
International
Virtual
Observatory

Alliance

The IvoaTEX Document Preparation
System

Version 1.3

IVOA Note 2022-06-14
Working Group

Standards and Processes
This version

https://www.ivoa.net/documents/ivoatexDoc/20220614
Latest version

https://www.ivoa.net/documents/ivoatexDoc
Previous versions

Version 1.1
Version 1.0

Author(s)
Markus Demleitner, Mark Taylor, Paul Harrison, Marco Molinaro

Editor(s)
Markus Demleitner

Version Control
Revision 769b2a3, 2022-05-11 11:53:51 +0200

Abstract
This note describes the IvoaTEX document preparation system for IVOA

standards and notes. IvoaTEX supports the production of PDF and HTML
renderings of the documents with sources in plain text suitable for version
control, as is desirable for normative texts. This note contains a user guide
as well as a discussion of IvoaTEX’s dependencies and its implementation.
It describes the software as of May 2022 (release 1.2). While IvoaTEX is
not usually explicitly installed, it can be downloaded from http://ivoatex.
g-vo.org.

https://www.ivoa.net/documents/ivoatexDoc/20220614
https://www.ivoa.net/documents/ivoatexDoc
http://www.ivoa.net/documents/ivoatexDoc/20160430
http://www.ivoa.net/documents/ivoatexDoc/20150129
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarkusDemleitner
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarkTaylor
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/PaulHarrison
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarcoMolinaro
http://ivoatex.g-vo.org
http://ivoatex.g-vo.org

Status of this document
This is an IVOA Note expressing suggestions from and opinions of the

authors. It is intended to share best practices, possible approaches, or other
perspectives on interoperability with the Virtual Observatory. It should not
be referenced or otherwise interpreted as a standard specification.

A list of current IVOA Recommendations and other technical documents
can be found at https://www.ivoa.net/documents/.

Contents

1 Introduction 3

2 Installation and Quick Start 5
2.1 Dependencies . 5
2.2 Basic IvoaTEX operation . 6

2.2.1 Installation from Archive (without version control) . . 7
2.2.2 Installation with git version control 7
2.2.3 Beginning the document 8

2.3 Examples . 13

3 Authoring documents 13
3.1 IvoaTEX Features . 13
3.2 Listings, Verbatim Material 14
3.3 References and Bibliography 15

3.3.1 Built-in Bibliographies 15
3.3.2 Citation Style . 15
3.3.3 Local Bibliographies 16

3.4 Graphics . 17
3.4.1 Bitmap Graphics . 17
3.4.2 Vector Graphics . 17

3.5 Tables . 18
3.6 Hyperlinks . 18
3.7 Editorial tools . 19
3.8 Version Control System Information 20

3.8.1 VCS Metadata in Git 20
3.9 Generated Content . 20
3.10 The Standards Record . 22
3.11 Adding tests . 23

3.11.1 Schema Validation . 23
3.11.2 Running Queries . 24
3.11.3 Miscellaneous Tests . 25

2

https://www.ivoa.net/documents/

3.12 Submitting a Document . 26

4 Developing IVOA Documents 28
4.1 The Organisations ivoa and ivoa-std 28
4.2 Contributing to a Document 28
4.3 Managing Changes . 30
4.4 Adopting a Repository for ivoa-std 31

5 Customisation and Development 32
5.1 Technical Overview . 32
5.2 Semantic Markup . 33
5.3 Custom Macros and Environments 33
5.4 Custom CSS . 34
5.5 Maintenance of the Architecture Diagram 35

6 Desirable Features to be Implemented 36

A Changes from Previous Versions 36
A.1 Changes from Version 1.2 . 36
A.2 Changes from Version 1.1 . 36
A.3 Changes from Version 1.0 . 37

References 37

Acknowledgments

IvoaTEX heavily draws from experiences made with previous markup-based
document preparation systems, in particular LaTeX classes and infrastruc-
ture created by Sébastien Derriere and Mark Taylor, as well as Paul Harri-
son’s XML-based ivoadoc system.

We thank tth’s author, Ian Hutchinson, for generous technical support
and prompt provision of solutions in the upstream source where necessary.

1 Introduction

Creating and developing standards is a big part of the operations of the
International Virtual Observatory Alliance (IVOA). As these are normative
texts, attention to detail is very important, and being able to rigorously
track changes to the documents is highly advantageous.

Standards are also often developed cooperatively, which means that ca-
pabilities for branching and merging are desirable. This strongly suggests
employing version control systems for document authoring. Change tracking

3

in software designed for editing office documents, to the extent it is sup-
ported at all, usually requires significant manual intervention, is optional,
often used incorrectly, and frequently lacks interoperability. Led by these
considerations, it was decided that IvoaTEX would have to be based on
plain text source files.

As mandated by the IVOA Document Standards (Genova and Arviset
et al., 2017), finished documents have to be at least available in PDF, while
an additional HTML rendering for online use is recommended. A document
preparation system should thus be able to produce documents in these for-
mats in at least acceptable quality.

With these constraints in mind, several possible solutions were investi-
gated. Paul Harrison’s ivoadoc system1 went for XHTML as an input format
and used XSLT2 and XML-FO as document processors. While this facil-
itated several interesting features – for instance, automatic extraction and
formatting of XML schema fragments or straightforward embedding of RDFa
markup for machine-readable examples –, it turned out that tooling issues
were severe (e.g., reliable use of SGML catalogs2, non-free hyphenation pat-
terns, classpath issues) and the use of XML-FO for PDF generation yielded
inferior renderings with little prospect for improvements by third parties.
Also, authors disliked writing HTML tags.

Other options considered for source languages included docbook or a
lightweight markup language (ReStructuredText and markdown having been
serious contenders). In each case, there were concerns either regarding the
system’s power and flexibility or its ease of installation and maintenance.

Meanwhile, several documents – to mention just a few, SAMP, VOTable,
and VOUnits – had successfully used TEX-based systems typically derived
from work done in the early 2000s by Sébastien Derriere. IvoaTEX essen-
tially is a generalisation of these standards’ formatting systems, also inher-
iting from them the use of the make tool to automate workflows.

IvoaTEX was extended to relieve document editors from some of the
bookkeeping involved with producing IVOA standards and provide authors
with uniform solutions for common problems in standards typesetting.

In the remainder of this document, we give quick-start instructions on
installation and authoring in sect. 2 and continue with a more thorough dis-
cussion of IvoaTEX’s facilities, focusing on enabling automatic production
of both HTML and PDF output in sect. 3. Added in this document’s version
1.2, sect. 4 then documents how ivoatex is intended to be used on github by
the various actors; authors and contributors to IVOA standards should at
least have a brief look at the recommended procedures for them in subsec-

1https://volute.g-vo.org/svn/trunk/projects/ivoapub/ivoadoc
2This is important as retrieval of DTDs and similar data from their commonly used

system identifiers (i.e., typically W3C web servers) is at least undesirable and in practice
causes massive delays in formatting due to rate limiting on the part of the W3C.

4

https://volute.g-vo.org/svn/trunk/projects/ivoapub/ivoadoc

tion 4.2. In sect. 5, additional details on the implemenation are given for the
benefit of authors planning to extend IvoaTEX. We close with a discussion
of open issues and desirable developments.

2 Installation and Quick Start

2.1 Dependencies

IvoaTEX is designed to work more or less out of the box on common POSIX-
compliant systems; no non-free software is required for operation. Its main
uncommon dependency is the tth translator, a program based on lex used
to translate LaTeX to HTML. As it is compact and portable, it is delivered
with IvoaTEX and built on demand. Since IvoaTEX’s tth may at times
offer some enhancements over the upstream tth, using a system-installed tth
is discouraged.

The remaining dependencies include:

• A LATEX distribution with some commonly available packages (calc,
graphicx, xcolor, ifthen, doc, paralist, url, natbib, caption, hyperref).
It is recommended to install TeXLive.

• A sufficiently capable implementation of make, with GNU’s implemen-
tation recommended.

• librsvg2-bin when people need to (re-) build architecture diagrams.

• Optionally, latexmk. If it is available, a lot less manual attention is nec-
essary when rerunning LaTeX to update bibliographies or document-
internal references.

• python3 for generated content, and other housekeeping that is proba-
bly not relevant for most authors. Editors need it for automatic sub-
mission to the document repository.

• Editors will need the XSLT1 processor xsltproc (a different processor
can be used, but that would probably require custom make rules) for
HTML generation.

• Editors will need the gcc compiler (another C compiler could be
used; the central makefile should probably be amended to allow easier
changes here), and flex for HTML generation.

