect all [..]
</description>
<source format="bibcode">1989AGAD...2...33W</source>
<referenceURL>http://dc.g—vo.org/browse/arigth /q</referenceURL>
<relationship>
<relationshipType>IsServedBy</relationshipType>
<relatedResource ivo-id="ivo://org.gavo.dc/tap"
>GAVO TAP service</relatedResource>
</relationship>
</content>
<capability standardID="ivo://ivoa.net/std/TAP#aux">
<interface role="std" xsi:type="vs:ParamHTTP">
<accessURL use="base"
>http://dc.g—vo.org/tap</accessURL>
</interface>
</capability>
<coverage>
<waveband>Optical</waveband>
</coverage>
<tableset>
<schema>
<name>arigfh</name>
<title>ARIGFH object catalog</title>
<description>"Geschichte des Fixsternhimmels" is an attempt to
</description>
<table>
<name>arigfh.nid</name>
<description> The stars from the gfh table that could not be
matched with objects in the master catalog.</description>
<column>
<name>catid</name>
<description>Catalog identifier as t(teleki no)p(part)(version)
</description>
<ucd>meta.ref</ucd>
<dataType arraysize="*" xsi:type="vs:V0TableType">char</dataType>
<flag>nullable</flag>
</column>

12

<!-- more columns elided for brevity -->
</table>
<table>
<name>arigth.id</name>
<description>The stars from the gth table having counterparts in
the master together with those counterparts
.</description>
<column>
<name>masterno</name>
<description>Identification number in the ARIGFH master catalog
</description>
<ucd>meta.id;meta.main</ucd>
<dataType arraysize="1" xsi:type="vs:V0TableType">int</dataType>
</column>
<!-- more columns elided for brevity -->
</table>
</schema>
</tableset>
</ri:Resource>
</oai:0AI-PMH>

A.2 An Auxiliary Image Service

A data collection published through a STAP service also publishing other data,
which is also accessible through TAP looks like this (look for the capability
elements with standardID attributes containing #aux to see the mechanisms
proposed here in context):

<ri:Resource
created="2007-06-06T12:00:00Z"
status="active"
updated="2015-05-27T09:13:39"
xsi:type="vs:CatalogService"
xmlns:ri="http://www.ivoa.net/xml/RegistryInterface/v1.0"
xmlns:vr="http://www.ivoa.net/xml/VOResource/v1.0"
xmlns:vs="http://www.ivoa.net/xml/V0ODataService/v1.1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<title>Maidanak Observatory Lens Images</title>
<identifier
>ivo: //org.gavo.dc/maidanak /res/rawframes/rawframes</identifier>
<curation>
<publisher>The GAVO DC team</publisher>
<creator>
<name>GAVO Data Centre</name>
<logo>http://vo.ari.uni—heidelberg.de/docs/GavoTiny.png</logo>
</creator>
<date role="updated">2015—05—27T09:13:39</date>
<contact>
<name>Markus Demleitner</name>
<address>Mönchhofstrasse 12—14, D—69120 Heidelberg</address>
<email>msdemlei@ari.uni—heidelberg.de</email>
<telephone>++49 6221 54 1837</telephone>
</contact>
</curation>
<content>
<subject>Quasars: general</subject>
<subject>Strong gravitational lensing</subject>
<subject>Pointed observations</subject>
<description>Observations of (mainly) lensed quasars from
Maidanak Observatory, Uzbekistan</description>
<referenceURL>http://dc.g—vo.org/tableinfo/maidanak.rawframes

13

</referenceURL>
<relationship>
<relationshipType>IsServedBy</relationshipType>
<relatedResource ivo-id="ivo://org.gavo.dc/lensunion/q/im"
>Lens Image Archive</relatedResource>
<relatedResource ivo-id="ivo://org.gavo.dc/tap"
>GAVO TAP service</relatedResource>
</relationship>

</content>

<capability standardID="ivo://ivoa.net/std/SIA#aux">
<interface role="std" xsi:type="vs:ParamHTTP">
<accessURL use="base"
>http: //dc.g—vo.org/lensunion/q/im/siap.xml?</accessURL>
<queryType>GET</queryType>
<resultType>application/x—votable+xml</resultType>
<param std="true">
<name>POS</name>
<description>ICRS Position, RA,DEC decimal degrees
(e.g., 234.234,—32.46)</description>
<unit>deg</unit>
<ucd>pos.eq</ucd>
<dataType>string</dataType>

</param>
<param std="true">
<name>SIZE</name>

<description>Size in decimal degrees (e.g., 0.2
or 1,0.1)</description>
<unit>deg</unit>
<dataType>string</dataType>
</param>
<param std="true">
<name>INTERSECT</name>
<description>Relation of image and specified Region
of Interest .</description>
<dataType>string</dataType>

</param>
<param std="true">
<name>FORMAT</name>

<description>Requested format of the image data</description>
<dataType>string</dataType>

</param>

<param std="false">
<name>dateObs</name>
<description>Epoch at midpoint of observation</description>
<unit>d</unit>
<ucd>VOX:Image MJDateObs</ucd>
<dataType>string</dataType>

</param>

<param std="false">
<name>bandpassld</name>
<description>Freeform name of the bandpass used</description>
<ucd>VOX:BandPass_ ID</ucd>
<dataType>string</dataType>

