
A Short Course on pyVO

Markus Demleitner Hendrik Heinl

March 20, 2025

German Astrophysical Virtual Observatory

1

Introduction

What is the VO?

The VO is a set of standards that let clients discover and

interrogate astronomical data services in a uniform manner.

Standards include:

• Registry – describing and finding services

• VOTable, UCD – writing tables with rich metadata

• SAMP – connecting software components

• SCS, SIAP, SSAP – querying catalog, image, and spectral

services

• TAP – running remote database queries

• Datalink – bundling up complex data and services

• MOC, HiPS – sky coverage and hierarchical imaging

2

pyVO Basics

Prerequisites

• python and astropy, of course

• TOPCAT for viewing and visualising tables

• Aladin to work with images

• pyVO. Get it from

• https://pypi.python.org/pypi/pyvo

• or try apt-get install python3-pyvo

• or try pip install pyvo

• or try conda install pyvo

3

http://www.star.bris.ac.uk/~mbt/topcat/
http://aladin.u-strasbg.fr/aladin.gml

Python Matters

In this course, we will use python scripts most of the time rather

than the jupyter notebooks you may be more familiar with.

This is partly personal preference, but for “production” scripts

have several important advantages:

• Meaningful version control

• Can use proper editors

• Files can work as modules

However, if you prefer notebooks, you can use pyVO from Python

notebooks, too.

tap-obscore.ipynb

To fit things on slides, I am PEP 8-relaxed.

4

{
 "cells": [
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "This notebook introduces a few VO techniques for use with python. You need astropy and pyvo installed to make this work. python3 is assumed. It is part of the pyvo course at http://docs.g-vo.org/pyvo, which probably will help a lot to understand what's going on here."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Our use case will be something like \"Find all time series of all bright AGB stars\", but the techniques introduced here have much wider applicability. Oh, and as of this writing, there are not too many time series in the VO, but we're working on this."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "While there are ways to do this with pre-made clients, scripting this gives you great flexibility as well as the analysis capabilities of python. So, let's interface python with the VO. The most complete module to do that is pyvo. See https://pyvo.readthedocs.io/en/latest for more documentation. If you don't have it, try pip3 install pyvo.\n",
 "\n",
 "You also want TOPCAT. If you don't have that yet, this is probably not something you'd like to try – get some less nerdy VO exposure first."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "%matplotlib inline\n",
 "import matplotlib.pyplot as plt\n",
 "import pyvo\n",
 "# the following calms down astropy's overzealous VOTable\n",
 "# parser\n",
 "import warnings\n",
 "warnings.filterwarnings('ignore', module=\"astropy.io.votable.*\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "The first step is: Find a list of bright Herbig-Haro objects. There are many ways to do that, but a good first step towards problems like this is typically to use SIMBAD. And we want powerful query modes (that perhaps we don't really need here, but they're definitely good to have), so we're looking for a TAP service."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Since it's so much faster to discover Simbad's TAP service using TOPCAT's TAP window or registry interfaces like http://dc.g-vo.org/WIRR, we do that and find out that the TAP access URL is http://simbad.u-strasbg/simbad/sim-tap. Keep the table browser in TOPCAT open, as you will want to use it for query construction (not that you couldn't introspect table metadata from pyVO, but that interface is built for machines, not for humans)."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "First create an object representing the Simbad TAP service:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "sim_tap = pyvo.dal.TAPService(\n",
 " \"http://simbad.u-strasbg.fr/simbad/sim-tap\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "There are analogous classes for other VO protocols (SIAP, SSA, SCS). They all have additional attributes allowing their manipulation and inspection. For a TAP service, your program might want to check table metadata. Here's an example looking for columns with magnitudes:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "for table_name, table in sim_tap.tables.items():\n",
 " for column in table.columns:\n",
 " if column.ucd and column.ucd.startswith(\"phot.mag\"):\n",
 " print(table_name, column.name)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Regrettably, this isn't useful in this case; the real magnitudes in Simbad are given in the allfluxes table, and tehy don't have UCDs there because... well, I simply don't know. Try asking them; a contact address in, for instance, in the Service tab in TOPCAT.\n",
 "\n",
 "Anyway, the TOPCAT table browser gets us on the right track (the allfluxes tables). Also, use the Reference URL from the Service tab to investigate the object types and what to write in otype. Once you have a query (and of course it's a good idea to prototype it in TOPCAT):"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "agbs = sim_tap.run_sync(\"\"\"\n",
 "select ra, dec, main_id\n",
 "from basic join allfluxes on (oidref=oid)\n",
 "where otype='AGB'\n",
 "and V<10\n",
 "\"\"\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "What's coming back can be turned into an astropy table using the to_table() method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "agbs.to_table()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Now let's see if there's any time series for these out there. You could do an all-VO query using SSAP (and that's a good exercise; use servicetype=\"SSA\" in the registry query) -- SSAP is currently being used to publish time series, too. But my bets for the future are on obscore, so let's use that. \n",
 "\n",
 "Let's first develop a query on a single server. And let's use my own, http://dc.g-vo.org/tap"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "What do we want to run? Well, check out the Obscore table structure; either in TOPCAT's table browser or even in the underlying standard (see http://ivoa.net/documents). You'll see we want to constrain dataproduct_type to timeseries, and we want to upload join s_ra and s_dec to the positions from Simbad. Let's try things first with one service; also note how table uploads work in pyVO:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "timeseries = pyvo.dal.TAPService(\"http://dc.g-vo.org/tap\"\n",
 ").run_sync(\"\"\"\n",
 " select\n",
 " obs_collection, access_url, access_estsize, \n",
 " t_min, t_max, em_min, em_max, \n",
 " h.*\n",
 " from tap_upload.agbs as h\n",
 " join ivoa.obscore\n",
 " on 1=contains(point('', h.ra, h.dec), \n",
 " circle('', s_ra, s_dec, 1/3600.))\n",
 " where dataproduct_type='timeseries'\n",
 " \"\"\",\n",
 " uploads= {'agbs': agbs})"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Mainly because of generalised confusion this query may run for some 10 seconds.\n",
 "\n",
 "In a few years, when everyone has TAP 1.1 and ADQL 2.1, you would certainly write what you can already write on this particular server for the join condition:\n",
 "\n",
 "```\n",
 "ON 1./3600>DISTANCE(s_ra, s_dec, h.ra, h.dec)\n",
 "```\n",
 "\n",
 "But alas, that wouldn't have worked on many ObsTAP servers yet (2018)."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Let's see what we have:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "timeseries.to_table()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "You can now load a time series and plot it, perhaps like this. I frankly don't know if there's a simple way to make astropy fetch a table from a remote URL, and I got tired looking for one, so I define a quick function to do that:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "from astropy import table\n",
 "from urllib.request import urlopen\n",
 "from io import BytesIO\n",
 "def load_remote_table(url):\n",
 " if isinstance(url, bytes):\n",
 " url = url.decode(\"utf-8\")\n",
 " f = urlopen(url)\n",
 " return table.Table.read(\n",
 " BytesIO(f.read()))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# If the following fails for you, don't worry -- you have an outdated\n",
 "# pyvo, that's all. Ignore it and happily continue.\n",
 "ts = load_remote_table(\n",
 " timeseries.to_table()[0][\"access_url\"])\n",
 "plt.plot(ts[\"obs_time\"], ts[\"flux\"])"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Or we send the access URLs we've discovered to TOPCAT. Again, astropy's SAMP interface is quite clunky as of version 3, so let's define a couple of functions to make this more palatable (you don't need to understand everything that's happening in the next cell)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import contextlib, os, tempfile\n",
 "from astropy.vo.samp import SAMPIntegratedClient, SAMPProxyError\n",
 "\n",
 "\n",
 "def find_client(conn, samp_name):\n",
 " \"\"\"returns the SAMP id of the client with samp.name samp_name.\n",
 "\n",
 " This will raise a KeyError if the client is not on the hub.\n",
 " \"\"\"\n",
 " for client_id in conn.get_registered_clients():\n",
 " if conn.get_metadata(client_id).get(\"samp.name\")==samp_name:\n",
 " return client_id\n",
 " raise KeyError(samp_name)\n",
 "\n",
 "\n",
 "@contextlib.contextmanager\n",
 "def samp_accessible(astropy_table):\n",
 " \"\"\"a context manager making astropy_table available under a (file)\n",
 " URL for the controlled section.\n",
 "\n",
 " This is useful with uploads.\n",
 " \"\"\"\n",
 " handle, f_name = tempfile.mkstemp(suffix=\".xml\")\n",
 " with os.fdopen(handle, \"w\") as f:\n",
 " astropy_table.write(output=f,\n",
 " format=\"votable\")\n",
 " try:\n",
 " yield \"file://\"+f_name\n",
 " finally:\n",
 " os.unlink(f_name)\n",
 " \n",
 " \n",
 "def send_product_to(conn, dest_client_id, data_url, mtype, name=\"data\"):\n",
 " \"\"\"sends SAMP messages to load data.\n",
 "\n",
 " This is a helper for send_spectrum_to and send_image_to, which work\n",
 " exactly analogous to each other, except that the mtypes are different.\n",
 "\n",
 " If dest_client_id, this is a broadcast (and we don't wait for any\n",
 " responses). If dest_client_id is given, we wait for acknowledgement\n",
 " by the receiver.\n",
 " \"\"\"\n",
 " message = {\n",
 " \"samp.mtype\": mtype,\n",
 " \"samp.params\": {\n",
 " \"url\": data_url,\n",
 " \"name\": name,\n",
 " }}\n",
 " if dest_client_id is None:\n",
 " conn.notify_all(message)\n",
 " else:\n",
 " conn.call_and_wait(dest_client_id, message, \"10\")\n",
 "\n",
 "\n",
 "@contextlib.contextmanager\n",
 "def SAMP_conn(\n",
 " client_name=\"pyvo client\", \n",
 " description=\"A generic PyVO client\",\n",
 " **kwargs):\n",
 " \"\"\"a context manager to give the controlled block a SAMP connection.\n",
 "\n",
 " The program will disconnect as the controlled block is exited.\n",
 " \"\"\"\n",
 " client = SAMPIntegratedClient(\n",
 " name=client_name,\n",
 " description=description,\n",
 " **kwargs)\n",
 " client.connect()\n",
 " try:\n",
 " yield client\n",
 " finally:\n",
 " client.disconnect()\n",
 "\n",
 "\n"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "I told you the interface was clunky. But the reward is that SAMP is now quite simple:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "with SAMP_conn() as conn:\n",
 " topcat_id = find_client(conn, 'topcat')\n",
 " for match in timeseries:\n",
 " send_product_to(conn, \n",
 " topcat_id, \n",
 " match[\"access_url\"].decode(\"utf-8\"),\n",
 " \"table.load.votable\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "You should now see the various time series popping up in TOPCAT, where you can investigate them as usual.\n",
 "\n",
 "Now it's your turn: Build a thing that does an all-VO obscore search for spectra – perhaps of these guys, or perhaps of something you are interested in.\n",
 "\n",
 "You'll need a few extra ingredients, though. First, here's how to discover the access URLs of all the TAP services out there that claim to support obscore (once you have those, you know how to query the services, right?):"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "for svc in pyvo.regsearch(datamodel='ObsCore'):\n",
 " print(svc.access_url)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "When querying lots of external resources, it pays to expect failures. Let's define a function that runs TAP queries, well, resiliently:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "def run_sync_resilient(svc, *sync_args, **sync_kw_args):\n",
 " try:\n",
 " return svc.run_sync(*sync_args, **sync_kw_args) \n",
 " except (\n",
 " pyvo.dal.DALServiceError, \n",
 " pyvo.dal.DALQueryError,\n",
 " requests.ConnectionError) as ex:\n",
 " print(\"{}:{}\".format(svc.baseurl, ex))\n",
 " return\n",
 " except KeyboardInterrupt: # Let the user abort slow queries\n",
 " return"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "One more think I should tell you to save you some poking around in documentation: How to merge the astropy tables coming back from different services. Here's a trivial example that should get you going:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "results = []\n",
 "for svc_url in [\n",
 " \"http://vao.stsci.edu/CAOMTAP/TapService.aspx\",\n",
 " \"http://dc.g-vo.org/tap\"]:\n",
 " svc = pyvo.dal.TAPService(svc_url)\n",
 " results.append(\n",
 " svc.run_sync(\n",
 " \"SELECT TOP 2 obs_collection, access_url FROM ivoa.obscore\"\n",
 ").to_table())\n",
 "merged = table.vstack(results)\n",
 "merged"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "What remains to do: Change the query above to your liking (at least add a TOP 10 or so lest you be flooded with results when someone puts up an AGB spectrum central), iterate over the services, and then merge the results. To investigate them (e.g., by wavelength and time range, etc), send the merged table to TOPCAT."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

What’s pyVO?

pyVO provides APIs for lots of VO protocols.