• Editors will need the zip archiver for package generation.

• Editors will need imageMagick and ghostscript if vector graphics is
to be processed into HTML.

5

On Windows, it is recommended to run IvoaTEX within cygwin, where
all dependencies can easily be installed from cygwin’s repository.

On Debian-derived systems, the dependencies should be present after
running a distribution-specific adaption of
apt install build-essential texlive-latex-extra zip xsltproc\
texlive-bibtex-extra imagemagick ghostscript cm-super librsvg2-bin

(cm-super contains vector versions of computer modern fonts in T1 encod-
ing), on RPM-based systems something like

yum install texlive-scheme-full libxslt make gcc zip\
ImageMagick ghostscript

should pull in everything that is necessary.
With OS X, a convenient way to obtain the dependencies is to install

MacPorts3 and then run

port install ImageMagick libxslt ghostscript +full

The canonical OSX TEX distribution is the MacTEX version of TEXLive4. It
is also possible to build TEX using MacPorts (with port install texlive),
but this may result in a slightly non-standard distribution.5

To see if the full prerequisites are there and compatible with IvoaTEX,
try building an updated version of this document from its github source
(normal users can go without making HTML and packages, in which case a
lot of dependencies are not needed):
git clone --recurse-submodules https://github.com/ivoa-std/ivoatexDoc
cd ivoatexDoc
make biblio # update the bibliography
make forcetex # make a PDF ignoring timestamps
make ivoatexDoc.html # make an html document
make package # make a zipfile for IVOA submission

During HTML generation, various diagnostics both from tth and from
xsltproc (unknown commands, unexpected end tags, and the like) are ex-
pected at this point and no reason for alarm; we work on reducing the
amount of spurious error messages.

2.2 Basic IvoaTEX operation

For ease of installation and robustness, IvoaTEX for now is designed to be
used from within a subdirectory of the directory containing the document

3https://www.macports.org/
4https://www.tug.org/mactex/
5See http://tex.stackexchange.com/questions/97183/. Also, MacPorts does add

texlive as a dependency on many packages, and so frequently insists on trying to build
it; if you want to prevent this, there is some discussion at http://comments.gmane.org/
gmane.os.apple.macports.user/21526.

6

https://www.macports.org/
https://www.tug.org/mactex/
http://tex.stackexchange.com/questions/97183/
http://comments.gmane.org/gmane.os.apple.macports.user/21526
http://comments.gmane.org/gmane.os.apple.macports.user/21526

sources (rather than being installed globally). Given that it is fairly compact,
having one copy per document seems acceptable.

So, the first step to use IvoaTEX is to create a development directory:

export DOCNAME=SampleDoc
this would be your document's short name, e.g., RegTAP, SIAv2)
mkdir $DOCNAME

The DOCNAME – which will turn up in URLs, standard identifiers, and
the like – should be chosen to be both succinct and expressive, and it should
not contain non-alphanumeric characters (the examples given here assume
that, too). A name like SimpleDALRegExt probably marks the upper limit
in terms of length.

While it is clearly preferable if authors use IVOA’s designated common
version control system6 from the outset of document development, it is pos-
sible to build ivoatex documents locally as well.

2.2.1 Installation from Archive (without version control)

Without version control, it is sufficient to obtain IvoaTEX from a distribu-
tion site and unpack it into the future document directory:

cd $DOCNAME
curl http://ivoatex.g-vo.org/ivoatex-latest.tar.gz \
| tar -xvzf -k

sh ivoatex/make-templates.sh $DOCNAME

The shell script will print some error messages because no version control
has been enabled. These are safe to ignore.

2.2.2 Installation with git version control

The recommended way to run ivoatex is to use git’s submodule feature.
This makes it very simple to keep ivoatex up to date without polluting
the document’s history, and it makes it straightforward to feed back any
improvements you may make to ivoatex. Hence, you will usually start a
document like this:
cd $DOCNAME
git init
git submodule add https://github.com/ivoa-std/ivoatex
sh ivoatex/make-templates.sh $DOCNAME
git commit -m "Starting $DOCNAME"

The ivoatex/startup.sh script will copy a few template files from the
ivoatex distribution to the working space. You could do that manually, too;
see the script for what files to move where.

6Which, despite many concerns (Zuboff, 2019), currently is github.com.

7

At this point, create a repository in your account using github.com’s
web interface. Use $DOCNAME as the repository name, and do not choose
any template; this procedure will leave you at a web page with a URI like
https://github.com/msdemlei/ivoatexDoc. On that page, you can obtain
a “Clone URI”, which is what you can push to. Use the ssh variant, i.e.,
something like git@github.com:username/docname.git.

Then, push your newly changed material into this new repository’s main
branch:
git remote add origin <Clone URI>
git push --set-upstream origin main

(depending on your git version, you may have to use “master” rather than
“main”).

2.2.3 Beginning the document

Main metadata in the Makefile For convenience, the document production
should start from some common templates which are part of the IvoaTEX
distribution. The above procedure has already created README.md (a brief
introduction to what the document is about), $DOCNAME.tex (the future
document) and Makefile (where some of the document metadata is defined).

The next step is to fill out the makefile template. As of the formatting
of this document, this template looks like this:
ivoatex Makefile. The http://ivoa.net/documents/notes/IVOATex
for the targets available .

short name of your document (edit $DOCNAME.tex; would be like RegTAP)
DOCNAME = ????

count up; you probably do not want to bother with versions <1.0
DOCVERSION = 1.0

Publication date, ISO format; update manually for "releases"
DOCDATE = ???

What is it you're writing : NOTE, WD, PR, REC, PEN, or EN
DOCTYPE = ???

An e-mail address of the person doing the submission to the document
repository (can be empty until a make upload is being made)
AUTHOR_EMAIL=???

Source files for the TeX document (but the main file must always
be called $(DOCNAME).tex
SOURCES = $(DOCNAME).tex

List of image files to be included in submitted package (anything that
can be rendered directly by common web browsers)
FIGURES =

8

List of PDF figures (figures that must be converted to pixel images to
work in web browsers).
VECTORFIGURES =

Additional files to distribute (e.g ., CSS, schema files, examples...)
AUX_FILES =

-include ivoatex/Makefile

ivoatex/Makefile:
@echo "∗∗∗ ivoatex submodule not found. Initialising submodules."
@echo
git submodule update --init

test:
@echo "No tests defined yet"

All lines with question marks must be filled out. The document date is
the publication date, which can be significantly different from the current
date. After its initial setting, it should only be changed at the time of
submission to the document archive. It is always in DALI-style ISO format
(Dowler and Demleitner et al., 2017), e.g., 2014-03-31.

SOURCES is used in dependency processing. It would be amended when
the source file is split into separate files or if material is included into the
document, e.g., via lstinputlisting. Graphics files included do not need
to be given here, as the document will automatically depend on them. The
exception is role_diagram.pdf; see sect. 2.2.3.

FIGURES must contain the names of all bitmap graphics included in the
document; files missing here will be missing from the package for distribution
to the IVOA document repository, which will break the HTML rendering.
As to VECTORFIGURES, see sect. 3.4.2.

AUX_FILES is intended for files that should be included in the upload to
the IVOA document repository while not taking part in the actual format-
ting. This in particular concerns XML Schema files, for which the IVOA
maintains a separate repository, but is by no means limited to them.

Additional metadata in the LATEX source The template for the TEX source
contains several lines with multiple question marks. These must be filled out
as well.

As illustrated in the template, both author and previousversion sup-
port an optional argument giving an URL; for author, it should normally
point to the respective person’s page in the IVOA wiki, for previousversion,
it should point to the landing page of the respective document version in the
IVOA document repository. Further automation for maintaining document
history certainly is desirable, and the authors welcome ideas for how this
might look like.

9

ivoagroup should contain the name of the (one) IVOA working or in-
terest group under which auspices the document development mainly hap-
pens. If this is an interest group (which is only possible for notes), use
ivoagroup[IG]{...} to make IvoaTEX use “Interest Group” rather than
“Working Group” as the label of the corresponding piece of metadata.

Pick one from the following list7:
• Applications
• DAL
• Data Access Layer
• Data Models
• Grid and Web Services
• Registry
• Data Curation and Preservation
• Standards and Processes
• Semantics
• Operations
• Radio
• Theory
• VO Event
• Time Domain
• Education
• No Group (only possible for Notes)

The README The README.md template should be edited to give a short
(one-paragraph) introduction to what the document is about at an even
higher level than the abstract. The template also contains instructions for
building, pointers to the IVOA document repository, and a license statement.
While you can change these if you want, that should not usually be necessary.

