
Exercise 1

Get our example basicsiap.py from the notes.

Now find an image service publishing the ROSAT survey and

pointed observations and see if it has an image for the position

given (or try some other service and position you are actually

interested in).

Use WIRR to search the VO Registry for now.

What is coming back from SIAService’s search is a sequence of

SIARecords. Have a quick look at its pyvo documentation and

make your program print the file size and the instrument name

rather than calling cachedataset.

1

http://dc.g-vo.org/WIRR
https://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIARecord.html#pyvo.dal.SIARecord

Exercise 2

Get the globalsiap.py script from the attachment and change it so

it skips 90% of the services discovered randomly (use

random.random()). Also, remove the constraint on the date (we

don’t need that here) and change the position to something you

are interested in or expect to have pretty pictures (M1 or M51 are

always good candiates). Run the thing and see what you find.

2

Exercise 3

Get the pyVO source code and find the source of pyvo.samp. Start

TOPCAT, find the implementation of the connection context

manager, and then open a SAMP connection manually from an

interactive Python prompt. And then again, and a third time.

What do you observe in TOPCAT?

Hint: To get the source code, try:

git clone https://github.com/astropy/pyvo.

Or, on Debian-derviced boxes:

apt source python3-pyvo

3

Exercise 4

Still in samp.py, inspect how send_image_to is implemented. From

reading the code, can you figure out how to only send the image to

Aladin? If you can, try your solution in globalsiapsamp.py by

having Aladin and ds9 (Debian package: saods9) open at the same

time.

Hint: To find out Aladin’s client name, check TOPCAT’s SAMP

status window.

4

Exercise 5

Write a program that prints the number of rows in the table

arihip.main in the TAP service at http://dc.g-vo.org/tap (do

not pull all the rows and use python’s len).

Hint: With ADQL’s AS construct you can control the names of

table columns.

5

Exercise 6

The following program should print URIs and titles for images in

some collection for whatever names are in OBJECTS:

import pyvo

OBJECTS = ["IC 4756", "NGC 3377"]

QUERY = """select accref, imagetitle

from maidanak.reduced

where object={object}"""

svc = pyvo.dal.TAPService("https://dc.g-vo.org/tap")

for object in OBJECTS:

print(svc.run_sync(QUERY.format(**locals())).to_table())

What really happens: An error message. Can you figure out where

it comes from and how to fix things?

6

Exercise 7

Use TOPCAT’s TAP data browser to locate services and table

names for TGAS and RAVE. Also figure out where the positions

and some usable magnitude are, plus the proper motions from

TGAS and the radial velocities from RAVE.

Re-write fetch3.py to query the retrieve all stars between 8 and 8.2

mags from each table. Also, send the results to Aladin (which is

known as Aladin (capitalised) on the SAMP bus). See if you can

get a nice plot of rv, pmra, and pmdec.

Hint: Check Aladin’s Catalog/Create filter for fancy plotting

options.

7

Exercise 8

Go through the source code of fetch3-cluster.py. You will see we

have put in two workarounds for where the data providers messed

up. Can you see in each case what might have gone wrong? Have

the service operators fixed their software or do things still fail when

you remove a workaround? In a course setting, coordinate with

your neighbours and split up the work so each only looks at one

workaround.

8

Exercise 9

Run fetch3-cluster.py and select a couple of objects. Keep the

resulting file (selected positions.vot) – we will want to reuse

it later.

9

Exercise 10

You can use URLs in a query’s upload argument. To try this out,

review the TGAS and RAVE exercise 7. Let the initial RAVE query

be asynchronous. On the resulting job, call wait as above. Once it

is done, upload what is job’s result uri attribute into the TGAS

server with a normal positional upload join.

10

Exercise 11

Can you change get_spectra.py such that only spectra of resolving

power 10000 or greater are retrieved?

Hint: Use TOPCAT or the tables property of your TAPService

to inspect the metadata of the ivoa.obscore table to figure out

which column to query against. Just in case: It is almost always

better to filter on the remote side rather than the local side. And

chuck the “almost” if the constraint can be expressed as a single

condition in a WHERE clause.