It is glue between astropy and python in general and the

astronomical data services in the VO.

It is a community project. You are most welcome to contribute at

https://github.com/astropy/pyvo.

5

https://github.com/astropy/pyvo

Running Simple Services

When querying “simple” remote services (image, spectral, cone

search; not directly TAP), pyVO has a consistent pattern:

<prot> is SIA, SSA, SCS, SLA...

import pyvo

construct a service object with a service's endpoint URL

service = pyvo.dal.<prot>Service(access_url)

#call the search method with the protocol's parameters

for result in service.search(<parameters>):

...work on dict-like object result...

You will soon learn how to find out the access URLs.

6

Query a Single Image Service

Example: SIAP, the VO’s protocol to access image servers.

Query a VO service for a list of images covering a small field on

the sky, and download one of these images:

svc = pyvo.sia.SIAService(ACCESS_URL)

images = svc.search((340.1,3.36), size=(0.1, 0.1))

image=images[0]

image.cachedataset()

basicsiap.py

For SIAP, pos (as a tuple of ra and dec) and size (in degrees,

either one radius or extent in ra and dec) are mandatory. More

parameters: in the pyvo docs.

Also: row.cachedataset saves the image to your local disk under

a name sensible for the metadata.
7

"""
A very basic example for how to operate a SIAP service from PyVO:
find images for a specific position.
"""

import pyvo

ACCESS_URL = "http://dc.g-vo.org/maidanak/res/rawframes/siap/siap.xml?"

Make Service Instance:
svc = pyvo.sia.SIAService(ACCESS_URL)

Query the Service and return the list metadata of datarecords matching the
criteria. Note: This does not download the actual data!
images = svc.search((340.1,3.36), size=(0.1, 0.1))

Select a specific image to download. Here usually much more
sophistacted code is used, e.g. user input. We focus on a very basic
selection
image=images[0]

Download the selected image.
image.cachedataset()

Now use your favourite FITS viewer (ds9? aladin?) to look at
what you have just downloaded.

http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIAService.html#pyvo.dal.SIAService.search

This is Python

The advantage of doing this in Python is that it is easy to add

your own logic:

svc = pyvo.sia.SIAService(ACCESS_URL)

for pos in [

(213.97, 11.50),

(230.44, 52.92)]:

images = svc.search(pos, size=(0.5, 0.5))

for row in images:

if not DATE_MIN<row.dateobs<DATE_MAX:

continue

row.cachedataset()

multisiap.py

8

"""
A trivial example for how to operate a SIAP service from PyVO:
find images from a list of positions and by date.

Get ACCESS_URL from, e.g., http://dc.g-vo.org/WIRR.
"""

from astropy.time import Time
import pyvo

ACCESS_URL = "http://dc.g-vo.org/maidanak/res/rawframes/siap/siap.xml?"
DATE_MIN = Time("2004-02-26", scale="tt")
DATE_MAX = Time("2004-03-01", scale="tt")

def main():
 svc = pyvo.sia.SIAService(ACCESS_URL)
 for pos in [
 (213.97, 11.50),
 (230.44, 52.92),
 (150.36, 55.90)]:
 images = svc.search(pos, size=(0.5, 0.5), verbosity=2)

 for row in images:

 if not DATE_MIN < row.dateobs < DATE_MAX:
 continue

 print("{} Get ({} bytes)?".format(
 row.title,
 row.filesize), end=" ")
 if input().strip().lower().startswith("y"):
 row.cachedataset()

if __name__ == "__main__":
 main()

Metadata in pyVO

You can access the metadata coming with the response VOTables

from pyVO, too, albeit somewhat obscurely:

>>> import pprint

>>> pprint.pprint(images.votable.infos)

[<INFO ID="legal" name="legal" value="The data from Maydanak observatory

>>> pprint(images.votable.resources[0].infos)

[<INFO ID="queryPars" name="queryPars" value="(%(siaarea0)s && c

<INFO ID="QUERY_STATUS" name="QUERY_STATUS" value="OK"/>,

<INFO ID="request" name="request" value="/maidanak/res/rawframes/siap/s

<INFO ID="standardID" name="standardID" value="ivo://ivoa.net/std/sia"/

<INFO ID="server_software" name="server_software" value="DaCHS/2.9.3 tw

<INFO ID="server" name="server" value="http://dc.zah.uni-heidelberg.de"

<INFO ID="citation" name="citation" ucd="" value="http://dc.zah.uni-hei

<INFO ID="citation" name="citation" ucd="" value="http://dc.zah.uni-hei

<INFO ID="ivoid" name="ivoid" ucd="meta.ref.ivoid" value="ivo://org.gav

9

Excursion: The Python Debugger

To inspect metadata like this from within a running program (as

opposed to a notebook), it is really convenient to use the python

debugger. To drop into it, call pdb.set_trace():

for pos in [

(150.36, 55.90)]:

images = svc.search(pos, size=(0.5, 0.5), verbosity=2)

import pdb;pdb.set_trace()

for row in images:

10

And now all-VO

The nice thing about standard services: Handle one, and you get

them all. So, let’s add a query to the Registry and run our query

all over the VO –

for svc in registry.search(servicetype="sia", waveband="optical"):

try:

search_one_service(svc.accessurl)

except Exception:

import traceback; traceback.print_exc()

globalsiap.py

Wisdom: In multi-service queries, expect at least one service to be

broken. Write your scripts to cope.

11

"""
A little script doing an all-VO SIAP query for some positions and a date
range.
"""

import random
import sys

from astropy.time import Time
from pyvo.dal import sia
from pyvo import registry

from astropy import coordinates

POS = coordinates.SkyCoord.from_name("M51")

def search_one_resource(res_rec):
 print("\nNow querying ", res_rec.res_title)
 svc = res_rec.get_service("sia", lax=True)
 images = svc.search(pos=POS, size=0.5)
 for match in images:

 if match.dateobs is None:
 # behave like a database: comparisons with NULL are always
 # False.
 continue

 print(f"{match.title} {match.filesize} Get? ", end=" ")
 if input().strip().lower().startswith("y"):
 match.cachedataset()

def main():
 for res_rec in registry.search(servicetype="image"):
 if random.random()<0.9:
 continue

 try:
 search_one_resource(res_rec)
 except KeyboardInterrupt:
 if input("\nQuit? ").strip().lower().startswith("y"):
 sys.exit()
 except:
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

Add SAMP Magic

SAMP lets you exchange data between VO clients. Your script is a

VO client, too. Let’s make it broadcast some of the found images:

with pyvo.samp.connection() as conn:

... (search) ...

pyvo.samp.send_image_to(conn, image.acref)

globalsiapsamp.py

Before running this, start Aladin (or some other SAMP-enabled

image client) so the images are displayed.

12

"""
A little script doing an all-VO SIAP query for some positions and a date
range; the results can be sent to SAMP clients.
"""

import sys

from astropy.time import Time
import pyvo

DATE_MIN = Time("1990-01-01", scale="tt")
DATE_MAX = Time("2005-12-31T23:59:59", scale="tt")

def search_one_resource(res_rec, conn):
 print("\nNow querying ", res_rec.res_title)
 svc = res_rec.get_service("sia", lax=True)

 for pos in [
 (213.97, 11.50)]:
 images = svc.search(pos, size=0.5)
 for match in images:

 if match.dateobs is None:
 # behave like a database: comparisons with NULL are always
 # false.
 continue
 if not DATE_MIN <= match.dateobs <= DATE_MAX:
 continue

 print(f"{match.title} Show? ", end="")
 if input().strip().lower().startswith("y"):
 pyvo.samp.send_image_to(
 conn, match.acref, name=match.suggest_dataset_basename())

def main():
 with pyvo.samp.connection() as conn:
 for res_rec in pyvo.registry.search(
 keywords=["quasars"],
 servicetype="image"):
 try:
 search_one_resource(res_rec, conn)
 except KeyboardInterrupt:
 if input("\nQuit? ").strip().lower().startswith("y"):
 sys.exit()
 except:
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

pyVO and TAP

Enter TAP

What we have seen so far does not scale when you are interested

in more regions.

Also, only fairly basic constraints are supported.

TAP is far more powerful.

Sample use case: Integrate photometry from different source

catalogues, do some local work on results, try to obtain spectra for

interesting candidates.

13

Run Sync TAP Queries

Run queries via TAP:

access_url = "http://dc.g-vo.org/tap"

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(

"""SELECT raj2000, dej2000, jmag, hmag, kmag

FROM twomass.data

WHERE jmag<3""")

for row in result:

print(row["raj2000"], row["jmag"])

14

Step 1a: Multiple TAP Queries

Imagine more interesting queries here.

QUERIES = [

("twomass", "http://dc.zah.uni-heidelberg.de/tap",

"""SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag

...CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),

...}

with pyvo.samp.connection() as conn:

for short_name, access_url, query in QUERIES:

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(query.format(**locals()), maxrec=90000)

pyvo.samp.send_table_to(

conn,

result.to_table(),

client_name="topcat",

name=short_name)

fetch3.py
15

#!/usr/bin/python

This code is in the public domain.

Step 1: Query three VO services, broadcast the result via SAMP
(requires: pyvo).

Queries are configured as triples of short name, access url (as from a
registry query) query. You *could* use TAP_SCHEMA to automate query
generation, but that's left as an exercise to the reader

import sys
import pyvo

Note that it's of course silly to use TAP to do just cone searches.
Imagine more interesting queries here.
QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("allwise", "http://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("sdss", "https://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),]

def main():
 # arguments: ra, dec, and sr; fill in a known-good default
 if len(sys.argv) != 4:
 ra, dec, radius = 30, 10, 0.05
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 # make (and close when done) a SAMP connection so we can
 # talk to other clients
 with pyvo.samp.connection() as conn:
 # now run the three queries, sending the results via samp:
 for short_name, access_url, query in QUERIES:
 service = pyvo.dal.TAPService(access_url)
 # you could now figure out interesting things about the service,
 # e.g., its table schema and such, to potentially construct queries.
 result = service.run_sync(query.format(**locals()), maxrec=90000)
 pyvo.samp.send_table_to(
 conn,
 result.to_table(),
 client_name="topcat",
 name=short_name)

if __name__ == "__main__":
 main()

Step 2: Go Async

When doing a lot of queries or long-running queries, run them

asynchronously and in parallel.

jobs = set()

for short_name, access_url, query in QUERIES:

job = pyvo.dal.TAPService(access_url).submit_job(

query.format(**locals()), maxrec=9000000)

job.run()

jobs.add((short_name, job))

while jobs:

time.sleep(5)

for short_name, job in list(jobs):

if job.phase not in (’QUEUED’, ’EXECUTING’):

jobs.remove((short_name, job))

pyvo.samp.send_table_to(...)

job.delete()

fetch3-async.py
16

#!/usr/bin/python

This code is in the public domain.

Step 2: as fetch3.py (see there for comments what's going on)
but now we're querying async, in parallel

import sys
import time

import pyvo

QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 # limiting wise matches since both vizier and astropy's
 # VOTable parser are lame in some sense
 ("allwise", "https://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE w1mag<14 AND
 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("sdss", "https://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),]

def main():
 if len(sys.argv) != 4:
 ra, dec, radius = 30, 10, 0.20
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 jobs = set()
 for short_name, access_url, query in QUERIES:
 # in async, you first create a job:
 job = pyvo.dal.TAPService(access_url).submit_job(
 query.format(**locals()), maxrec=9000000)
 # then start it. This immediately returns.
 job.run()
 # we keep note of the jobs we started -- we'll watch them later.
 jobs.add((short_name, job))

 with pyvo.samp.connection() as conn:
 # now watch jobs until they return, then take them off the watch list
 # and send their result
 while jobs:
 # we do the list(.) so we can remove jobs with impunity
 for short_name, job in list(jobs):
 # async jobs are in phases; they're done (or failed) when
 # they're neither queued nor executing.
 print(short_name, job.phase)
 if job.phase not in ('QUEUED', 'EXECUTING'):
 jobs.remove((short_name, job))
 pyvo.samp.send_table_to(
 conn,
 # this is how you get the result from a finished job
 job.fetch_result().to_table(),
 client_name="topcat",
 name=short_name)
 # be a good citizen: clean up your job (it'll be cleaned up
 # eventually anyway, but that might take a while)
 job.delete()

 # wait a bit before doing the next round of polling
 time.sleep(0.5)

if __name__ == "__main__":
 main()

Lightweight async

If you can live without real-time monitoring, you can write more

concisely:

job.wait()

job.raise_if_error()

result = job.fetch_result()

With only a single job at a time, it is even simpler:

result = svc.run_async(query, ...)