The Architecture Diagram An architecture diagram is only necessary for
documents on the recommendation track. Notes may have one, but since
Notes are not shown on it, that is rather unusual.

To prepare an architecture diagram, first obtain the full description of
all IVOA standards:

cp ivoatex/archdiag-full.xml role_diagram.xml
git add role_diagram.xml

This is just an abstract specification that is compiled into images. To
ensure this happens, role_diagram.svg to FIGURES in the Makefile. As long
as the LATEX toolchain does not support the SVG image format, you must
additionally append role_diagram.pdf to SOURCES.

7We do not enforce the use of the controlled vocabulary. Automatic submission with
make upload will fail if you invent something here, though.

10

Then edit role_diagram.xml and remove all references to standards un-
related to the current document. As a rule, all rec elements for standards
not mentioned in “Role within the IVOA Architecture” should be removed.
Finally, use a thisrec element for the current standard. An architecture
diagram for VOResource would thus be specified like this:
<archdiag xmlns="http://ivoa.net/archdiag">
<thisrec name="VOResource" x="55" y="155"/>
<rec name="RegTAP" x="55" y="180"/>
<rec name="RegistryInterface" x="55" y="205"/>
<!-- and a few more -->

</archdiag>

The standard-specific architecture diagram will be built by saying make
role_diagram.svg and can be viewed using, for instance, common web
browsers. Please refrain from editing the SVG with vector graphics pro-
grams. In the PDF renderings of the document, a PDF version of the ar-
chitecture diagram is required. This is built using make role_diagram.pdf,
and a stand-in will be built if your system lacks the software to do this
conversion (currently: rsvg-convert).

As long as the tooling situation regarding LATEX and SVG is as unsatisfac-
tory as it is, please commit both role_diagram.svg and role_diagram.pdf
to the version control system.

Source code conventions IvoaTEX requires the source to be written in
UTF-8 encoding, since the references shipped with it are in UTF-8. Authors
are urged to keep lines shorter than 72 characters in input files whenever
possible in order to keep diffs useful and readable. When edits are made,
paragraphs should not normally be reflowed to avoid large diffs for minor ed-
its. Authors desiring a reflow after many edits are encouraged to concentrate
them in a separate, reflow-only commit.

Makefile targets The PDF version of the document is built by the make-
file’s default rule, so running make will usually by enough. This will produce
a file $DOCNAME.pdf.

Other makefile targets for author use include:

• biblio updates the bibliography (i.e., runs BibTEX); running this is
necessary after one of the bibliography files is updated or when a new
publication is referenced from the document. This target is not neces-
sary on machines that have latexmk.

• forecetex rebuilds the PDF unconditionally just as if the main source
had been edited. This target is probably not useful on machines with
latexmk.

11

Note
Simply running latex, pdflatex, or mklatex directly
(rather than through make) is not supported with
IvoaTEX. Due to the non-global installation of the
support files, the TEX run needs a special environment
that is prepared by the makefile.
Also note that on systems without latexmk,
bibliography processing must be initated manually by
running make biblio; unless authors checked in the
bbl file this produces, this must be run after a
document checkout.

• $DOCNAME.html generates an HTML rendering of the document; at this
point, this will typically emit quite a bit of spurious diagnostics. Un-
fortunately, real problems may hide within. Therefore, we currently
recommend a visual inspection of the resulting HTML before submis-
sion.

• package generates a zip file containing everything needed for publi-
cation in the IVOA’s document repository. Obviously, DOCVERSION,
DOCTYPE, and DOCDATE in the Makefile should be updated as necessary
before this target is built. The result is a zip file with a name compliant
to the IVOA document standards (Genova and Arviset et al., 2017).

• arxiv-upload produces a file arxiv-upload.tar.gz for the current docu-
ment. ArXiv uploads are automatically done by the document coordi-
nator for RECs and ENs, and editors should not do them themselves.
Authors of Notes may upload their documents to arXiv.

• upload produces a package, shows metadata to be uploaded to the
IVOA document repository (make sure everything is as you expect it)
and then uploads the package.

• generate is used to update machine-generated content in the docu-
ment, typically by the main editor. See section 3.9 for details.

• update updates the ivoatex submodule to whatever is in the main
ivoatex branch on github. This will fail if you have uncommitted local
changes to your ivoatex.

• $DOCNAME-draft.pdf generates a PDF rendering just like a simple
make, but it will add a watermark against distribution. This is mainly
intended for continuous integration workflows. It only works if pdftk
is installed.

12

2.3 Examples

Examples for IvoaTEX use are found in the ivoa-std organisation on github8.

3 Authoring documents

While IvoaTEX documents can be written much like any other TEX docu-
ment, it is advisable to follow certain standards and use special facilities for
common appearance, easier development, and possible evolution of IvoaTEX
itself.

3.1 IvoaTEX Features

IvoaTEX provides a small set of macros and environments designed to ease
standards authoring. These include:

author, previousversion, ivoagroup
these are discussed in sect. 2.2.3.

ucd
a macro for marking up UCDs. This in particular helps with hy-
phenation of these, typically long, strings.

xmlel
a macro for marking up XML element or attribute names and sim-
ilar.

vorent
for a name taken from VOResource or its extensions, usually an
element or attribute name.

admonition
This is an environment for displayed boxes, intended for notes, tips,
and the like. It takes an argument giving the head of the box, e.g.,

\begin{admonition}{Note}
Admonitions should not be overdone.
Also, they are floating insertions.
\end{admonition}

bigdescription
This is an environment for definition lists in the style of HTML dl,
and it will be translated into one. Use \item[term] for the term
to be defined (the construct this item is in is a bigdescription).

auxilaryurl
A macro expanding a path relative to the current document to a
full URL. This is discussed more extensively in sect. 3.6

8https://github.com/ivoa-std

13

https://github.com/ivoa-std

inlinetable
This is an environment for showing tables in-place (rather than as
an insertion potentially somewhere else, as LaTeX’s table environ-
ment does). This may lead to rather empty pages when the tables
get longer.

The intention behind macros like xmlel and vorent is that such terms
are typeset uniformly across documents. Further semantic markup like this
is planned for future releases, and document authors are encouraged to con-
tribute terms.

Also note that the title page is generated by the abstract environment.
Thus, all IvoaTEX documents must have an abstract within the abstract
environment.

3.2 Listings, Verbatim Material

IvoaTEX documents should use the listings package to include source
code snippets, XML fragments and the like. While the ivoa class requires
the package as of version 1.1 (and hence you can use the lstlisting en-
vironment without an explicit usepackage declaration), you will usually
want to configure the package in the document preamble (i.e., before its
\begin{document}), perhaps like this:

\lstloadlanguages{XML,sh}
\lstset{flexiblecolumns=true,tagstyle=\ttfamily,
showstringspaces=False}

Additional languages supported that are likely relevant in a VO con-
text include C, fortran, python, SQL, and java, specified as above case-
insensitively.

The setup in the example (flexible columns, tags in typewriter, no explicit
blanks even in strings) produces reasonably pleasant output for a wide range
of languages.

Actual listings are obtained with code like

\begin{lstlisting}[language=XML]
<example id="empty"/>
\end{lstlisting}

Alternatively, entire files can be included like this:

\lstinputlisting[language=XSLT]{makeutypes.xslt}

In the PDF rendering, the listings are pretty-printed. In the HTML render-
ing, the content is, currently, simply included in pre elements.

If a more compact rendering of listings is desired, for instance, be-
cause larger portions of source code are required in the document, listings’

14

basicstyle option should be used together with one of LaTeX standard
size macros. This could be in the argument of lstset in the preamble for a
global setting, or on a case-by-case basis as in

\begin{lstlisting}[language=tex,basicstyle=\footnotesize]
Other sizes include \tiny, \scriptsize, \small, \normalsize, \large
\end{lstlisting}

As of version 1.2 of IvoaTEX, only footnotesize is actually formatted
by the CSS embedded in the HTML document, and we believe listings should
not be much smaller than that anyway. As the options are translated into
CSS classes, it is fairly easy to add further formatting functionality on a
document-by-document basis, though.

3.3 References and Bibliography

3.3.1 Built-in Bibliographies

IvoaTEX documents should use natbib and BibTEX to manage references.
The package comes with two default bibliographies:

• ivoatex/ivoabib.bib containing records for many publications likely
to be cited by IVOA documents. Feel free to add further records if
they might reasonably be cited by other IVOA documents.

• ivoatex/docrepo.bib containing records for IVOA documents listed
in ADS, i.e., recommendations, endorsed notes, and a selection of other
notes.