</param>

<param std="false">
<name>object</name>
<description>Object being observed, Simbad—resolvable

form</description>

<ucd>meta.name</ucd>
<dataType>string</dataType>

</param>

</interface>

14

</capability>
<capability standardID="ivo://ivoa.net/std/TAP#aux">
<interface role="std" xsi:type="vs:ParamHTTP">
<accessURL use="base"
>http://dc.g—vo.org/tap</accessURL>
</interface>
</capability>
<coverage>
<waveband>Optical</waveband>
</coverage>
<tableset>
<schema>
<name>maidanak</name>
<title>Maidanak Observatory Lens Images</title>
<description>Observations of (mainly) lensed quasars from
Maidanak Observatory, </description>
<table>
<name>maidanak.rawframes</name>
<description>Observations of (mainly) lensed quasars from
Maidanak Observatory, Uzbekistan</description>
<column>
<name>accref</name>
<description>Access key for the data</description>
<utype>Access.Reference</utype>
<dataType arraysize="*" xsi:type="vs:V0TableType">char</dataType>
<flag>nullable</flag>
</column>
<!-- additional columns elided for brevity -->
</table>
</schema>
</tableset>

</ri:Resource>

B Changes from Previous Versions

B.1 Changes from PEN-2016-11-11

e Now taking a clear stance that discovery of TAP-published data models
need to be discovered not via capability /dataModel.

B.2 Changes from NOTE-1.0

e Now encouraging extra parameters in access URLs where appropriate.

e No longer requiring auxiliary capabilities to be plain vr:Capability.

e Updates for deprecation of served-by in VOResource 1.1.

e Removed section on GloTS.

References
Bonnarel, F., Fernique, P., Bienaymé, O., Egret, D., Genova, F., Louys, M.,

Ochsenbein, F., Wenger, M. and Bartlett, J. G. (2000), ‘The ALADIN inter-
active sky atlas. A reference tool for identification of astronomical sources’,

15

Astronomy and Astrophysics Supplement 143, 33—40.
http://ads.ari.uni-heidelberg.de/abs/2000A%26AS..143...33B

Braduner, S. (1997), ‘Key words for use in RFCs to indicate requirement levels’,
RFC 2119.
http://www.ietf.org/rfc/rfc2119.txt

Demleitner, M., Harrison, P., Taylor, M. and Normand, J. (2015), ‘Client Inter-
faces to the Virtual Observatory Registry’, ArXiv e-prints , arXiv:1502.01186.
http://ads.ari.uni-heidelberg.de/abs/2015arXiv150201186D

Demleitner, M., Plante, R., Linde, T., Williams, R. and Noddle, K. (2015),
‘IVOA identifiers, version 2’, IVOA Recommendation.
http://www.ivoa.net/documents/IVOAIdentifiers/20160523/

Dowler, P., Rixon, G. and Tody, D. (2010), ‘Table access protocol version 1.0’
IVOA Recommendation.
http://www.ivoa.net/documents/TAP

Draper, P. W. (2014), ‘SPLAT: Spectral Analysis Tool’, Astrophysics Source
Code Library, ascl:1402.007.
http://adsabs.harvard.edu/abs/2014ascl.soft02007D

Louys, M., Bonnarel, F., Schade, D., Dowler, P., Micol, A., Durand, D., Tody,
D., Michel, L., Salgado, J., Chilingarian, I., Rino, B., de Dios Santander,
J. and Skoda, P. (2011), ‘Observation data model core components and its
implementation in the Table Access Protocol, version 1.0°, IVOA Recom-
mendation.
http://www.ivoa.net/documents/0bsCore/20111028/REC-0bsCore-vl.
0-20111028.pdf

Plante, R., Benson, K., Graham, M., Greene, G., Harrison, P., Lemson, G.,
Linde, T., Rixon, G., Stébé, A. and IVOA Registry Working Group (2008),
‘VOResource: an XML Encoding Schema for Resource Metadata Version
1.03’, IVOA Recommendation 22 February 2008, arXiv:1110.0515.
http://adsabs.harvard.edu/abs/2008ivoa.spec.0222P

16

http://ads.ari.uni-heidelberg.de/abs/2000A%26AS..143...33B
http://www.ietf.org/rfc/rfc2119.txt
http://ads.ari.uni-heidelberg.de/abs/2015arXiv150201186D
http://www.ivoa.net/documents/IVOAIdentifiers/20160523/
http://www.ivoa.net/documents/TAP
http://adsabs.harvard.edu/abs/2014ascl.soft02007D
http://www.ivoa.net/documents/ObsCore/20111028/REC-ObsCore-v1.0-20111028.pdf
http://www.ivoa.net/documents/ObsCore/20111028/REC-ObsCore-v1.0-20111028.pdf
http://adsabs.harvard.edu/abs/2008ivoa.spec.0222P

	Introduction
	The Problem Setting
	Non-solutions
	The Full-Capability Approach
	The Split-Metadata Approach

	A Proposal for Discovering Data Collections
	Auxiliary Capabilities
	Background
	StandardIDs for Auxiliary Capabilities
	Relationship to the Main Service
	Passing Extra Information in the Access URL

	Implications for Registry Clients
	Implications for Registry Operators
	Potential Issues

	Considerations for the Transition Phase
	Examples
	A TAP-accessible Data Collection
	An Auxiliary Image Service

	Changes from Previous Versions
	Changes from PEN-2016-11-11
	Changes from NOTE-1.0