17

Step 3a: UCDs build SEDs

Can we build SEDs from the results of the three services?

Not simply; photometry metadata in the VO is not quite sufficient

for that yet. However, UCDs let us do a workaround:

UCD_TO_WL = {

"phot.mag;em.opt.u": 3.5e-7,

"phot.mag;em.opt.b": 4.5e-7,

"phot.mag;em.opt.v": 5.5e-7,

"phot.mag;em.opt.r": 6.75e-7, ...}

for row in rows:

for index, col in enumerate(row):

ucd = row.columns[index].meta.get("ucd", "").lower())

if ucd.startswith("phot.mag"):

if ucd in UCD_TO_WL:

phots.append((UCD_TO_WL[ucd], col))

18

Step 3b: Aggregate Photometry

Construction of “clusters” is in vohelper.py and uses astropy’s

SkyCoords and match catalog to sky (asymmetric!).

For three catalogues, we must perform six sky matches to get

pairs, then walk the graph to gather the clusters.

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

2MASS SDSS WISE

Graph-based clustering

a
s
S
k
y

a
s
C
a
ta
lo
g
u
e

19

Combine with “your” Code

This is python: Add your own logic!

Here: Let’s display the approximate SEDs and let the user

interactively select “interesting” cases.

for pos, phots in seds:

to_plot = np.array(phots)

plt.semilogx(to_plot[:,0], to_plot[:,1], ’-’)

plt.show(block=False)

selection = input(

"s)elect SED, q)uit, enter for next? ")

if selection=="q":

break

if selection=="s":

selected.append(pos)

plt.cla()

return selected

fetch3-cluster.py
20

#!/usr/bin/python

This code is in the public domain.

Step 3: as Step 1, but this time cluster the points retrieved to
combine the different photometry, then show sketches of the SED
and let users select objects for closer inspection.

import pickle
import os
import sys

from astropy import coordinates
from astropy import units as u
from astropy import table
from matplotlib import pyplot as plt
import numpy as np
import pyvo

import vohelper

for rough SED: map filter UCDs to representative wavelengths
to do this better, we'd need more takeup of the photometry DM
UCD_TO_WL = {
 "phot.mag;em.opt.u": 3.5e-7,
 "phot.mag;em.opt.b": 4.5e-7,
 "phot.mag;em.opt.v": 5.5e-7,
 "phot.mag;em.opt.r": 6.75e-7,
 "phot.mag;em.opt.i": 8.75e-7,
 "phot.mag;em.ir.j": 1.25e-6,
 "phot.mag;em.ir.h": 1.75e-6,
 "phot.mag;em.ir.k": 2.2e-6,
 "phot.mag;em.ir.3-4um": 3.5e-6,
 "phot.mag;em.ir.4-8um": 6e-6,
 "phot.mag;em.ir.8-15um": 11.5e-6,
 "phot.mag;em.ir.15-30um": 22.5e-6,
}

QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 	AND Jmag<15"""),
 ("allwise", "https://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 AND w1mag<14"""),
 ("sdss", "https://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 AND i_mag<16"""),]

def work_around_vizast_bug(col):
 """fixes a non-interoperability problem between VizieR and astropy:
 arraysize=1 has not meant 1-array on Vizier-TAP.

 This function makes arrays of such 1-arrays arrays of scalars.
 """
 if not np.isscalar(col[0]) and col[0].shape == (1,):
 return col.__class__(
 data=col[:, 0],
 name=col.name,
 mask=col.mask[:, 0],
 unit=col.unit,
 meta=col.meta)
 else:
 return col

def work_around_sdss_ucd_bug(name, ucd):
 """guesses better UCDs for SDSS' botched ones.
 """
 if ucd == "phot.mag;em.opt":
 return {
 "u_mag": "phot.mag;em.opt.u",
 "g_mag": "phot.mag;em.opt.b",
 "r_mag": "phot.mag;em.opt.r",
 "i_mag": "phot.mag;em.opt.i",
 "z_mag": "phot.mag;em.opt.i",
 }[name]
 return ucd

def get_tables(ra, dec, radius):
 """returns pairs of (short_name, result) for the queries defined.

 For experimentation, we cache the results here; to clear the cache,
 delete the file cache.pickle.
 """
 if os.path.exists("cache.pickle"):
 with open("cache.pickle", "rb") as f:
 return pickle.load(f)

 results = []
 for short_name, access_url, query in QUERIES:
 service = pyvo.dal.TAPService(access_url)
 results.append(
 (short_name, service.run_sync(query.format(**locals())).to_table()))

 with open("cache.pickle", "wb") as f:
 pickle.dump(results, f)

 return results

def get_coordinates_for_table(table):
 """returns SkyCoord objects for an astropy table.

 This uses pos.eq.*; meta.main UCDs to know where to look.
 """
 ra_column = vohelper.get_name_for_ucd(
 "pos.eq.ra;meta.main", table)
 dec_column = vohelper.get_name_for_ucd(
 "pos.eq.dec;meta.main", table)

 # fix broken metadata (sigh)
 if table[ra_column].unit == "Angle[deg]":
 table[ra_column].unit = "deg"
 if table[dec_column].unit == "Angle[deg]":
 table[dec_column].unit = "deg"

 return coordinates.SkyCoord(
 # WORKAROUND!
 work_around_vizast_bug(table[ra_column]),
 work_around_vizast_bug(table[dec_column]))

def force_scalar(val):
 """returns val[0] if val is an array, val otherwise.

 Again, this is a workaround for a vizier-astropy battle.
 """
 if np.isscalar(val):
 return val
 else:
 return val[0]

def make_photo_cluster(rows):
 """makes a pair of (position, photopoint) from a list of database
 rows.
 """
 pos = [None, None]
 phots = []

 for row in rows:
 for index, col in enumerate(row):
 name = row.columns[index].name
WORKAROUND!
 ucd = work_around_sdss_ucd_bug(
 name,
 row.columns[index].meta.get("ucd", "").lower())

 if ucd.startswith("phot.mag"):
 col = force_scalar(col)
 if ucd in UCD_TO_WL:
 phots.append((UCD_TO_WL[ucd], col))
 elif ucd == "pos.eq.dec;meta.main":
 pos[1] = force_scalar(col)
 elif ucd == "pos.eq.ra;meta.main":
 pos[0] = force_scalar(col)

 return tuple(pos), sorted(phots)

def make_seds(tables, clusters):
 """returns a sequence of (position, photopoints) from database tables
 and the custer result.

 We select columns based on UCDs.
 """
 seds = []
 for cluster in clusters:
 seds.append(
 make_photo_cluster([tables[table_ind][1][row_ind]
 for table_ind, row_ind in cluster]))
 return seds

def select_seds(seds):
 selected = []

 for pos, phots in seds:
 to_plot = np.array(phots)
 plt.semilogx(to_plot[:, 0], to_plot[:, 1], '-')
 plt.ylim([min(to_plot[:, 1]), max(to_plot[:, 1])])
 plt.ylabel("Mag", fontsize=15)
 plt.xlabel("Wavelength", fontsize=15)
 plt.show(block=False)
 selection = input("s)elect SED, q)uit, enter for next? ")
 if selection == "q":
 break
 if selection == "s":
 selected.append(pos)
 plt.cla()

 return selected

def main():
 if len(sys.argv) != 4:
 ra, dec, radius = 130.8, 3.4, 0.3
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 tables = get_tables(ra, dec, radius)

 clusters = vohelper.compute_multi_join([
 get_coordinates_for_table(t) for name, t in tables],
 0.2*u.arcsec)

 seds = make_seds(tables, clusters)

 selected = np.array(select_seds(seds))

 if not len(selected):
 sys.exit("Nothing selected, nothing written.")

 t = table.Table()
 t.add_column(table.Column(
 name='ra',
 data=selected[:, 0],
 unit=u.degree,
 description="ICRS RA of a selected object",
 meta={"ucd": "pos.eq.ra;meta.main"}))
 t.add_column(table.Column(
 name='dec',
 data=selected[:, 1],
 unit=u.degree,
 description="ICRS Declination of a selected object",
 meta={"ucd": "pos.eq.dec;meta.main"}))
 with open("selected_positions.vot", "wb") as f:
 t.write(output=f, format="votable")

if __name__ == "__main__":
 main()

Write Tables in Style

Please furnish your tables with metadata. fetch3-cluster shows you

how to do it with astropy:

t = table.Table()

t.add_column(table.Column(

name='ra',

data=selected[:, 0],

unit=u.degree,

description="ICRS RA of a selected object",

meta={"ucd": "pos.eq.ra;meta.main"}))

21

Looking for Spectra

Suppose you have a couple of positions for “interesting” objects.

Can we find spectra for them?

Plan:

• Search for ObsTAP services

• Use TAP upload to search to collect spectra

• Send spectra to SPLAT

22

Obscore

The obscore “data model” consists of ∼ 40 columns; use a TAP

browser to look at them. Some highlights:

• dataproduct type – states image, timeseries, and the like.

• obs publisher did – a dataset identifier.

• access url – where to get the data from.

• s ra, s dec, s fov – centre and FoV of the observation

• s region – area covered by the dataset as an ADQL geometry.

23

Query the Registry

Iterate over all obscore services (here: see what data collections

they house):

for svc_rec in pyvo.registry.search(datamodel="obscore"):

print(f">>>>>> {svc_rec.short_name}...")

try:

svc = svc_rec.get_service("tap", lax=True)

result = svc.run_sync("SELECT DISTINCT obs_collection"

" FROM ivoa.obscore")

except (Exception, KeyboardInterrupt):

import traceback; traceback.print_exc()

continue

print("\n".join(r["obs_collection"] for r in result))

Do not run this script just for fun. It will hit quite a few services

and make them seqscan their obscore tables.

24

Query with Upload

For each ObsTAP service, we query against our object list

(assumed to be in an astropy Table in pois):

if not svc.upload_methods:

return

result = svc.run_sync(

"""SELECT TOP 2000 oc.obs_publisher_did, oc.access_url

FROM ivoa.obscore AS oc

JOIN TAP_UPLOAD.pois AS mine

ON 1=CONTAINS(

POINT(’ICRS’, oc.s_ra, oc.s_dec),

CIRCLE(’ICRS’, mine.ra, mine.dec, 0.01))

WHERE oc.dataproduct_type=’spectrum’

"""),

uploads = {"pois": pois})

25

Collect Spectra finished

The rest is almost standard SAMP fare to get the spectra retrieved

to SPLAT as they come in:

for ds_name, access_url in specs:

print("Opening ...".format(access_url))

try:

pyvo.samp.send_spectrum_to(

conn, access_url, client_name="splat", name=ds_name)

except KeyError as exc:

regrettably, astropy raises the unspecific KeyError

when there it does not find the client.

print(" ** Failed: is splat running?")

except Exception:

print(" *** Unexpected failure:")

import traceback; traceback.print_exc()

get-spectra.py

26

#!/usr/bin/python

This code is in the public domain.

do an all-VO obscore search for spectra around a list of points.

import sys

from astropy import table
import pyvo

import vohelper

def get_spectra_for_table(svc, pois, radius, samplesize):
 """yields pairs of (dataset name, access_url) for spectra within radius
 degrees of points in pois for and obscore service.
 """
 ra_column_name = vohelper.get_name_for_ucd(
 "pos.eq.ra;meta.main", pois)
 dec_column_name = vohelper.get_name_for_ucd(
 "pos.eq.dec;meta.main", pois)

 # the rstrip in the next line is a workaround for a botched registration of
 # VAO
 if not svc.upload_methods:
 # service doesn't support upload, can't use it
 return

 # you'd normally really match
 # CONTAINS(POINT(up.ra, up.dec), s_region); however, we need to fudge here
 # since there's still too little data in obscore.
 result = vohelper.run_sync_resilient(svc,
 """SELECT TOP {samplesize} oc.obs_publisher_did, oc.access_url
 FROM ivoa.obscore AS oc
 JOIN TAP_UPLOAD.pois AS mine
 ON 1=CONTAINS(
 POINT('ICRS', oc.s_ra, oc.s_dec),
 CIRCLE('ICRS',
 mine.{ra_column_name},
 mine.{dec_column_name},
 {radius}))
 WHERE oc.dataproduct_type='spectrum'
 """.format(**locals()),
 # add more constraints (spectral region, resolution... here)
 uploads={"pois": pois})

 if result is None:
 return

 for row in result.to_table():
 yield str(row[0]), str(row[1])

def main():
 args = sys.argv+["selected_positions.vot", "1000", "2"][len(sys.argv)-1:]

 with open(args[1], "rb") as f:
 pois = table.Table.read(f)
 radius = float(args[2])/3600
 n_samp = int(args[3])

 with pyvo.samp.connection() as conn:
 for res in pyvo.registry.search(datamodel="obscore"):
 sys.stdout.write("Querying {} ...".format(res.ivoid))
 sys.stdout.flush()

 try:
 specs = list(get_spectra_for_table(
 res.get_service("tap"), pois, radius, n_samp))
 except (Exception, KeyboardInterrupt) as ex:
 sys.stdout.write(f"broken ({ex}\n")
 continue
 sys.stdout.write(" done. ({})\n".format(len(specs)))

 for ds_name, access_url in specs:
 print("Opening {}...".format(access_url))
 try:
 pyvo.samp.send_spectrum_to(
 conn, access_url, client_name="splat", name=ds_name)
 except KeyError:
 # regrettably, astropy raises the unspecific KeyError
 # when there it does not find the client.
 print(" ** Failed: is splat running?")
 except Exception:
 print(" *** Unexpected failure:")
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

pyVO and the Registry

A Closer Look at registry.search

We have seen registry.search already in some places.