Without latexmk, changes to the document that introduce new refer-
ences or changes to the bibliography require that make biblio is run before
changes become visible.

IvoaTEX comes with a bibliography style of its own, derived from
agsm.bst. The custom bibliography style was derived to optimise some types
of sources uncommon outside of the VO community, in particular IVOA rec-
ommendations and notes. Users are welcome to improve ivoatex/ivoa.bst.

3.3.2 Citation Style

As usual in natbib, actual references are made through either writing
\citep{tag}, yielding a form like “(Einstein 1905)”, or \citet{tag}, yield-
ing a form like “Einstein (1905)”. IvoaTEX does not support variant forms
of citep and citet (i.e., those with optional arguments) yet; they will work in
PDF output but fail in HTML. Contributions to improve this are welcome.

To reference an IVOA recommendation, locate its bibcode either using
ADS or directly within ivoatex/docrepo.bib and then use one of the cite

15

macros. The preferred style is to introduce a short name for the standard
once with a citation and then use that short name in the remainder of the
document to have expressive texts not overciting. For instance,

IVOA Identifiers \citep{2016ivoa.spec.0523D} introduces URIs to
reference Registry records, which are typically transmitted in
VOResource \citep{2018ivoa.spec.0625P} format. Both VOResource
and IVOA Identifiers are based on various W3C standards.

will come out as

IVOA Identifiers (Demleitner and Plante et al., 2016) intro-
duces URIs to reference Registry records, which are typically
transmitted in VOResource (Plante and Demleitner et al., 2018)
format. Both VOResource and IVOA Identifiers are based on
W3C standards.

Recommendations should generally be cited in the last version available
at the time of writing9. If works in progress (working drafts, proposed rec-
ommendations are to be cited, authors should create a local bibliography
(see below).

As part of bibliography management, authors should occasonally run

make bib-suggestions

This will suggest updates to what IVOA standards the document cites
based on which documents obsoleted which other documents. Note that
these suggestions should not be followed where references actually are
version-sharp.

3.3.3 Local Bibliographies

When a reference is really only relevant to a single document or is concep-
tually non-permanent – this, in particular, pertains to Working Drafts or
Proposed Recommendations to be cited –, it should be kept in a local bib-
liography. To instruct LATEX to use the references there, the declaration at
the foot of the document needs to be changed to

\bibliography{ivoatex/ivoabib,ivoatex/docrepo,localrefs}

Then a file localrefs.bib is created and checked into the version control
repository. An example BibTEX record for an in-progress document is

@Misc{wd:Datalink,
author={Patrick Dowler and Francois Bonnarel and

9If a published recommendation is missing in the bibliography, this can be fixed by
cd-ing into the ivoatex folder and saying make docrepo.bib.

16

Laurent Michel and Tom Donaldson and David Languignon},
editor={Patrick Dowler},
howpublished={{IVOA Working Draft 22 October 2013}},
title={DataLink},
year=2013,
url={http://ivoa.net/documents/DataLink/20131022/}

}

Note that howpublished contains the precise document date and the url
points to the actual versioned landing page, not the generic one for the
standard.

3.4 Graphics

3.4.1 Bitmap Graphics

IvoaTEX supports all bitmap graphics formats that pdflatex supports. In
practice, authors are encouraged to restrict themselves to JPEG, PNG, and
possibly GIF. Currently, identical images are used for both PDF and HTML
renderings. The recommended pattern for figures is

\begin{figure}[th]
\begin{center}
\includegraphics[width=0.9\textwidth]{mydiagram.png}
\end{center}
\caption{A diagram of what this is about.}
\label{fig:mydiag}
\end{figure}

This gives LATEX some leeway in placing the figure, defines the image size in
units of the page width, and centres the image itself.

All bitmap graphics in a document must be listed in the makefile’s
FIGURES variable. If they are not, the HTML rendering will be broken.

3.4.2 Vector Graphics

The only vector graphics format well supported in IvoaTEX is PDF. PDF
files can be directly used in includegraphics. The names of such figures
must be listed in the makefile’s VECTORFIGURES variable.

From VECTORFIGURES, IvoaTEX arranges that, when a PDF figure
foo.pdf is used, the HTML target depends on a file called foo.png. This
PNG can be generated automatically by IvoaTEX using a combination of
ghostscript and ImageMagick. It may sometimes be preferable to perform a
custom conversion by hand (e.g., more compact representation with bilevel
source images), in which case the pre-rendered PNG should be included in

17

the version controlled repository. This also has the advantage that neither
ghostscript nor ImageMagick are build dependencies of the document.

3.5 Tables

In tables, rules should be used sparingly. The standard pattern for tables is
something like

\begin{table}[th]
\begin{tabular}{p{0.35\textwidth}p{0.64\textwidth}}
\sptablerule
\textbf{Column Head}&\textbf{Another column head}\\
\sptablerule
A value & Another value\\
A value in row 2& And so on\\
\sptablerule
\caption{A sample table}
\label{table:extable}
\end{tabular}
\end{table}

The sptablerule used here inserts a horizontal rule with some extra
spacing and will be rendered consistently in both PDF and HTML. It should
not, as a rule, used between table rows. It is intended primarily to delimit
the table itself as well as the the heading and the body.

3.6 Hyperlinks

While IvoaTEX puts no restrictions on the usage of hyperref features, the
preferred way to include links in IvoaTEX documents is to use the urlmacro,
i.e., use the URL itself as the anchor text. In this way, the link remains (to
some extent) usable even if the document is printed. The alternative two-
argument href should generally be avoided as it fails on paper. For instance,

(this is bad:) The \href{http://ivoa.net}{IVOA} has issued
\href{http://ivoa.net/documents}{many standards}.

would severely degrade when printed and is hence discouraged, whereas

The IVOA\footnote{\url{http://ivoa.net}} has issued many
standards, all of which can be retrieved from
\url{http://ivoa.net/documents}.

works properly on all of IvoaTEX’s target media.
With non-HTTP URIs, it is recommended to use hyperref’s nolinkurl

macro (rather than an unadorned texttt or similar); advantages include
that line breaking is better with nolinkurl, less manual escaping is necessary,
and, if desired, such URIs can be more easily styled. An example:

18

The value of the \xmlel{standardID} attribute will be
be \nolinkurl{ivo://ivoa.net/std/Registry#OAI-2.0}.

A special feature related to links is the auxiliaryurl macro. It is used
when a document references a resource coming with the document and ver-
sioned with it, but not included with the document text. Examples for such
material could be helper scripts, simple validators, larger bits of sample data,
and the like. Note that vocabularies and XML schema files should not be
distributed in this way, as they have conventional places within the ivoa.net
URL hierarchy.

For instance, \auxiliaryurl{custom.css} expands to

https://www.ivoa.net/documents/ivoatexDoc/20220614/custom.css,

in this document, which is, for each release of this document, the URL the
example custom CSS file mentioned in the example in sect. 5.4 is found
at. The preferred way to include such (long) URLs is in footnotes, as they
typcially cannot be hyphenated.

In order to make IvoaTEX include the file linked to in this way in the
package submitted to the document repository, you must add the argument
of auxiliaryurl to AUX_FILES in the Makefile.

3.7 Editorial tools

When authoring standards, it is sometimes necessary to include editorial
comments of the type “Need to clarify” or “Specification incomplete”. We
recommend to use the todonotes package for such pieces of text10. The
recommended usage is like

...
\usepackage{todonotes}
...
\begin{document}
\todo{This is an example for a editorial note}.

A rendering of such a to-do note is shown in this paragraph. In HTMLThis is an exam-
ple for a editorial
note

output, only the simple todo macro without options is supported, and text
is simply displayed inline right now. Note in particular that todonote’s
obeyDraft and obeyFinal package options are ignored. Although IvoaTEX
does not enforce it (yet), finished recommendations should have no todo
items in them.

While todonotes is a useful tool for standards development, we discourage
the use of packages to mark up changes, as maintaining such markup usually
is very hard, and version control offers a more manageable solution to the
problem such packages attempt to solve.

10Full documentation is available at http://www.tex.ac.uk/CTAN/macros/latex/
contrib/todonotes/todonotes.pdf.

19

https://www.ivoa.net/documents/ivoatexDoc/20220614/custom.css
http://www.tex.ac.uk/CTAN/macros/latex/contrib/todonotes/todonotes.pdf
http://www.tex.ac.uk/CTAN/macros/latex/contrib/todonotes/todonotes.pdf

3.8 Version Control System Information

It is recommended to include basic metadata obtained from the version con-
trol system into IvoaTEX Documents where available. Basic support for
subversion and git is built into IvoaTEX, based on some sort of keyword
substitution. The underlying mechanisms, as well as the information con-
veyed, is rather different between git and subversion. We cover the git case
first; the part about how this was done in subversion is probably only of
historical interest now.