11

Exercise 12

Can you figure out the default output limit (i.e., in effect an

implied TOP) for the TAP service at http://dc.g-vo.org/tap? How

far can you raise it?

Can you write a program that figures it out for all TAP services

out there that talk about tgas?

12

Exercise 13

Which IAU constellation is the least massive exoplanet in the

exoplanet merged catalogue in? Try solving this using pyVO’s

registry API; hint: to figure out constellations, having the

constellations as ADQL polygons is really handy.

13

Exercise 14

(You will need to have looked at the vocabularies sidetrack for this)

Take new-constraint.py and add support for query expansion: add

a keyword argument expand. If that is true, include the narrower

concepts of what was passed in, too.

Hint: You can leave (something like) this to the server with a

UDF, or you can do the query expansion locally; the first way is

simpler, the second perhaps more instructive.

14

Exercise 15

Write a function get available semantics(dl) -> set

returning a set of the semantics available for a given datalink.

Try your program on the SSA example from the lecture.

15

Exercise 16

Get the soda-with-rows.py script for doing cutouts on CALIFA DR3

and make a false colour image for IC 1151 by taking the slices

from the COMB cube (see the setup column) at 400 nm as blue,

at 550 nm as green, and at 700 nm as red. Do not download the

whole cube, use SODA to just retrieve exactly what you need.

16

Exercise 17

The action of the SAMP handler is in the make_response_table

method; have a brief look at it to appreciate what is going on.

Then, replace what is there with something that does a SIAP

search on the service at

http://dc.g-vo.org/lswscans/res/positions/siap/siap.xml and

returns the corresponding table for sending to Aladin (hint:

remember the to_table method of DAL results).

17

Exercise 18

Listening to the SAMP message coord.pointAt.sky, implement an

“odometer” computing and printing after each step the distance

travelled by the pointer.

To do this, you will need to keep the SAMP connection, the last

position and the distance travelled so far as state; take the

vicinitysearcher, remove the code keeping the state and behaviour

used for its function, and insert our new logic.

Hints: Look at SkyCoord in Astropy and the mtypes page; when

re-using SAMP bindings, make sure you handle messages, not calls.

18

Exercise 19

In multitap.py, have a look at get_services_and_tables; in there, we

are doing a grouping operation on the client (i.e., our) side. Can

you move to to the server side using GROUP BY and the

ivo_string_agg UDF?

19

Exercise 20

Can you find out the strings you need to pass to get_feature find

find out whether a service supports the nifty IN_UNIT function?

20

Exercise 21

There is one glaring hole in our multitap script: Units. Try to

improve on this: If the service supports IN_UNIT, use it in about the

way we have been using CAST.

If you actually need something like this, you can of course also

compute the conversion factors locally (using astropy.units) and

bake them into the queries. Feel free to try that, too.

21

Exercise 22

Get the epnquery.py and change it to only discover spectra (that’s

dataproduct type sp in EPN-TAP). then send the first two spectra

your program finds to TOPCAT (or SPLAT, or CASSIS, if you

have one of them).

22

Exercise 23

The SSAP service at http://dc.g-vo.org/theossa/q/ssa/ssap.xml?

houses theoretical spectra mostly of hot, compact stars.

See if you can retrieve three spectra for stars with log_g between

4.5 and 5.5, an effective temperature between 7× 104 and 105

Kelvin, and a Nitrogen mass fraction larger than 0.015 dex (write

+Inf for “no upper limit”).

Send the spectra retrieved to splat.

Hints: Use viewparams.py, start from siapextra.py, remember

dal.ssa.SSAService, and pass in FORMAT='VOTable' to avoid

retrieving spectra in both FITS and VOTable.

23

http://dc.g-vo.org/theossa/q/ssa/ssap.xml?

Exercise 24

Add full Gaia records from ivo://esavo/gaia/tap’s DR3 gaia_source

to some records from the hdgaia.main table on GAVO’s data

centre. This does not need any slicing; still, only upload what you

actually need for matching; for that, the smart-tap-upload.py

example should be helpful.

Hint: for our simple table.join to work (which needs the same

name in both tables), it is probably smart to rename source_id3 in

hdgaia at the ADQL level.

24