To go more deeply, you need to understand a bit more of the

Registry data model:

Resource

TAP cap SCS capability
Tableset

TAP intf SCS v1 SCS v2

27

Principles of RegistryResource

What you get back from registry.search is a sequence of

RegistryResource instances.

It has attributes for metadata (res_title, res_description. . .), and

important methods:

• describe() – return a summary of what pyVO knows about

the resource.

• access_modes() – short identifiers for the capabilities of the

resource

• get_service(type, lax, keyword) – return a service object to

query the resource

• get_tables() – return a sequence of table-like objects with

what tables you can query

28

Interactive Use of the PyVO Registry API

Finally: A jupyter notebook!

data-discovery-demo.ipynb

29

{
 "cells": [
 {
 "cell_type": "markdown",
 "id": "considered-spanking",
 "metadata": {},
 "source": [
 "# Data Discovery in using pyVO"
]
 },
 {
 "cell_type": "markdown",
 "id": "registered-mirror",
 "metadata": {},
 "source": [
 "This notebook is an introduction to using the Virtual Observatory Registry interactively from within pyVO. It belongs to the lecture on using the Virtual Observatory. See \n",
 "https://codeberg.org/msdemlei/pyvo-course for more information on this course and in particular for what the VO Registry is and what it is there for."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "published-fountain",
 "metadata": {},
 "outputs": [],
 "source": [
 "# set up things; we're also ignoring over-zealous\n",
 "# astropy warnings against bleeding-edge VOTable.\n",
 "from pyvo import registry, dal\n",
 "import warnings\n",
 "warnings.filterwarnings('ignore', module=\"astropy.io.votable.*\")\n",
 "warnings.filterwarnings('ignore', module=\"pyvo.io.vosi.vodataservice\")\n",
 "import pyvo"
]
 },
 {
 "cell_type": "markdown",
 "id": "modified-mitchell",
 "metadata": {},
 "source": [
 "The most general way to run registry queries is by passing registry.search Constraints. It is quite a bit more flexible than the alternative keyword-based interface, but admittedly somewhat more verbose.\n",
 "\n",
 "For instance, to find data giving redshifts on quasars, you could say:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "beginning-explanation",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs = registry.search(\n",
 " registry.Freetext(\"quasar\"),\n",
 " registry.UCD(\"src.redshift\"))"
]
 },
 {
 "cell_type": "markdown",
 "id": "smooth-electric",
 "metadata": {},
 "source": [
 "As said above, in simple cases (such as this one) you can use an interface based on keyword arguments as well, like this:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "mineral-national",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs = registry.search(keywords=\"quasar\", \n",
 " ucd=\"src.redshift\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "substantial-emission",
 "metadata": {},
 "source": [
 "The list of constraints available (and explanations what they do) is found in the pyVO documentation at https://pyvo.readthedocs.io/en/latest/registry/.\n",
 "\n",
 "What ``registry.search`` returns here is a collection (works as a sequence, but technically it is a ``RegistryResults`` instance) of resource records. Conceptually, you can thing of one item in there, represented as ``RegistryResource`` instances, as a data collection: A catalogue, the archive of an instrument, a collection of spectra reduced in a common way, etc. The simplest way to have a look at the result as a while is through the ``get_summary`` method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "rotary-brain",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs.get_summary()"
]
 },
 {
 "cell_type": "markdown",
 "id": "skilled-carter",
 "metadata": {},
 "source": [
 "While this particular list is perhaps a bit unwieldy, this lets you relatively quickly browse what is available. In particular, the last column tells you how, i.e., using which protocols, you can talk to a service serving the data.\n",
 "\n",
 "Once you have found data you are interested in, you can pick it out of the list using the numeric index (which, however, is unstable between sessions and thus we don't do it here), using the short name (for which there *could* be clashes, though they should be rare) or through the ivoid (which is globally unique, but somewhat lengthy). In this example, we are using the short name.\n",
 "\n",
 "Let's say we want to work with the resource III/175, “Gaia DR3 Part 2. Extra-galactic”. By the last column, there is a cone search, TAP, and web service that provides access to it.\n",
 "\n",
 "The most immediate way to get to the data usually is the cone search, which gives something like a dump of a catalogue around a position (using 0,0,180 will give you the full catalogue most of the time). To see a relatively concise representation of what a service is about, use the ``describe`` method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "bdf88aff",
 "metadata": {},
 "outputs": [],
 "source": [
 "short_name = \"I/356\"\n",
 "rec = rscs[short_name]\n",
 "rec.describe()"
]
 },
 {
 "cell_type": "markdown",
 "id": "6a20fd58",
 "metadata": {},
 "source": [
 "To interact with the resource, there is ``get_service``. Pass it an identifier of a service type as per the last column of the overview table or whatever the ``access_modes`` method returns:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "touched-ratio",
 "metadata": {},
 "outputs": [],
 "source": [
 "print(rscs[short_name].access_modes())\n",
 "svc = rscs[short_name].get_service(service_type=\"conesearch\", lax=True)\n",
 "svc.search((126, -20), radius=0.2).to_table()"
]
 },
 {
 "cell_type": "markdown",
 "id": "responsible-bradley",
 "metadata": {},
 "source": [
 "The lax=True here is a bit of an uglyness: VizieR often has multiple sub-services on their resources, perhaps one per major table in a publication. See the list of interfaces in the ``describe`` output above, and then pick the interface you actually want a ``keyword`` parameter. ``lax=True`` basically means “leave the choice to VizieR”, which *may* to what you want (it will, for instance, with the TAP capabilities, because they all point to the same service) but may be entirely random, too.\n",
 "\n",
 "We are trying to improve this admittedly unfortunate situation."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "809f2eef",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_service(\"scs\", keyword='QSO' \n",
 ").search((126, -20), radius=0.2)"
]
 },
 {
 "cell_type": "markdown",
 "id": "d748e429",
 "metadata": {},
 "source": [
 "A more powerful interface is TAP, which lets you send database queries to the service (forget about the “#aux” in the interface name for now). To do something sensible in TAP, you need to know the name(s) of the table(s) making up the resource. You can figure these out using the registry record's get_tables method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "brave-biotechnology",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_tables()"
]
 },
 {
 "cell_type": "markdown",
 "id": "comprehensive-consolidation",
 "metadata": {},
 "source": [
 "Let's have a look at what columns one of these tables has – this is a normal astropy table:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "young-hundred",
 "metadata": {},
 "outputs": [],
 "source": [
 "td = rscs[short_name].get_tables()['I/356/qsocand']\n",
 "td.columns"
]
 },
 {
 "cell_type": "markdown",
 "id": "olympic-second",
 "metadata": {},
 "source": [
 "From here, you could inspect the various BaseParams for units, descriptions, and the like, but for this level of interactivity, you may want to use TOPCAT. Just paste the service's access URL in its TAP window:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "sudden-jerusalem",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_service(service_type=\"tap\", lax=True).baseurl"
]
 },
 {
 "cell_type": "markdown",
 "id": "mounted-indianapolis",
 "metadata": {},
 "source": [
 "While I was preparing the first version of this notebook, the metadata of this resource still had a bug, which showed itself as warnings of the type\n",
 "\n",
 "```\n",
 "WARNING: W02: ?:?:?: W02: '' is not a valid datatype according to the VOSI spec [pyvo.io.vosi.vodataservice]\n",
 "```\n",
 "\n",
 "While you might ignore warnings, at least with errors it is usually a good idea to notify the operators. To see who to talk to, use the ``get_contact`` method of the record:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "floral-mountain",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_contact()"
]
 },
 {
 "cell_type": "markdown",
 "id": "disabled-compilation",
 "metadata": {},
 "source": [
 "To actually run queries, get a TAP service and do queries based on the columns that you found. Let's use VizieR's III/175, “Optical Spectroscopy of Radio Sources“, for that:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "a4293846",
 "metadata": {},
 "outputs": [],
 "source": [
 "short_name = \"III/175\"\n",
 "rscs[short_name].describe()"
]
 },
 {
 "cell_type": "markdown",
 "id": "55e9a00c",
 "metadata": {},
 "source": [
 "Phewy, just one capability and one table; no problems with lax or keyword. What tables are there?"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "31e332a3",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_tables()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "c22bde31",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_tables()['III/175/table1'].columns"
]
 },
 {
 "cell_type": "markdown",
 "id": "f95a1c82",
 "metadata": {},
 "source": [
 "Let us see what object types this table lists:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "transsexual-firmware",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc = rscs[short_name].get_service(\"tap\")\n",
 "svc.run_sync('SELECT DISTINCT type FROM \"III/175/table1\"').to_table()"
]
 },
 {
 "cell_type": "markdown",
 "id": "structural-residence",
 "metadata": {},
 "source": [
 "To figure out the correlation between the 5 GHz flux and the optical magnitude for Quasars, you could do:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "ranking-today",
 "metadata": {},
 "outputs": [],
 "source": [
 "flux_and_mag = svc.run_sync(\"SELECT m, S5Ghz FROM \\\"III/175/table1\\\" where type='QSO'\").to_table()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "inner-award",
 "metadata": {},
 "outputs": [],
 "source": [
 "from scipy import stats\n",
 "stats.pearsonr(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"])"
]
 },
 {
 "cell_type": "markdown",
 "id": "62942982",
 "metadata": {},
 "source": [
 "That there's an anticorrelation (the first value returned) is not surprising (magnitudes grow as flux decreases). Judging from the p-value (the second value), you could even convince a medicine journal that that is a real thing. How does all this look like anyway?"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "8ac35b46",
 "metadata": {},
 "outputs": [],
 "source": [
 "from matplotlib import pyplot\n",
 "_ = pyplot.scatter(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"])"
]
 },
 {
 "cell_type": "markdown",
 "id": "demographic-employee",
 "metadata": {},
 "source": [
 "Let's quickly see how the same thing looks like for Blazars:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "8684a466",
 "metadata": {},
 "outputs": [],
 "source": [
 "flux_and_mag = svc.run_sync(\"SELECT m, S5Ghz FROM \\\"III/175/table1\\\" where type in ('BL/QSO')\").to_table()\n",
 "print(stats.pearsonr(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"]))\n",
 "_ = pyplot.scatter(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"])"
]
 },
 {
 "cell_type": "markdown",
 "id": "1c0d5a59",
 "metadata": {},
 "source": [
 "We have not looked at web-typed interfaces yet.\n",
 "They correspond to something you can operate with your web browser, and hence there's just one thing pyVO can do: Open a browser. That happens when you call that fake service's search method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "speaking-latest",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_service(\"web\").search()"
]
 },
 {
 "cell_type": "markdown",
 "id": "trying-bubble",
 "metadata": {},
 "source": [
 "By the way, this is *not* the way to look for a webpage *on* the service. The URL of a documentation-type web page is available (provided the publishers did their homework) in a resources' reference_url attribute. To get there, you could do: "
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "nonprofit-record",
 "metadata": {},
 "outputs": [],
 "source": [
 "import webbrowser\n",
 "webbrowser.open(rscs[\"III/175\"].reference_url, 1)"
]
 },
 {
 "cell_type": "markdown",
 "id": "challenging-discount",
 "metadata": {},
 "source": [
 "There are more constraints available than just free text and UCD.\n",
 "A particularly interesting one is the spatial coverage. For instance, you could look for data on flare stars around the Orion nebula like this:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "circular-express",
 "metadata": {},
 "outputs": [],
 "source": [
 "from astropy.coordinates import SkyCoord\n",
 "flrscs = registry.search(\n",
 " registry.Freetext(\"flare\"),\n",
 " registry.Spatial((SkyCoord.from_name(\"M42\"), 2)))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "binding-brook",
 "metadata": {},
 "outputs": [],
 "source": [
 "flrscs.get_summary().show_in_notebook(display_length=60)"
]
 },
 {
 "cell_type": "markdown",
 "id": "hydraulic-rating",
 "metadata": {},
 "source": [
 "The services here a bit more diverse than with our first example. For instance, there are image services, as you will see when you skim the last column:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "sunrise-tournament",
 "metadata": {},
 "outputs": [],
 "source": [
 "matches = flrscs[\"flare_survey.dat\"].get_service(service_type=\"sia\").search(\n",
 " pos=SkyCoord.from_name(\"M42\"),\n",
 " size=2)\n",
 "matches"
]
 },
 {
 "cell_type": "markdown",
 "id": "applicable-inspection",
 "metadata": {},
 "source": [
 "In order to have at least a few images in this notebook, let's use datalink to fetch a few previews of our matches (this datalink trick does not work on all services; if it does not for a service you care about, complain to its operators, demanding datalink support – see the thing with get_contact above)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "realistic-evans",
 "metadata": {},
 "outputs": [],
 "source": [
 "from IPython.display import Image, display\n",
 "for dl in matches.iter_datalinks():\n",
 " for row in dl.bysemantics(\"#preview\"):\n",
 " display(Image(url=row[\"access_url\"], width=200,\n",
 " embed=True, format=\"jpeg\"))"
]
 },
 {
 "cell_type": "markdown",
 "id": "committed-wheel",
 "metadata": {},
 "source": [
 "There are similar constraints for the Spectral and Time axes. For instance, to look for resources talking about spectra and the Balmer break, you could say:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "substantial-nightmare",
 "metadata": {},
 "outputs": [],
 "source": [
 "from astropy import units as u\n",
 "registry.search(\n",
 " registry.Freetext(\"spectra\"),\n",
 " registry.Spectral(364*u.nm)).get_summary()"
]
 },
 {
 "cell_type": "markdown",
 "id": "renewable-single",
 "metadata": {},
 "source": [
 "Note that in particular for time and spectral coverage, as of 2023 many data providers in the VO have not updated their resource records to provide such information; hence, you will have to expect missing resources. For spectral coverage, see also the ``Waveband`` constraint, which is older and therefore better supported."
]
 },
 {
 "cell_type": "markdown",
 "id": "continuous-telephone",
 "metadata": {},
 "source": [
 "Behind the scenes, all this just does ADQL queries via TAP. So, whenever the pre-canned queries from the Registry module are not enough (e.g., because you want to do table uploads or need exotic constraints), you can simply switch to using TAP directly. To help you with that, you can use the ``build_regtap_query`` function to get an ADQL query to start with. For instance:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "worth-catch",
 "metadata": {},
 "outputs": [],
 "source": [
 "print(registry.get_RegTAP_query(\n",
 " registry.Spatial((30, 40)),\n",
 " registry.Servicetype('tap'),\n",
 " registry.Datamodel(\"obscore\")))"
]
 },
 {
 "cell_type": "markdown",
 "id": "southwest-highway",
 "metadata": {},
 "source": [
 "This is not overly pretty, but once you have had a look at the RegTAP documentation at https://ivoa.net/documents/RegTAP/, it should start to make sense. By cutting and pasting, you could create a registry query using an uploaded object list, perhaps a bit like this (ignore the next code cells if you've not played with TAP uploads yet and/or feel uncomfortable near to large amounts of ADQL). Anyway, we get a few random positions and then see what Obscore services declare they cover our sample."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "dedicated-snowboard",
 "metadata": {},
 "outputs": [],
 "source": [
 "objects = dal.TAPService(\"http://dc.g-vo.org/tap\").run_sync(\n",
 " \"SELECT source_id, ra, dec FROM gaia.dr3lite TABLESAMPLE(0.00005)\"\n",
 ").to_table()\n",
 "objects"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "musical-council",
 "metadata": {},
 "outputs": [],
 "source": [
 "from pyvo.registry import regtap\n",
 "\n",
 "rt_query = \"\"\"\n",
 "SELECT DISTINCT\n",
 "ivoid, res_title, \n",
 "res_description, access_url FROM\n",
 "rr.resource\n",
 "NATURAL LEFT OUTER JOIN rr.capability\n",
 "NATURAL LEFT OUTER JOIN rr.interface\n",
 "NATURAL LEFT OUTER JOIN rr.res_detail\n",
 "NATURAL LEFT OUTER JOIN rr.stc_spatial\n",
 "JOIN TAP_UPLOAD.t1\n",
 "ON\n",
 " (1 = CONTAINS(MOC(6, POINT(TAP_UPLOAD.t1.ra, TAP_UPLOAD.t1.dec)), coverage))\n",
 "WHERE\n",
 " (detail_xpath = '/capability/dataModel/@ivo-id' AND 1 = ivo_nocasematch(detail_value, 'ivo://ivoa.net/std/obscore%'))\n",
 " AND (standard_id IN ('ivo://ivoa.net/std/tap'))\n",
 "\"\"\"\n",
 "ocrscs = regtap.get_RegTAP_service(\n",
 ").run_sync(rt_query, uploads={\"t1\": objects}).to_table()\n",
 "ocrscs"
]
 },
 {
 "cell_type": "markdown",
 "id": "interim-entry",
 "metadata": {},
 "source": [
 "Note, however, that in particular Obscore services are notoriously bad at properly defining their physical coverage, so this sort of query is probably more appropriate for TAP tables and perhaps image or spectral services."
]
 },
 {
 "cell_type": "markdown",
 "id": "complete-lebanon",
 "metadata": {},
 "source": [
 "Finally, “classic” Registry queries did what's now called “service discovery”, where you are looking for all, say, image services. This, if I am very frank, is still the way you have to do searches by product type (“look for spectra”) – although we are working on rectifying that, because it does not work very well.\n",
 "\n",
 "You can do service discovery in pyvo by constraining the service type. For instance, you will find services returning X-ray images somewhat in this way – and you can probably get away with calling a method called ``get_service()``, because your service objects will usually only have one associated service of a given type (but note that there exceptions to that):"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "cordless-george",
 "metadata": {},
 "outputs": [],
 "source": [
 "total_matches = 0\n",
 "for res in registry.search(\n",
 " keywords=\"rosat\", waveband=\"X-Ray\", servicetype=\"image\"):\n",
 " try:\n",
 " print(f\"Querying {res.short_name}...\")\n",
 " mats = res.get_service().search(pos=(30, 20), size=0.3)\n",
 " print(f\"...yielded {len(mats)}\")\n",
 " total_matches += len(mats)\n",
 " except Exception as msg:\n",
 " print(f\"Service {res.short_name} failed: {msg}\")\n",
 "print(f\"Total found: {total_matches}\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "corresponding-pharmacy",
 "metadata": {},
 "source": [
 "Comments, questions and ideas for improvement are very welcome. Contact:\n",
 "msdemlei@ari.uni-heidelberg.de (PGP key: 0x555FA86CC57AE128)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "welsh-fifth",
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