3.8.1 VCS Metadata in Git

To enable in-document VCS tracking in git, two steps are necessary:

1. Add gitmeta.tex to your SOURCES in the makefile.

2. Add a line \input gitmeta somewhere near the top of your LaTeX
source (right below \input tthdefs is a good place).

This will then add the commit identifier and a time stamp to the title
page of the document. Patches to make ivoatex include some sensible URL
(perhaps the remote origin URL if it exists) are solicited.

3.9 Generated Content

Sometimes it is desirable to have parts of a document generated through some
sort of ivoatex-external process. Examples include copying documentation
from XML Schema files into the standard document or obtaining column
metadata for standard data models from a live TAP_SCHEMA.

For such cases, IvoaTEX offers a python script update_generated.py,
which is executed by the generate make target. It simply looks for struc-
tured comments in the main document and replaces what is between them
with generated contents. The opening line consists of a TEX comment intro-
ducer, a blank, the literal GENERATED:, another blank, and a command line.
The closing line is a comment consisting of /GENERATED.

On running make generate, the material between the opening and the
closing line is replaced by the output of the command.

For instance, in the following snippet the material between the comments
was inserted by make generate:

% GENERATED: echo This is generated content
This is generated content

% /GENERATED

20

make generate will not replace any content in the document source if
even just one command fails to execute as indicated by the command’s return
code; it is transactional in this sense.

In addition to allowing arbitrary shell commands, update_generated.py
has a facility that allows calling special python functions from within doc-
uments: Commands starting with an exclamation mark (“!”) are trans-
lated to calls to appropriately named python functions defined within
update_generated.py.

Currently, there are two such builtin commands; both are somewhat ex-
perimental features that may change when more experience has been gath-
ered as to their usefulness.

One command is taptable, which extracts documentation from a live
TAP_SCHEMA. The access URL of the live TAP service must be specified in
an environment variable TAPURL in the Makefile, for instance

TAPURL=http://dc.g-vo.org/tap

Then, in the document one can use the structured comment

% GENERATED: !taptable tap_schema.tables
% /GENERATED

After a make generate, the LaTeX source for a table describing the
columns of tap_schema.tables will be between the two comment lines; re-
running make generate will replace that content with a refreshed version.

The second command implemented is schemadoc. This formats docu-
mentation for a type in an XML schema file. This only works properly if the
XML schema defines a vm:targetPrefix element in the way pioneered by
Ray Plante in VOResource.11 With an appropriately instrumented schema,
a document can say

% GENERATED: !schemadoc SchemaSource.xsd MyType
% /GENERATED

to produce documentation for the schema type MyType within the XML
schema file SchemaSource.xsd.

IvoaTEX will never execute update_generated.py as part of a depen-
dency chain; it is intended that make generate must always been manually
triggered. On the one hand, this is because its dependencies cannot be gener-
ically modelled, given that arbitrary commands can be executed. Document
authors are also discouraged from providing such dependency information
– it is fairly common that content generation depends on the availability
of external resources (e.g., databases or network services), and a document
build should not fail just because these are unavailable.

11See https://github.com/ivoa-std/TAPRegExt for a document using schemadoc.

21

https://github.com/ivoa-std/TAPRegExt

We mention in passing that generated content puts potentially executable
material into documents, which is of course an attack vector for malicious
software. However, calling make generate is no additional security risk,
as whoever can change the document can probably change the makefile,
too, and the makefile can already contain arbitrary commands that will be
executed on the calling user’s behalf.

3.10 The Standards Record

IVOA recommendations and endorsed notes must be registered using the
schema from StandardsRegExt (Harrison and Burke et al., 2012). A ma-
jor use case for this is to allow references to standards from other registry
records. The prototypcial example for this is the standardID attribute
of VOResource capability elements that contains identifiers (and possi-
bly standard keys as fragment identifiers) declaring “this service works as
specified by that standard”.

Registration of IVOA-approved standards happens through the registry
of registries (RofR, authority ivoa.net). The preparation of the registry
records, however, is up to the document editor. It is strongly recommended
to keep and maintain the registry record in version control alongside with
the document source.

To do that, create a standards record from IvoaTEX’s template. In a
clone of a repository using IvoaTEX, you could say:

$ cp ivoatex/stdrec-template.xml $DOCNAME.vor
$ git add $DOCNAME.vor

In the resulting file, the items one has to change are marked with four
hash marks; the elements schema and key can be removed or repeated as
required by a particular standard, all other elements present should be given
at least once. Please remove the explanatory comments as you go.

This document comes with a filled-out sample for itself12. This is not to
be uploaded into the Registry, as Notes are not (normally) registered.

Most of the metadata to be filled in actually already is available in struc-
tured form in IvoaTEX. Contributions that help automating creation and
maintenance of the standards record exploiting this are welcome.

With the upload of a proposed recommendation to the document reposi-
tory, the editor should send the standards record to the registry of registries
by e-mail13 and then re-submit the record with each upload or a Recommen-
dation or Endorsed Note; interim document states (WD, PR, PEN) are not
tracked by the Registry.

12https://www.ivoa.net/documents/ivoatexDoc/20220614/ivoatexDoc.vor
13See http://rofr.ivoa.net/ for contact information.

22

https://www.ivoa.net/documents/ivoatexDoc/20220614/ivoatexDoc.vor
http://rofr.ivoa.net/

3.11 Adding tests

Many IVOA documents contain machine-readable artefacts or make machine-
verifiable claims. If this is true for your document, consider adding a test
target (since 2022, IvoaTEX’s template Makefile alrady provides one).

The test recipe should be designed so that

• the recipe fails if an assertion fails,

• minimal (ideally no) output is produced for succeeding assertions,

• extra (i.e., non-IvoaTEX) software required to run the tests is docu-
mented in a Makefile comment right above the recipe.

In the following, we discuss some typical scenarios for which tests should
be provided.

3.11.1 Schema Validation

Standards that come with XML schemas should validate both the schema
and one or more instance documents, which ideally should exercise as many
aspects of the schema as possible. The instance files do not need to be part
of the released standard, although the auxilaryurl mechanism (see sect. 3.6)
would give a simple way to include these, too, without overly impacting the
document’s appearance.

In order to limit the variety of tools editors may need, it is recommended
to use the xsdvalidate subcommand of STILTS (Taylor, 2006) for valida-
tion; this subcommand is available only in STILTS versions 3.4-4 or later14.
The VOResource standard15 shows an example (edited here for clarity):
STILTS ?= java -jar stilts.jar

These tests need STILTS >=3.4-4
test:
@$(STILTS) xsdvalidate VOResource-v1.1.xsd
@$(STILTS) xsdvalidate \
schemaloc='http://www.ivoa.net/xml/VOResource/v1.0=VOResource-v1.1.xsd' \
example-voresource.xml

Some brief explanations are in order:

• Using a variable for STILTS allows one to easily override the execu-
tion path if necessary (e.g., because of out-of-date system packages or
custom paths) like this:

14The STILTS jar file can be downloaded from http://www.starlink.ac.uk/stilts/
stilts.jar

15https://github.com/ivoa-std/VOResource

23

http://www.starlink.ac.uk/stilts/stilts.jar
http://www.starlink.ac.uk/stilts/stilts.jar
https://github.com/ivoa-std/VOResource

STILTS=stilts-beta make test

• The comment specifies the dependencies to save later editors or authors
trial and error. This becomes particularly important as test suites
grow.

• The first line of the recipe validates the schema itself. The leading @
suppresses output, which reduces clutter in case diagnostics are pro-
duced.

• The second line of the recipe validates an instance document. The
important thing here is to override the schema for the standard’s tar-
get namespace with the local copy of the schema; without the extra
schemaloc parameter, STILTS would validate against the schema from
the document repository, which would both hide problems in the new
schema and lead to false positives in the instance document validated
(as it will not validate against the previous schema if it exercises new
features, which it should). Further schemaloc parameters, pointing
to either local files or network resources, can be used if other schema
locations need to be specified. As in the example, use continuation
lines (with backslashes) to keep the command lines readable.

3.11.2 Running Queries

Where documents contain sample queries or requests, it is good practice to
automatically extract and execute these, ideally with some basic checks for
sane results. An example for how this can be organised can be found with
the RegTAP standard16.

To control the number of different tools editors might, it is recommended
to base such code on either STILTS or pyVO (Graham and Plante et al.,
2014).