Resolving Ivoids

IVOA identifiers are the primary keys in the VO Registry.

When keeping notes like “which service did I use”, the ivoid

(rather than a DOI) still is the better choice in the VO.

To resolve an ivoid:

svc = pyvo.registry.search(ivoid='ivo://org.gavo.dc/tap')[0]

30

Write Your Own Constraint

registry.search uses constraint classes to build queries.

You can extend the set of constraint classes yourself by inheriting

from registry.SubqueriedConstraint.

Say you want to use the experimental UAT extension to RegTAP,

i.e., rr.uat_concept:

class UATConcept(pyvo.registry.SubqueriedConstraint):

_keyword = "uat"

_subquery_table = "rr.subject_uat"

def __init__(self, uat_id):

self._condition = "uat_concept={uat_id}"

self._fillers = {"uat_id": uat_id}

new-constraint.py

31

import pyvo

class ForSource(pyvo.registry.SubqueriedConstraint):
 _keyword = "subject"
 _subquery_table = "rr.subject_uat"

 def __init__(self, uat_id):
 self._condition = "uat_concept={uat_id}"
 self._fillers = {"uat_id": uat_id}

if __name__=="__main__":
 print(pyvo.registry.search(
 ForSource("exoplanet-astronomy")).get_summary())

Datalink

Datalink: Getting Related Artefacts

Datalink is a standard for “linking” files to datasets. Think

calibration data, previews, extracted objects, alternative formats,

etc.

https://dc.g-vo.org/static/datalinks.shtml is a showcase of various

applications of datalink.

This is really machine-readable data; load any of these links into

TOPCAT to inspect it as a VOTable:

32

https://dc.g-vo.org/static/datalinks.shtml

Datalink in a Cartoon

2 3 4 5

1ID access url semantics content type

ivo://example/s?1 http://iv.oa/full-image.fits #this image/fits

ivo://example/s?1 http://iv.oa/scaled4.fits #coderived image/fits

ivo://example/s?1 http://iv.oa/foto.jpg #preview-image image/jpeg

ivo://example/s?1 http://iv.oa/wedge.jpg #calibration image/png

ivo://example/s?1 http://iv.oa/preview.jpg #preview image/jpeg

ivo://example/s?1 http://iv.oa/sources.vot 8 #derivation application/x-votable+xml

ivo://example/s?1 #servicedef #access NULL
10 ivo://example/s?2 http://iv.oa/spect.vot #this application/x-votable+xml

ivo://example/s?2 http://iv.oa/spect.fits #this application/fits

ivo://example/s?2 http://iv.oa/spect-preview.vot #preview-plot image/png

ivo://example/s?2 http://iv.oa/split-order/dl #progenitor 13 app/vot?content=datalink

6

7

11 12

9

14semantics content type

#this application/x-votable+xml

#derivation app/vot;content=datalink

#access NULL

15 16 17

33

Datalink in PyVO

In pyVO, datalink is (primarily) exposed in search results.

On datalink-enabled services, you can iterate over

iter_datalinks(), which iterates over DatalinkResults instances.

On these, you can pull links using bysemantics:

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")

matches = svc.search(SkyCoord.from_name("EI Eri"), 0.001)

for links in matches.iter_datalinks():

for link in links.bysemantics("#preview"):

print(link["access_url"])

Or just iterate over links to see all links available.

34

Use Case: Overview With Previews

Let’s say you want to spot bad or weird spectra without actually

retrieving or plotting the spectra themselves.

Just download the previews and merge them into one image:

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")

matches = svc.search(SkyCoord.from_name("EI Eri"), 0.001)

previews = []

for dl in matches.iter_datalinks():

prev_url = next(dl.bysemantics("#preview"))["access_url"]

im = Image.open(io.BytesIO(requests.get(prev_url).content))

previews.append(im)

datalink-previews.py

35

import io
import requests
import pyvo
from astropy.coordinates import SkyCoord
from PIL import Image, ImageDraw

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")
matches = svc.search(
 SkyCoord.from_name("EI Eri"),
 radius=0.001,
 maxrec=300,
 format="votable")

previews = []
for dl in matches.iter_datalinks():
 rec = next(dl.bysemantics("#preview"))
 im = Image.open(
 io.BytesIO(
 requests.get(rec["access_url"]).content))
 previews.append((rec["ID"], im))

xsz, ysz = previews[0][1].size

we jam together the previews to save space, but we need to make white
transparent to do that.
montage = Image.new("L",
 (xsz, ysz*len(previews)),
 color=240)

for index, (id, preview) in enumerate(previews):
 frame = preview.convert('L')
 ctx = ImageDraw.Draw(frame)
 ctx.text((0, 0), id.split("?")[-1], fill=0)
 montage.paste(frame, (0, index*ysz))
montage.save("previews.png")

Datalink: Remote Processing on Datalink Documents

Datalink also lets you declare processing services. The SODA

standard defines a special set of parameters applicable to

astronomical images (CIRCLE, POLYGON, TIME, BAND,. . .).

Save a lot of time by only downloading cutouts of the object you

are interested in:

roi = SkyCoord.from_name('Mira')

for rec in svc.run_sync(

"SELECT access_url, access_format FROM ivoa.obscore"

" WHERE obs_collection='HDAP'"

"AND 1=CONTAINS(CIRCLE('ICRS', {}, {}, 0.05),"

"s_region)".format(roi.ra.deg, roi.dec.deg)):

processed = rec.processed(

circle=(roi.ra.deg, roi.dec.deg, 0.05))

datalink-soda.py

36

import math, io
from PIL import Image
import pyvo
from astropy.coordinates import SkyCoord
from astropy.io import fits

svc = pyvo.dal.tap.TAPService("http://dc.g-vo.org/tap")
roi = SkyCoord.from_name('Mira')

cutouts = []
for rec in svc.run_sync(
 "SELECT access_url, access_format FROM ivoa.obscore"
 " WHERE obs_collection='HDAP'"
 "AND 1=CONTAINS(CIRCLE('ICRS', {}, {}, 0.05),"
 "s_region)".format(roi.ra.deg, roi.dec.deg)
):
 processed = rec.processed(
 circle=(roi.ra.deg, roi.dec.deg, 0.05))

 pixels = fits.open(io.BytesIO(processed.read()))[0].data

 cutouts.append(
 Image.fromarray(((pixels/float(pixels.max()))*255).astype('uint8'))
)

 per_line = int(math.ceil(math.sqrt(len(cutouts))))
 dest_size, stamp_size = 1600, 1600//per_line

 montage = Image.new("L", (dest_size, dest_size))

 for index, img in enumerate(cutouts):
 montage.paste(
 img.resize((stamp_size, stamp_size)),
 (index//per_line*stamp_size, index%per_line*stamp_size)
)

 montage.save("cutouts.jpg")

Datalink: Remote Processing on Non-Datalink Documents

Use case: Hα maps of Sd galaxies from CALIFA.

Doing the cutouts by calling processed on the link for the data

itself (#this):

matches = svc.run_sync(

"SELECT califaid, obs_publisher_did, mime, em_min, em_max, redshift"

" FROM califadr3.cubes"

" JOIN califadr3.objects USING (califaid)"

" WHERE setup=’COMB’ AND hubtyp=’S d’")

for dl in matches.iter_datalinks():

lobs = ???

map = next(dl.bysemantics("#this")).processed(band=(lobs, lobs))

Trouble: How do I find the redshift (i.e., lobs) for my dl?

37

Datalink: Simultaneous Links and Metadata

matches = svc.run_sync(

"SELECT califaid, obs_publisher_did, mime, em_min, em_max, redshift"

" FROM califadr3.cubes"

" JOIN califadr3.objects USING (califaid)"

" WHERE setup=’COMB’ AND hubtyp=’S d’")

result_rows = matches.to_table()

result_rows.add_index("obs_publisher_did")

for dl in matches.iter_datalinks():

rec = result_rows.loc["obs_publisher_did", dl["ID"][0]]

califaid = rec["califaid"]

lobs = l0*(1+rec["redshift"])

processed = next(dl.bysemantics("#this")

).processed(band=(lobs, lobs))

soda-with-rows.py

38

import pyvo

l0 = 6.5625e-7
svc = pyvo.dal.tap.TAPService("http://dc.g-vo.org/tap")

matches = svc.run_sync(
 "SELECT califaid, obs_publisher_did, mime, em_min, em_max, redshift"
 " FROM califadr3.cubes"
 " JOIN califadr3.objects USING (califaid)"
 " WHERE setup='COMB' AND hubtyp='S d'")
result_rows = matches.to_table()
result_rows.add_index("obs_publisher_did")

for dl in matches.iter_datalinks():
 rec = result_rows.loc["obs_publisher_did", dl["ID"][0]]
 califaid = rec["califaid"]
 lobs = l0*(1+rec["redshift"])
 if not rec["em_min"]<=lobs<=rec["em_max"]:
 continue

 processed = next(dl.bysemantics("#this")
).processed(band=(lobs, lobs))
 with open(str(califaid)+".fits", "wb") as f:
 f.write(processed.read())

Higher SAMP Magic

Use Case: An Object Investigator

Let’s say you are debugging your pipeline and want to manually

inspect “weird” objects by querying a set of other catalogues have

on them.

Plan: Write a program that other clients

• can send tables to and then

• when a table row is selected, computes a new table with data

from other services

• that is then sent to Aladin for inspection.

39

SAMP: Listening to Messages

SAMP is based on messages; there are several message types

(MType-s), which are documented on the IVOA wiki.

Here is a program that prints sky coordinates of “things” the user

pointed to:

import pyvo

import vohelper

@vohelper.show_exception

def print_coord(privkey, sender_id, msg_id, mtype, params, extra):

print("{} {}".format(params["ra"], params["dec"]))

if msg_id is not None:

conn.reply(msg_id, {"samp.status": "samp.ok", "samp.result": {}})

with pyvo.samp.connection(addr="localhost") as conn:

conn.bind_receive_message("coord.pointAt.sky", print_coord)

input()

40

http://wiki.ivoa.net/twiki/bin/view/IVOA/SampMTypes

MTypes for the Vicinity Searcher

To make our program ready to receive tables via SAMP, we have

to listen to table.load.votable. Params for that as per the MTypes

wiki page:

url URL of the VOTable document to load

table-id local identifier for referencing

name human-readable name

To monitor whether a row in a table you received is selected, listen

to table.highlight.row. Params:

table-id the local identifier

row the row index

41

Python Classes: Why?

We have to keep quite a bit of state in our program, at least:

• the SAMP connection

• the table sent to us.

There is also quite a bit of behaviour:

• receive and store the remote table

• see when rows are selected

• do searches when that happens.

When you have state and behaviour linked together, in Python

think: “class”.

42

Python Classes: How?

class VicinitySearcher:

vicinity_size = 30

client_name = "Aladin"

def __init__(self, conn):

self.conn = conn

self.cur_table = self.cur_id = None

def load_VOTable(self,

private_key, sender_id, msg_id, mtype, params, extra):

...

def handle_selection(self,

private_key, sender_id, msg_id, mtype, params, extra):

...

Class name

Class variables

Constructor

Instance variables

Conventional self

Method definition
vicinitysearcher.py

43

"""
A quick example showing astropy and pyvo working hand in hand with the
rest of the VO

This program expects Aladin to run. It then waits for tables to be sent,
and when a row is selected, it will search some (SERVICE_META) cone
search services. The results are joined and sent to aladin with
positions, proper motions, and source.

Sample use:

(1) start TOPCAT, aladin, then python vicinitysearcher.py
(2) in TOPCAT, open VO/Cone Search, look for "transitional YSOs"
(3) select the Magnier+ 1999 service, make RA and DEC 0, SR 180, "ok"
(4) broadcast table
(5) in Aladin, pan and zoom until you have a catalog object in a FoV of
 an arcminute or so
(6) hover over the object to pull in the potential matches
(7) select the items to see the catalog entries.
"""

import vohelper

from astropy import table
import pyvo

SERVICE_META = [
 ("PPMXL", "http://dc.zah.uni-heidelberg.de/ppmxl/q/cone/scs.xml?"),
 ("2MASS", "http://dc.zah.uni-heidelberg.de/2mass/res/2mass/q/scs.xml?"),
 ("UCAC4", "http://dc.zah.uni-heidelberg.de/ucac4/q/s/scs.xml?")]

class VicinitySearcher:
 """The SAMP handling class.

 This is where the action takes place: receiving VOTables, handling
 notifications of selected rows, querying the remote services.

 True, in a less one-off program this should be less god-like, and
 at least make_response_table shouln't be part of this.
 """
 vicinity_size = 30 # arcsec
 client_name = "Aladin" # samp.name of the client for the match table

 def __init__(self, conn):
 self.conn = conn
 self.cur_table = self.cur_id = None

 self.services = []
 for short_name, access_url in SERVICE_META:
 self.services.append(pyvo.dal.scs.SCSService(access_url))
 self.services[-1].my_tag = short_name

 self.conn.bind_receive_call(
 "table.load.votable", self.load_VOTable)
 self.conn.bind_receive_message("table.highlight.row",
 self.handle_selection)

 @vohelper.show_exception
 def load_VOTable(self, private_key, sender_id, msg_id, mtype,
 params, extra):
 """the SAMP handler to load VOTables.

 (binding is done in the constructor)
 """
 self.cur_table = table.Table.read(params['url'])
 self.ra_name = vohelper.get_name_for_ucd(
 "POS_EQ_RA_MAIN", self.cur_table)
 self.dec_name = vohelper.get_name_for_ucd(
 "POS_EQ_DEC_MAIN", self.cur_table)
 self.cur_id = params["table-id"]

 self.conn.reply(msg_id,
 {"samp.status": "samp.ok", "samp.result": {}})

 @vohelper.show_exception
 def handle_selection(self, private_key, sender_id, msg_id, mtype,
 params, extra):
 """the SAMP handler for a row selection in our current table.
 """
 print("incoming: ", params)
 if msg_id:
 self.conn.reply(msg_id,
 {"samp.status": "samp.ok", "samp.result": {}})

 if params["table-id"] == self.cur_id:
 table_index = int(params["row"])
 print("Row selected:", table_index)
 response = self.make_response_table(table_index)

 if response is not None:
 pyvo.samp.send_table_to(
 self.conn, response,
 client_name=self.client_name, name="vicinity")

 def make_response_table(self, table_index):
 """returns an astropy table (or None) for the row table_index.

 This is essentially the "user code" that reacts on the incoming
 messages.
 """
 ra = self.cur_table[self.ra_name][table_index]
 dec = self.cur_table[self.dec_name][table_index]
 pm_unit = "deg/yr"

 ras, decs, pmras, pmdecs, svcs = [], [], [], [], []
 for service in self.services:
 print("Querying ", service.my_tag)
 cone_result = service.search((ra, dec),
 self.vicinity_size/3600.).to_table()
 nrecs = len(cone_result)

 ras.extend(cone_result[
 vohelper.get_name_for_ucd("POS_EQ_RA_MAIN", cone_result)])
 decs.extend(cone_result[
 vohelper.get_name_for_ucd("POS_EQ_DEC_MAIN", cone_result)])

 try:
 pmra_name = vohelper.get_name_for_ucd(
 "pos.pm;pos.eq.ra", cone_result)
 pmras.extend(
 cone_result.columns[pmra_name].to(pm_unit).value)
 except KeyError:
 pmras.extend([None]*nrecs)

 try:
 pmdec_name = vohelper.get_name_for_ucd(
 "pos.pm;pos.eq.dec", cone_result)
 pmdecs.extend(
 cone_result.columns[pmdec_name].to(pm_unit).value)
 except KeyError:
 pmdecs.extend([None]*nrecs)

 svcs.extend([service.my_tag]*nrecs)

 if not ras:
 return None
 else:
 print("Found {} matches".format(len(ras)))

 res = table.Table([
 table.Column(name="ra",
 data=ras,
 description="Right Ascension from upstream",
 unit="deg",
 meta={"ucd": "pos.eq.ra;meta.main"}),
 table.Column(name="dec",
 data=decs,
 description="Declination from upstream",
 unit="deg",
 meta={"ucd": "pos.eq.dec;meta.main"}),
 table.Column(name="pmra",
 data=pmras,
 description="Proper motion in Right Ascension from upstream",
 unit=pm_unit,
 meta={"ucd": "pos.pm;pos.eq.ra"}),
 table.Column(name="pmdec",
 data=pmdecs,
 description="Proper motion in declination from upstream",
 unit=pm_unit,
 meta={"ucd": "pos.pm;pos.eq.dec"}),
 table.Column(name="service",
 data=svcs,
 description="Source of the data",
 meta={"ucd": "meta.id"}),])

 return res

def main():
 with pyvo.samp.connection(
 client_name="Vicinity Searcher",
 description="An edifying example for a SAMP service",
 addr="127.0.0.1") as conn:
 _ = VicinitySearcher(conn)
 print("Listening. Send me a table, hit return to exit.")
 input()

if __name__ == "__main__":
 main()

vim:sta:et:sw=2

Handling table.load.votable

class VicinitySearcher:

def __init__(self, conn):

[...]

self.conn.bind_receive_call(

"table.load.votable", self.load_VOTable)

def load_VOTable(self,

private_key, sender_id, msg_id, mtype, params, extra):

self.cur_table = Table.read(params['url'])

self.cur_id = params["table-id"]

self.conn.reply(msg_id,

{"samp.status": "samp.ok", "samp.result": {}})

44

Handling table.highlight.row

@vohelper.show_exception

def handle_selection(self,

private_key, sender_id, msg_id, mtype, params, extra):

if params["table-id"]!=self.cur_id:

return

table_index = int(params["row"])

print("Row selected:", table_index)

response = self.make_response_table(table_index)

if response is not None:

vohelper.send_table_to(self.conn, self.dest_client, response)

45

Try It Out

Start TOPCAT, Aladin, and the vicinity searcher.