In RegTAP, which uses pyVO, the test rule looks like this (edited here
for clarity):
These tests require python3 and pyvo (Debian: python3-pyvo)
test:
@TAP_ACCESS_URL=http://dc.g-vo.org/tap python3 check_examples.py

The script check_examples.py is too long to be reproduced in full, but
its core is:
def main():
svc = pyvo.dal.TAPService(TAP_ACCESS_URL)
with open("RegTAP.tex") as f:
for title, sample_query in iter_examples(f):
try:

16https://github.com/ivoa-std/RegTAP

24

https://github.com/ivoa-std/RegTAP

result = svc.run_sync(sample_query).to_table()
if not len(result):
print(f"WARNING: Example returned no records in sect. '{title}'")

except Exception as ex:
print(f"ERROR: Example went bad in sect. {title}")
print(ex)
sys.exit(1)

Some notes on this:

• Again, suppress echoing of the commands make executes by prefixing
recipe lines with @ in order to keep the output tidy.

• Tests of this kind will almost always use remote network resources. If
possible, do not hide these within the (potentially complex) Python
code but make them explicit (and easily adaptable) in the Makefile.

• The Python fragment above should essentially do for any standard
discussing TAP queries. Note that the script distinguishes between
venial (empty results just give a warning and do not abort the test run)
and mortal (execution errors make the test run abort immediately; the
call to sys.exit is important to make the entire make rule fail) sins.
It again will produce no output if everything runs fine.

• The iter_examples generator used in the Python code is expected to
yield pairs of section titles and sample queries. The code in RegTAP
uses heuristics strictly valid only for this document (e.g., queries in
lstlisting environments, subsections as the relevant sectioning element).
The basic idea – have some magic comment to signal that an example is
executable – should be widely applicable, though. This way, a verifiable
query in the instance document looks like this:
%CHECK_HERE
\begin{lstlisting}[language=SQL,flexiblecolumns=true]
SELECT ivoid
FROM rr.resource
...

3.11.3 Miscellaneous Tests

Tests can also come as simple shell commands (returning non-zero on fail-
ure and emitting some diagnostics only in that case) as well. Where these
go beyond one-liners, one should probably use a shell script. Any depen-
dency beyond the unix core tools should again be documented in a Makefile
comment right above the test rule.

An example for this type of check is again given in the VOResource
standard17, where the test rule then would be:

17https://github.com/ivoa-std/VOResource

25

https://github.com/ivoa-std/VOResource

These tests require xmlstarlet
test:
@sh test-assertions.sh

The shell script called could run multiple tests, in particular if they share
some common infrastructure. It is recommended to isolate each test in a
shell function with a name starting with “assert” and then calling these shell
functions as appopriate. In the VOResource example, where the authors
make sure that if a Recommendation is being published, the schema version
tag actually is “clean”, such a shell function takes a shape like:
assert_schema_version_for_rec() {
make sure the schema version has no tags if this is a REC
if xmlstarlet sel -T -t -m "xs:schema" -v "@version" $SCHEMA \
| grep " ^[0-9]\.[0-9] $" > /dev/null ; then
: # all is fine , no output

else
die "$SCHEMA version has tags (inappropriate for a REC release)"

fi
}

Note the STILTS package mentioned above includes some other tools
that may be useful for testing, for instance the subcommands votlint for
checking VOTables and datalinklint for checking DataLink tables; see the
documentation18 for details. In particular it is a good idea to validate all
example VOTable documents included in document text.

3.12 Submitting a Document

Snapshots of documents should be regularly submitted to the document
repository as part of the IVOA review process. While IvoaTEX could still
make this a bit more streamlined, there is some automation for this process
present. Consider the following recommendation for the release process (of
course, replace ${DOCNAME} with the DOCNAME as defined in the Makefile):

1. Make sure your ivoatex is up to date; in git checkouts, run make update
(or, equivalently, git submodule update --remote).

2. If the document contains generated content, run make generate and
inspect the subsequent output of git diff for anything unexpected.

3. Add the version-specific URL and designation (e.g., “WD-20100801”) of
the currently published document (i.e., the version you are replacing)
in the document header using previousversion.

4. Make sure the changelog appendix lists the major changes since the
last release of the document; it is probably a good idea to re-scan

18http://www.starlink.ac.uk/stilts/sun256/cmdUsage.html

26

http://www.starlink.ac.uk/stilts/sun256/cmdUsage.html

the (generally more extensive) version control history at this point for
anything that is missing from the in-document changelog.

5. If you have schema files, vocabularies, or the like, make sure their
version identifiers are what you expect (in particular, for recommen-
dations, such version identifier should have no appendices of the kind
“-pr1”. The AUX_FILES variable in your Makefile is a good start for
what files to check.

6. For documents that provide a test target, run make test; this target
must at least not error out and ideally not produce any diagnostics.

7. Run make and inspect ${DOCNAME}.log. There should obviously be no
undefined citations or internal references. Also, try to avoid overfull
hboxes (underfull hboxes are not always avoidable).

8. Have another round of proofreading on ${DOCNAME}.pdf. Also criti-
cally inspect the architecture diagram and the relationships to other
standards, in particular whether new versions of those have reached
REC in the meantime. make bib-suggestions will do that for you in
the case of IVOA recommenations.

9. Run make ${DOCNAME}.html and briefly review the produced HTML
file. Warnings or even error messages in this process are (regrettably)
still to be expected, so at least superficial human inspection of the
output is necessary.

10. Edit the Makefile and update the DOCVERSION, DOCDATE, and
DOCTYPE variables according to the new document release.

11. If uploading a REC or EN, update (or create) the standards record
and send it to the RofR (cf. sect. 3.10).

12. Run make package. If no major problems become visible,

13. run git commit -am "Preparing for the release" (the message
should probably be more specific on which release) – this will update
the source if VCS information is represented as per section 3.8.

14. Run make upload. This will ask you to review the document metadata
in a python dictionary, let you add a note for the document coordinator
and performs the upload.

15. Review the file docrepo-response.html created in the document di-
rectory; this contains the raw HTML the uploading script got back
from the document repository. We do not automatically check for er-
rors yet, so again human attention is required.

27

4 Developing IVOA Documents

While IvoaTEX can of course be used in private repositories, its specific focus
is the development of IVOA standards and related documentation. This
section discusses practices and policies put in place to ensure transparent
and reproducible processes.

4.1 The Organisations ivoa and ivoa-std

As described above, documents will usually start in private repositories. At
the latest when documents become become proposed endorsed notes or work-
ing drafts, they must move into the ivoa-std organisation. Documents there
are subject to certain policies ensuring a controlled and well-documented
evolution (cf. sect. 4.3).

For now, requests to move into ivoa-std are processed by the chair of the
TCG; they are usually filed by the chair of the working or interest group
handling the document.

For non-reviewed IVOA material, there is the organisation ivoa. Com-
munity members are welcome to use it for their VO-related projects and in
particular Notes. However, there is no requirement to do that.

4.2 Contributing to a Document

IVOA repositories for standards and notes follow many open source projects
in using a fork and pull request workflow for contributing updates. This
allows open contributions whilst protecting the repository integrity. All con-
tributors, whether document editors or first time contributors, follow this
same process. All pull requests need to be approved by a maintainer of the
repository.

When setting up your environment for a first time commit, we recom-
mend following the ‘triangle’ workflow (Fig. 1) to make later contributions
easier.

1. Fork the official repository using the ‘Fork’ button on the upper
right of the repository’s GitHub web page. This will create a copy
of the repository under your user name which you can directly
edit. See the GitHub documentation https://docs.github.com/en/
get-started/quickstart/fork-a-repo for further information.

2. On your local computer, clone the official repository and then add your
fork as a remote repository. Note here that we use a read-only clone
(https://) from the IVOA repository to avoid the potential for future
mistakes.

28

https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart/fork-a-repo

Figure 1: The ‘triangle’ workflow, where updates are made to a local copy
of the official repository, pushed to a fork of the repository and contributed
back to the official repository through pull requests.

git clone --recurse-submodules https://github.com/ivoa-std/standard.git
cd standard
git remote add mine git@github.com:username/standard.git
git remote -v

you should see output similar to

mine git@github.com:username/standard.git (fetch)
mine git@github.com:username/standard.git (push)
origin git://github.com/ivoa-std/standard.git (fetch)
origin git://github.com/ivoa-std/standard.git (push)

3. Now to prepare for your change, make sure you are up to date with
the official repository and create a branch for your work.

git checkout main
git pull origin main
git checkout -b branch-name-for-change

IVOA repositories are tranistioning from using “master” as the main
branch to using “main”. Depending on the repository, you may need
to adapt the above commandline accordingly.