Look for openngc SCS and pull some 40 degree cone.

Send the resulting table to the vicinity searcher, have Send row

index as an activation action.

Click on table rows or plot points.

46

At the Limit: VO-Wide TAP

Queries

VO-Wide TAP Queries

People often say: “I want everything in the VO on object X”.

This is far too hard.

What is marginally possible: “Give me all measurements of a

certain sort of UCD in a certain vicinity.”

However, this is surprisingly involved, mostly for stupid reasons.

Follow me along for proper motions (pos.pm).

Note: This is probably not something realistic for research within

the next few years. But it is a nice exercise in how far you can take

pyVO and TAP.

47

A RegTAP Query for Tables and TAP Services

For “where can I find data with UCD X?”, there is

pyvo.registry.UCD.

But we need to know which table has a column with our UCD.

PyVO can’t do that yet; hence, use a direct RegTAP query:

SELECT DISTINCT access_url, table_name

FROM rr.interface

NATURAL JOIN rr.capability

NATURAL JOIN rr.res_table

NATURAL JOIN rr.table_column

NATURAL JOIN rr.stc_spatial

WHERE

standard_id LIKE 'ivo://ivoa.net/std/tap%'

AND ucd LIKE 'pos.pm%'

AND 1=INTERSECTS(POINT({RA}, {DEC}, {SR}), coverage)

AND (table_type!='output' OR table_type IS NULL)

48

Running the RegTAP Query

Running RegTAP queries just means picking a suitable TAP

service and calling run_sync:

reg_svc = pyvo.registry.regtap.get_RegTAP_service()

result = reg_svc.run_sync(regtap_query)

svcs = {}

for row in result.to_table():

svcs.setdefault(row["access_url"], []).append(row["table_name"])

return svcs.items()

49

Query Generation I: Defining the Schema

We want to build queries that let us fill a table defined like this:

col-name, UCD, Unit, type-to-cast-to

RESULT_SCHEMA = [

('cat_id', "meta.id;meta.main", None, "CHAR(*)"),

('ra', "pos.eq.ra;meta.main", "deg", None),

('dec', "pos.eq.dec;meta.main","deg", None),

('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),

('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

50

Query Generation II: From Clause And a Template

Given a TAP service svc, a table_name, our result schema, and the

region of interest in RA, DEC, and SR, make a query to produce

rows for our result schema:

db_table, select_clause = svc.tables[table_name], []

for dest_name, ucd, unit, type in RESULT_SCHEMA:

select_clause.append("{} AS {}".format(

fieldname_with_ucd(ucd, db_table),

dest_name))

select_clause.append(f"'{table}' AS table_name")

select_clause.append(f"'{svc.baseurl}' AS svc_url")

return ("SELECT {select_serialised} FROM {srctable}"

" WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"

" CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(

select_serialiased=", ".join(select_clause),

srctable=table_name,...)

51

Query Generation III: Delimited Identifier Workaround

Regrettably, the code immediately fails.

$ python3 multitap-broken1.py

[...]

pyvo.dal.exceptions.DALQueryError:

Incorrect ADQL query:

Encountered "/". Was expecting one of: <EOF> "." "," ";" "AS"

"WHERE" "GROUP" "HAVING" "ORDER" "\""

<REGULAR_IDENTIFIER_CANDIDATE> "NATURAL" "INNER" "LEFT"

"RIGHT" "FULL" "JOIN"

multitap-broken1.py

52

import pyvo

RA, DEC, SR = 12, 13, 0.1

RESULT_SCHEMA = [
 ('cat_id', "meta.id;meta.main", None, "CHAR(*)"),
 ('ra', "pos.eq.ra;meta.main", "deg", None),
 ('dec', "pos.eq.dec;meta.main", "deg", None),
 ('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),
 ('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

def fieldname_with_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 We need this function here because astropy tables do not have
 something like the DALResults.fieldname_with_ucd method.
 """
 ucd = ucd.lower()

 for col in table.columns:
 if col.ucd and col.ucd.lower()==ucd:
 return col.name
 raise KeyError(ucd)

svc = pyvo.dal.TAPService("http://tapvizier.cds.unistra.fr/TAPVizieR/tap")
table_name = "I/256/veronc81"

db_table, select_clause = svc.tables[table_name], []
for dest_name, ucd, unit, type in RESULT_SCHEMA:
 select_clause.append("{} AS {}".format(
 fieldname_with_ucd(ucd, db_table),
 dest_name))
select_clause.append(f"'{table_name}' AS table_name")
select_clause.append(f"'{svc.baseurl}' AS svc_url")

query = ("SELECT {selclause} FROM {srctable}"
 " WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"
 " CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(
 selclause=", ".join(select_clause),
 srctable=table_name,
 racol=fieldname_with_ucd("pos.eq.ra;meta.main", db_table),
 deccol=fieldname_with_ucd("pos.eq.dec;meta.main", db_table),
 ra=RA, dec=DEC, sr=SR)
print(query)
svc.run_sync(query)

Running Queries I: Feature Detection

On a service like VizieR with our pos.pm criterion, we will have to

query a lot of tables and stack the results on the client side.

Can we take a union of the results on the server side?

Perhaps. We need the ADQL UNION operator for that.

Regrettably, it is optional.

Does a service support union?

knows_union = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

53

Running Queries II: Adapting to Server Capabilities

svc = pyvo.dal.TAPService(access_url)

knows_union = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

queries = [get_query(svc, table_name)) for table_name in tables]

result_rows = []

def feed_rows(astropy_table):

for row in astropy_table:

result_rows.append(dict(zip(row.colnames, row.as_void())))

if knows_union:

feed_rows(svc.run_sync(

" UNION ".join(queries)).to_table())

else:

for query in queries:

feed_rows(svc.run_sync(query).to_table())

54

Query Generation IV: Casting

Even this ends with an obscure error. Try multitap-broken2.py

multitap-broken2.py

pyvo.dal.exceptions.DALQueryError: Field query: UNION types integer

and text cannot be matched LINE 1: ...S(12), RADIANS(13)), RADIANS(0.1))))

UNION SELECT localid AS...

The reason? Idenifier columns are sometimes integers and

sometimes texts.

The solution? Cast them all to string.

But: CAST is optional. Oh no!

55

import re
import sys

from astropy import table
import pyvo

For lazyness, we define our search criterion globally:
RA, DEC, SR = 12, 13, 0.1

the data items you're interested in, expressed through UCDs
that's pairs of (ucd, name, unit); implied is src, src_table
RESULT_SCHEMA = [
 ('cat_id', "meta.id;meta.main", None, "CHAR(*)"),
 ('ra', "pos.eq.ra;meta.main", "deg", None),
 ('dec', "pos.eq.dec;meta.main", "deg", None),
 ('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),
 ('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

def get_services_and_tables():
 """returns a sequence of (service, [table-names]) pairs for a
 hardwired RegTAP query.

 regtap_query must (at least) have access_url and table_name in
 the select clause.
 """
 regtap_query = f"""
 SELECT DISTINCT access_url, table_name
 FROM rr.interface
 NATURAL JOIN rr.capability
 NATURAL JOIN rr.res_table
 NATURAL JOIN rr.table_column
 NATURAL JOIN rr.stc_spatial
 WHERE
 standard_id LIKE 'ivo://ivoa.net/std/tap%'
 AND ucd LIKE 'pos.pm%'
 AND 1=CONTAINS(CIRCLE({RA}, {DEC}, {SR}), coverage)
 AND (table_type!='output' OR table_type IS NULL)
 AND access_url='http://dc.zah.uni-heidelberg.de/tap'
 """

 reg_svc = pyvo.registry.regtap.get_RegTAP_service()
 result = reg_svc.run_sync(regtap_query)

 svcs = {}
 for row in result.to_table():
 svcs.setdefault(row["access_url"], []).append(row["table_name"])
 return svcs.items()

def fieldname_with_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 We need this function here because astropy tables do not have
 something like the DALResults.fieldname_with_ucd method.
 """
 ucd = ucd.lower()

 for col in table.columns:
 if col.ucd and col.ucd.lower()==ucd:
 return col.name
 raise KeyError(ucd)

def perhaps_quote(table_name):
 """adds double quotes around table_name if it's not a plain SQL
 identifier.

 This is a workaround for broken services that do not pre-quote in
 VODataService tableset.
 """
 parts = table_name.split(".")
 for index, part in enumerate(parts):
 if not re.match("[A-Za-z0-9][A-Za-z0-9_]*$", part):
 parts[index] = '"{}"'.format(part.replace('"', '""'))
 return ".".join(parts)

def get_query(svc, table_name):
 """returns a query producing RESULT_SCHEMA for table in svc.

 svc is a pyvo.dal.TAPService, table a name from its schema.
 """
 db_table = svc.tables[table_name]
 select_clause = []
 for dest_name, ucd, unit, type in RESULT_SCHEMA:
 select_clause.append("{} AS {}".format(
 perhaps_quote(fieldname_with_ucd(ucd, db_table)),
 dest_name))

 select_clause.append(f"'{table_name}' AS table_name")
 select_clause.append(f"'{svc.baseurl}' AS svc_url")

 return ("SELECT {selclause} FROM {srctable}"
 " WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"
 " CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(
 selclause=", ".join(select_clause),
 srctable=perhaps_quote(table_name),
 racol=fieldname_with_ucd("pos.eq.ra;meta.main", db_table),
 deccol=fieldname_with_ucd("pos.eq.dec;meta.main", db_table),
 ra=RA,
 dec=DEC,
 sr=SR)

def get_rows_for_svc(access_url, tables):
 """returns rows in RESULT_SCHEMA for tables in the service at access_url.
 """
 svc = pyvo.dal.TAPService(access_url)
 sys.stderr.write(f">>>>> {access_url} ({len(tables)})\n")

 knows_union = svc.get_tap_capability().get_adql().get_feature(
 "ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

 if len(tables)>30:
 sys.stderr.write(" (cropping to 30 tables for handleability)\n")
 tables = tables[:30]

 queries = []
 for table_name in tables:
 try:
 queries.append(get_query(svc, table_name))
 except KeyError as msg:
 sys.stderr.write(f" Skipping {table_name} ({msg} missing)\n")

 result_rows = []
 def feed_rows(astropy_table):
 for row in astropy_table:
 # TODO: Fix units here
 result_rows.append(dict(zip(row.colnames, row.as_void())))

 if knows_union:
 sys.stderr.write("> querying all\n")
 feed_rows(svc.run_sync(
 " UNION ".join(queries)).to_table())

 else:
 sys.stderr.write(f"> querying {table_name}\n")
 # Server has no union, we need to query individual tables
 for query in queries:
 print(query)
 feed_rows(svc.run_sync(query).to_table())

 return result_rows

def make_result_table(recs):
 """returns an astropy table for RESULT_SCHEMA plus src, src_table.
 """
 res = table.Table()
 res.add_column(table.Column(name='src',
 description="Source service",
 data=[r["svc_url"] for r in recs]))
 res.add_column(table.Column(name='src_table',
 description="Source table",
 data=[r["table_name"] for r in recs]))

 for name, ucd, unit, adqltype in RESULT_SCHEMA:
 res.add_column(table.Column(name=name,
 data=[r[name] for r in recs],
 meta={"ucd": ucd})),

 return res

def main():
 recs = []
 svcs_and_tables = get_services_and_tables()
 for svc_url, tables in svcs_and_tables:
 try:
 recs.extend(get_rows_for_svc(svc_url, tables))
 except Exception as msg:
 import traceback; traceback.print_exc()
 sys.stderr.write(f"{svc_url} broken (skipped): {msg}\n")

 res_table = make_result_table(recs)
 res_table.write("all-pms.vot", format="votable", overwrite=True)
 with pyvo.samp.connection() as conn:
 pyvo.samp.send_table_to(conn, res_table,
 name="all-pms", client_name="topcat")

if __name__=="__main__":
 main()