29

4. Once you are happy with the change (and we do recommend building
the PDF document locally to review it) you can save it to git and send
it to your forked repository. The status command will list everything
that has changed and the add command will include it the commit.

git status
git add standard.tex another-changed-file
git commit -m "a short and useful description of my changes"
git push mine branch-name-for-change

5. Then, on the GitHub web interface for your repository, create your
Pull Request to contribute it back to the official repository.

6. Wait for reviews, update the change as needed, repeating step 4 for
each set of changes. Once the change is approved by a maintainer, the
maintainer may merge your change themselves or leave you to merge
once you are ready.

For future changes repeat steps 3 to 6.

4.3 Managing Changes

This section should be read by persons serving as document editors.
The role of a document editor is to ensure that a document eventually

converges towards a cohesive text, where an editor may or may not be one of
the document authors. Editors should also make sure that document changes
are always well-documented and open to later scrutiny. The goal should be
that later readers can find out why a given change was made, i.e., what new
functionality it was intended to provide or what problem it should address.

While a document is under public review, the editor’s role as the text’s
gatekeeper is particularly important. In particular, they must ensure that
all changes are properly reviewed and do not introduce changes so profound
that a new full review would be required.

With these considerations, the following policies apply to documents un-
der IVOA management:

a. Nobody can commit directly to the main branch of a document. In-
stead, all changes go through pull requests, where editors take care
that titles and descriptions are suffiently clear and complete.

b. Before public review (i.e., in the state of a Note, a Working Draft, or
a Proposed Endorsed Note before TCG review), it is at the editor’s
discretion whether they want individual pull requests reviewed sepa-
rately or whether pull requests are merged without a further review.
To give some examples, a pull request adding a major feature could

30

be announced on the pertinent IVOA mailing list and undergo some
sort of public pre-review, whereas a re-working of a section could profit
from a formal review by a co-author. A pull request just repairing some
bibliographic references can be merged by the editor directly.

c. For documents under public review (i.e., Proposed Recommendations
and PENs under TCG review), all pull requests must be reviewed,
where at least one reviewer should be a document author. It is the ed-
itor’s duty to find reviewers, where obviously the persons who brought
up the points addressed by the pull request would be particularly good
choices.

In order to ensure document histories remain readable, editors are en-
couraged to squash-merge pull requests.

4.4 Adopting a Repository for ivoa-std

This section documents policies and workflows for the managers of the ivoa-
std organisation; normal IvoaTEX users can ignore it.

On request by a chair of an IVOA working group, the ivoa-std man-
agement will migrate a repository from where the original editor started it
(called <original-repo> below) to the ivoa-std organisation. To do that,
they perform the following steps:

1. Inspect the <original-repo> and make sure it includes the minimal
files: README.md, LICENSE, Makefile, ivoatex submodule, and a
LaTeX file with the proposed <short-name>

2. Create a new public repository ivoa-std/<short-name> via github’s
browser UI and using the “import” facility to import the <original-repo>

3. Make a local clone and build the document; if this fails, create an issue
for the original author(s) to fix before any work can proceed

4. Optional: add github workflow, commit, and push directly to main
branch

5. Setup branch protection rules for the main branch (see below)

6. Give the WG team and the editor admin privileges (see below)

7. Notify the WG and the editor of the move via the WG’s mailing list

8. Notify the original owner, noting that <original-repo> should be
renamed and preserved for a while, while the repository must now be
forked from ivoa-std in order to enable future pull requests (cf. sect. 4.2)

31

Branch protection rules are set up in the “Settings” tab of the repository
(top right). On the left side of the settings page, chose “Branches” and
either edit the main branch rules (if present) or add a new rule (if not). The
standard set of rules that are suitable for most development are:

1. Require a pull request before merging

2. Require approvals

3. Dismiss stale pull request approvals when new commits are pushed

4. Require status checks to pass before merging (see below)

5. Require branches to be up to date before merging

The status checks requirement can be enabled before an actual check
(github workflow) is added or found by the system. Repository administra-
tors may have to come back and enable a specific status check workflow after
it is added (behaviour is a little opaque here).

By not enabling “Include administrators”, repository admins will be able
to override the approval requirement and merge pull requests that do not
require review (e.g., fixing the build, updating Makefile settings, etc).

Granting admin privileges to the WG (there is a team setup for each
WG) is also done in the “Settings” tab. On the left side of the settings page,
chose “Collaborators and teams” and then “Add teams” (green button on the
right). Start typing the WG name or acronym (e.g. dal or reg) and then
select the complete group name from the popup. The WG teams are all of
the form ivoa-std/<group>-admin; the complete list can be found from the
top-level ivoa-std organization page in the “Teams” tab.

5 Customisation and Development

This section discusses aspects of IvoaTEX that are more technical in nature.
Authors with a modicum of TEX expertise are nevertheless encouraged to
read it.

5.1 Technical Overview

The central files in IvoaTEX processing are

ivoa.cls
The class file, inheriting from LATEX’s article class. The file defines
the markup rules for PDF processing, including titlepage genera-
tion and extra macros and environments. Its content is ignored for
HTML generation.

32

tthdefs.tex
This file protects its contents from normal TEX processing by a
\iftth conditional. This way, only tth sees definitions made here.
Each special feature defined in ivoa.cls has a counterpart here,
giving rules for its translation to HTML. This usually encompasses
emitting some HTML before and after the argument of a TeX con-
struct, where material between \begin{html} and \end{html} is
included literally in the HTML document.

tth-ivoa.xslt
An XSLT stylesheet that postprocesses tth’s output and per-
forms some operations that would be inconvenient to implement
in tthdefs.tex, in particular for the formatting of the opening
material.

Makefile
This makefile is included by the user makefile in the document
directory proper. It defines the rules given above as well as some
extra housekeeping rules like package building and building tth from
its source.

5.2 Semantic Markup

In order to make it support rich, semantic markup, IvoaTEX needs to be
continuously developed. In particular, it is good practice to define macros
for marking up values of certain datatypes, as with IvoaTEX’s xmlel and
vorent. Thus, whenever a document has multiple instances of such values,
authors should define macros and use these. For instance, RegTAP deals
with lots of concepts from its own database schema and hence has

\definecolor{rtcolor}{rgb}{0.15,0.4,0.3}
\newcommand{\rtent}[1]{\texttt{\color{rtcolor} #1}}

in its document preamble to define markup for “RegTAP entity”, whereas
this note, as it mentions many words with a special meaning to TEX, has

\definecolor{texcolor}{rgb}{0.4,0.1,0.1}
\newcommand{\texword}[1]{\texttt{\color{texcolor} #1}}

Such macros will be included in IvoaTEX itself rather than an individual
document’s preamble when they prove useful in multiple documents.

5.3 Custom Macros and Environments

The tth translator used by IvoaTEX ignores usepackage. Many common
packages are natively supported, but those that are not in general need spe-
cific handling, and sometimes support is somewhat spotty. For instance, the
nolinkurlmacro is not supported natively by tth, and hence in tthdefs.tex
there is code to the effect of

33

\def\nolinkurl#1{\special{html:}%
\verb|#1|%
\special{html:}}

When a document requires special markup, it is likely that different im-
plementations will be necessary for PDF and HTML output. Using iftth
the implementations for the current output mode can be selected (without
the newif mentioned in the tth documentation, as that is already performed
in tthdefs.tex).

For instance, RegTAP 1.0 had many inline tables that need special spac-
ing for the PDF rendering, whereas normal tables will do for them in HTML.
It therefore had in its preamble the definitions

\iftth
\newenvironment{inlinetable}{}{}

\else
\newenvironment{inlinetable}{\vskip 1ex\vfil
\penalty8000\vfilneg%
\hbox to\hsize\bgroup\hss}

{\hss\egroup\vspace{8pt}}
\fi

(this mechanism proved useful for other specifications, too, and so it is
part of IvoaTEX proper now).

5.4 Custom CSS

If you find you need custom CSS to fix HTML formatting, you should prob-
ably talk to IvoaTEX’s authors first. There are, however, legitimate cases
when something needs extra styling in HTML that comes out right without
further effort in the PDF output. In such cases, a custom CSS file can be
added to a repository (it must then also be added to SOURCES in the Makefile
in order for it to be delivered with the document package).

The document itself would then use the IvoaTEX’s customcss macro
in its preamble with the CSS file name as an argument. For example, the
source for this document says

\iftth
\newcommand{\comicstuff}[1]{

\begin{html}#1\end{html}}
\else
\newcommand{\comicstuff}[1]{(HTML exclusive material)}

\fi

in its preamble. With this and a CSS file19,
19https://www.ivoa.net/documents/ivoatexDoc/20220614/custom.css

34

https://www.ivoa.net/documents/ivoatexDoc/20220614/custom.css

\comicstuff{If this is comic sans, your web browser is permissive.}

becomes: (HTML exclusive material)

5.5 Maintenance of the Architecture Diagram

The IVOA architecture diagram is used by Dowler and Evans et al. (2021) to
visualise the standards landscape. All IVOA recommendations should have
an architecture diagram showing the current standard as well as the related
standards within that landscape.

Within IvoaTEX, architecture diagrams are produced in Scalable Vector
Graphics (SVG). The source is in ivoatex/archdiag-full.xml, specifying
the location of the recommendations (in rec elements) and the documents on
the recommendation track (in prerec elements). The figure has a design size
of 800× 600 “pixels”. Note that SVG is not really pixel-based – the numbers
are just convenient, unitless floating point numbers, and the conversion of
these coordinates to physical ones is done at render time.

In the diagram, the standards shoud be limited to the inner box, i.e., the
zone between 50, 100 and 750, 500. Standards boxes are 18 pixels high, which
is set in the format-standard template in make-archdiag.xslt. Their
widths default to 90 pixels, but when you add a box in archdiag-full.xml,
please take a moment to provide a w attribute. See the opening comment of
archdiag-full.xml for a brief howto on having the machine compute it.

When standard boxes are aligned, the vertical distance of their centres
should be 25 pixels, the horizontal distance 100 pixels. To keep the diagram
lively, standards not obviously grouped with others may be placed “off-grid”.

The specifications in archdiag-full.xml, as well as those in the au-
thors’ role_diagram.xml, are ad-hoc XML interpreted by the stylesheet
ivoatex/make-archdiag.xml. That stylesheet is written such that all three
levels of the architecture diagram can be created. The Makefile in ivoatex
has the necessary rules, but in contrast to the author rules, they are expected
to be executed within the ivoatex directory.

So, to create the full versions of the three levels of the architecture dia-
gram, do something like

cd ivoatex
make archdiag-l0.svg
make archdiag-l1.svg
make archdiag-l2.svg

The resulting svg files can be viewed in common browsers or in vector
graphics programs like inkscape. The latter can also be used to find good
positions for new elements (cursor coordinates are shown in the footline,
but the direction of the y axis is reversed versus the SVG coordinates).
Please do not use graphical tools to edit the diagram itself – the goal of the

35

current architecture is to make edits transparent and have a clear and simple
specification of the standards themselves in a file producing meaningful diffs.

6 Desirable Features to be Implemented

A major drawback of IvoaTEX’s HTML output is that paragraphs are not
actually marked up as such. Due to the TEX processing model, their recon-
struction is non-trivial. Hence in the generated HTML, source-level para-
graphs are rendered as text nodes separated by empty HTML paragraph
elements. It would probably be possible to rectify this in the XSLT postpro-
cessing.

An automated way to maintain the in-document history (i.e., the se-
quence of \previousversions in the preamble) and better support to gen-
erate the change log would be desirable.

The biblio and forcetex targets behave in somewhat confusing ways. Per-
haps we should simply make latexmk a hard dependency and forget about
them?

A Changes from Previous Versions

A.1 Changes from Version 1.2

• Changed instructions to use github rather than volute.

• Added a best practice on contributing via github.

• Added policy sections for editors and the IVOA github maintainer.

• Added info on a few new ivoatexDoc features (e.g., the ucd macro).

• Added a section on writing regression tests.

• Now mentioning bib-suggestions for bibliography maintenance.

• Expanded the submission checklist.

• Dropped a section on ivoadoc migration; it’s unlikely anyone will need
that any more.

A.2 Changes from Version 1.1

• Added material on the SVG architecture diagram, removed references
to old PNG-based workflow.

• Added an upload checklist (and, relatedly, listing legal WG names).

36

• Added documentation on auxiliaryurl.

• Added instructions on making standards records.

• Documented triple-bibliography maintenance.

A.3 Changes from Version 1.0

• Changed google code URLs to volute.g-vo.org ones.

• Documented new facilities for generating material, with extra focus on
auto-documenting XML schema.

• Added advice on citing IVOA recommendations.

• Re-targeting for IvoaTEX1.0 (rather than 0.4 before)

References

Demleitner, M., Plante, R., Linde, T., Williams, R. and Noddle, K. (2016),
‘IVOA Identifiers Version 2.0’, IVOA Recommendation 23 May 2016,
arXiv:1605.07501.
http://doi.org/10.5479/ADS/bib/2016ivoa.spec.0523D

Dowler, P., Demleitner, M., Taylor, M. and Tody, D. (2017), ‘Data Access
Layer Interface Version 1.1’, IVOA Recommendation 17 May 2017.
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517D

Dowler, P., Evans, J., Arviset, C., Gaudet, S. and Technical Coordination
Group (2021), ‘IVOA Architecture Version 2.0’, IVOA Endorsed Note 01
November 2021.
https://ui.adsabs.harvard.edu/abs/2021ivoa.spec.1101D

Genova, F., Arviset, C., Demleitner, M., Glendenning, B., Molinaro, M.,
Hanisch, R. J. and Rino, B. (2017), ‘IVOA Document Standards Version
2.0’, IVOA Recommendation 17 May 2017.
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517G

Graham, M., Plante, R., Tody, D. and Fitzpatrick, M. (2014), ‘PyVO:
Python access to the Virtual Observatory’, ascl:1402.004.
https://ui.adsabs.harvard.edu/abs/2014ascl.soft02004G

Harrison, P., Burke, D., Plante, R., Rixon, G., Morris, D. and IVOA Reg-
istry Working Group (2012), ‘StandardsRegExt: a VOResource Schema
Extension for Describing IVOA Standards Version 1.0’, IVOA Recommen-
dation 08 May 2012, arXiv:1402.4745.
http://doi.org/10.5479/ADS/bib/2012ivoa.spec.0508H

37

http://doi.org/10.5479/ADS/bib/2016ivoa.spec.0523D
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517D
https://ui.adsabs.harvard.edu/abs/2021ivoa.spec.1101D
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517G
https://ui.adsabs.harvard.edu/abs/2014ascl.soft02004G
http://doi.org/10.5479/ADS/bib/2012ivoa.spec.0508H

Plante, R., Demleitner, M., Benson, K., Graham, M., Greene, G., Harrison,
P., Lemson, G., Linde, T. and Rixon, G. (2018), ‘VOResource: an XML
Encoding Schema for Resource Metadata Version 1.1’, IVOA Recommen-
dation 25 June 2018.
http://doi.org/10.5479/ADS/bib/2018ivoa.spec.0625P

Taylor, M. B. (2006), STILTS - A Package for Command-Line Processing
of Tabular Data, in C. Gabriel, C. Arviset, D. Ponz and S. Enrique, eds,
‘Astronomical Data Analysis Software and Systems XV’, Vol. 351 of As-
tronomical Society of the Pacific Conference Series, p. 666.
https://ui.adsabs.harvard.edu/abs/2006ASPC..351..666T

Zuboff, S. (2019), The age of surveillance capitalism, Profile Books.

38

http://doi.org/10.5479/ADS/bib/2018ivoa.spec.0625P
https://ui.adsabs.harvard.edu/abs/2006ASPC..351..666T

	Introduction
	Installation and Quick Start
	Dependencies
	Basic IvoaTeX operation
	Installation from Archive (without version control)
	Installation with git version control
	Beginning the document

	Examples

	Authoring documents
	IvoaTeX Features
	Listings, Verbatim Material
	References and Bibliography
	Built-in Bibliographies
	Citation Style
	Local Bibliographies

	Graphics
	Bitmap Graphics
	Vector Graphics

	Tables
	Hyperlinks
	Editorial tools
	Version Control System Information
	VCS Metadata in Git

	Generated Content
	The Standards Record
	Adding tests
	Schema Validation
	Running Queries
	Miscellaneous Tests

	Submitting a Document

	Developing IVOA Documents
	The Organisations ivoa and ivoa-std
	Contributing to a Document
	Managing Changes
	Adopting a Repository for ivoa-std

	Customisation and Development
	Technical Overview
	Semantic Markup
	Custom Macros and Environments
	Custom CSS
	Maintenance of the Architecture Diagram

	Desirable Features to be Implemented
	Changes from Previous Versions
	Changes from Version 1.2
	Changes from Version 1.1
	Changes from Version 1.0

	References