Query Generation V: Still Casting

knows_cast = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-type", "CAST")

for dest_name, ucd, unit, type in RESULT_SCHEMA:

if type and knows_cast:

select_clause.append("CAST({} AS {}) AS {}".format(

perhaps_quote(fieldname_with_ucd(ucd, db_table)),

type,

dest_name))

else:

Don't cast and hope for the best

select_clause.append("{} AS {}".format(

perhaps_quote(fieldname_with_ucd(ucd, db_table)),

dest_name))

56

Bringing it all together

After all this preparation, the actual program is trivial except for

our usual error handling:

multitap.py

recs = []

svcs_and_tables = get_services_and_tables()

for svc_url, tables in svcs_and_tables:

try:

recs.extend(get_rows_for_svc(svc_url, tables))

except Exception as msg:

import traceback; traceback.print_exc()

sys.stderr.write(f"{svc_url} broken (skipped): {msg}\n")

res_table = make_result_table(recs)

res_table.write("all-pms.vot", format="votable", overwrite=True)

with pyvo.samp.connection() as conn:

pyvo.samp.send_table_to(conn, res_table,

name="all-pms", client_name="topcat")

57

import re
import sys

from astropy import table
import pyvo

For lazyness, we define our search criterion globally:
RA, DEC, SR = 12, 13, 0.25

the data items you're interested in, expressed through UCDs
that's pairs of (ucd, name, unit); implied is src, src_table
RESULT_SCHEMA = [
 ('cat_id', "meta.id;meta.main", None, "CHAR(*)"),
 ('ra', "pos.eq.ra;meta.main", "deg", None),
 ('dec', "pos.eq.dec;meta.main", "deg", None),
 ('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),
 ('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

def get_services_and_tables():
 """returns a sequence of (service, [table-names]) pairs for a
 hardwired RegTAP query.

 regtap_query must (at least) have access_url and table_name in
 the select clause.
 """
 regtap_query = f"""
 SELECT DISTINCT access_url, table_name
 FROM rr.interface
 NATURAL JOIN rr.capability
 NATURAL JOIN rr.res_table
 NATURAL JOIN rr.table_column
 NATURAL JOIN rr.stc_spatial
 WHERE
 standard_id LIKE 'ivo://ivoa.net/std/tap%'
 AND ucd LIKE 'pos.pm%'
 AND 1=INTERSECTS(CIRCLE({RA}, {DEC}, {SR}), coverage)
 AND (table_type!='output' OR table_type IS NULL)
 """

 reg_svc = pyvo.registry.regtap.get_RegTAP_service()
 result = reg_svc.run_sync(regtap_query)

 svcs = {}
 for row in result.to_table():
 svcs.setdefault(row["access_url"], []).append(row["table_name"])
 return svcs.items()

def fieldname_with_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 We need this function here because astropy tables do not have
 something like the DALResults.fieldname_with_ucd method.
 """
 ucd = ucd.lower()

 for col in table.columns:
 if col.ucd and col.ucd.lower()==ucd:
 return col.name
 raise KeyError(ucd)

def perhaps_quote(table_name):
 """adds double quotes around table_name if it's not a plain SQL
 identifier.

 This is a workaround for broken services that do not pre-quote in
 VODataService tableset.
 """
 parts = table_name.split(".")
 for index, part in enumerate(parts):
 if not re.match("[A-Za-z0-9][A-Za-z0-9_]*$", part):
 parts[index] = '"{}"'.format(part.replace('"', '""'))
 return ".".join(parts)

def get_query(svc, table_name):
 """returns a query producing RESULT_SCHEMA for table in svc.

 svc is a pyvo.dal.TAPService, table a name from its schema.
 """
 knows_cast = svc.get_tap_capability().get_adql().get_feature(
 "ivo://ivoa.net/std/TAPRegExt#features-adql-type", "CAST")
 db_table = svc.tables[table_name]
 select_clause = []
 for dest_name, ucd, unit, type in RESULT_SCHEMA:
 if type and knows_cast:
 select_clause.append("CAST({} AS {}) AS {}".format(
 perhaps_quote(fieldname_with_ucd(ucd, db_table)),
 type,
 dest_name))

 else:
 # Don't cast and hope for the best
 select_clause.append("{} AS {}".format(
 perhaps_quote(fieldname_with_ucd(ucd, db_table)),
 dest_name))

 select_clause.append(f"'{table_name}' AS table_name")
 select_clause.append(f"'{svc.baseurl}' AS svc_url")

 # There's a TOP 10 in the following because we want a wide code
 # in order to get results from sparse catalogues but we don't
 # want to be swamped by deep surveys. Of course, you want to
 # remove that in science use.
 return ("SELECT TOP 10 {selclause} FROM {srctable}"
 " WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"
 " CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(
 selclause=", ".join(select_clause),
 srctable=perhaps_quote(table_name),
 racol=fieldname_with_ucd("pos.eq.ra;meta.main", db_table),
 deccol=fieldname_with_ucd("pos.eq.dec;meta.main", db_table),
 ra=RA,
 dec=DEC,
 sr=SR)

def get_rows_for_svc(access_url, tables):
 """returns rows in RESULT_SCHEMA for tables in the service at access_url.
 """
 svc = pyvo.dal.TAPService(access_url)
 sys.stderr.write(f">>>>> {access_url} ({len(tables)})\n")

 knows_union = svc.get_tap_capability().get_adql().get_feature(
 "ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

 if len(tables)>30:
 sys.stderr.write(" (cropping to 30 tables for handleability)\n")
 tables = tables[:30]

 queries = []
 for table_name in tables:
 try:
 queries.append(get_query(svc, table_name))
 except KeyError as msg:
 sys.stderr.write(f" Skipping {table_name} ({msg} missing)\n")

 result_rows = []
 def feed_rows(astropy_table):
 for row in astropy_table:
 # TODO: Fix units here
 result_rows.append(dict(zip(row.colnames, row.as_void())))

 if knows_union:
 sys.stderr.write("> querying all\n")
 feed_rows(svc.run_sync(
 " UNION ".join(queries)).to_table())

 else:
 sys.stderr.write(f"> querying {table_name}\n")
 # Server has no union, we need to query individual tables
 for query in queries:
 feed_rows(svc.run_sync(query).to_table())

 return result_rows

def make_result_table(recs):
 """returns an astropy table for RESULT_SCHEMA plus src, src_table.
 """
 res = table.Table()
 res.add_column(table.Column(name='src',
 description="Source service",
 data=[r["svc_url"] for r in recs]))
 res.add_column(table.Column(name='src_table',
 description="Source table",
 data=[r["table_name"] for r in recs]))

 for name, ucd, unit, adqltype in RESULT_SCHEMA:
 res.add_column(table.Column(name=name,
 data=[r[name] for r in recs],
 meta={"ucd": ucd})),

 return res

def main():
 recs = []
 svcs_and_tables = get_services_and_tables()
 for svc_url, tables in svcs_and_tables:
 try:
 recs.extend(get_rows_for_svc(svc_url, tables))
 except Exception as msg:
 import traceback; traceback.print_exc()
 sys.stderr.write(f"{svc_url} broken (skipped): {msg}\n")

 res_table = make_result_table(recs)
 res_table.write("all-pms.vot", format="votable", overwrite=True)
 with pyvo.samp.connection() as conn:
 pyvo.samp.send_table_to(conn, res_table,
 name="all-pms", client_name="topcat")

if __name__=="__main__":
 main()

Odds and Ends

EPN-TAP 1

EPN-TAP is like obscore, just for solar system data. Columns of

note include:

• granule_uid – an identifier for the dataset

• target_name – what was observed?

• time_min, time_max – when was it observed?

• c<n>_min, c<n>_max – where is it?

• dataproduct_type – the sort of observation.

• instrument_host_name – the probe or laboratory that produced

the data.

• instrument_name – the instrument that produced the data.

58

EPN-TAP 2: Hashlists

Many EPN-TAP fields are “hash lists”: they are actually

multivalued, and to still keep everything in one table, multiple

values are concatenated by hashes (#), as in an instrument name

like

Visible Infrared Thermal Imaging Spectrometer#VIRTIS

To match such columns, use the ivo_hashlist_has(hashlist, item)

UDF.

59

EPN-TAP 3: Global Discovery

Global EPN-TAP discovery means: query all epncore tables. To

find these, you have to:

• look for resources containing epncore tables at all and then

• find the tables implementing epncore in them.

def iter_epncore_tables(*args, **kwargs):

for resrec in pyvo.registry.search(datamodel="epntap", *args, **kwargs):

if not 'tap#aux' in resrec.access_modes():

continue

for tab in resrec.get_tables().values():

utype = tab.utype or ""

if (utype=='ivo://vopdc.obspm/std/epncore#schema-2.0'

or utype.startswith('ivo://ivoa.net/std/epntap#table-2.')):

yield resrec, tab

epnquery.py

60

import pyvo

def iter_epncore_tables(*args, **kwargs):
 for resrec in pyvo.registry.search(datamodel="epntap", *args, **kwargs):
 if not 'tap#aux' in resrec.access_modes():
 continue

 for tab in resrec.get_tables().values():
 utype = tab.utype or ""
 if (utype=='ivo://vopdc.obspm/std/epncore#schema-2.0'
 or utype.startswith('ivo://ivoa.net/std/epntap#table-2.')):
 yield resrec, tab

def global_query():
 for resrec, tab in iter_epncore_tables():
 svc = resrec.get_service("tap", lax=True)
 print(f"{resrec.ivoid}, {tab.name}")
 res = svc.run_sync(
 f"SELECT TOP 30 * FROM {tab.name}"
 " WHERE 1=ivo_hashlist_has(instrument_host_name, 'Juno')")
 if res:
 yield resrec.short_name, res.to_table()

if __name__=="__main__":
 with pyvo.samp.connection() as conn:
 for short_name, table in global_query():
 pyvo.samp.send_table_to(
 conn, table, name=short_name, client_name="topcat")

Custom Parameters: Discovery

SIAP only has very few standard parameters (e.g., no time

constraints), and even SSAP’s rich parameter set is insufficient for,

e.g., theoretical spectra.

SIAP and SSAP services can define custom parameters. Discover

them using a FORMAT=METADATA URL parameter.

pyVO does not yet have some API that would properly hide this

(not terribly pretty) implementation detail.

python viewparams.py "http://dc.g-vo.org/bgds/q/sia/siap.xml?"

viewparams.py

61

"""
A program to dump the extra parameters accepted by SIAP and SSAP services.

It takes an access URL as its parameter; example:
http://dc.g-vo.org/bgds/q/sia/siap.xml?
"""

import requests
PyVO convenience functions don't let us access the RESOURCE that we
need here.
from astropy.io.votable import parse as vot_parse

def get_parameter_description(access_url):
	"""returns tuples of name, unit, ucd, type, description, values for
	the (custom) parameters of the service at access_url.
	"""
	if not "?" in access_url:
		# is a standards violation, but it's a cheap mitigation:
		access_url = access_url+'?'

	vot = vot_parse(
		requests.get(
			access_url, {"REQUEST": "doQuery", "FORMAT": "Metadata"}, stream=True
).raw.read)
	for param in vot.resources[0].params:
		if param.name.lower().startswith("input:"):
			type_desc = param.datatype
			if param.arraysize:
				type_desc = "{}[{}]".format(type_desc, param.arraysize)
			yield (
				param.name[6:],
				param.unit or "",
				param.ucd or "",
				type_desc,
				param.description,
				param.values)

def print_parameter_description(access_url):
	for param_desc in get_parameter_description(access_url):
		print("\n{0} [{1}] {3} -- {2}\n{4}".format(*param_desc))
		values = param_desc[5]
		if values.min and values.max:
			print("{} .. {}".format(values.min, values.max))
		if values.options:
			print("|".join(o[1] for o in values.options))

def parse_command_line():
	import argparse
	parser = argparse.ArgumentParser(
		description="Print a VO service's custom parameters")
	parser.add_argument("access_url", type=str,
		help="The service's access URL")
	return parser.parse_args()

if __name__=="__main__":
	print_parameter_description(
		parse_command_line().access_url)

Custom Parameters: Usage

Pass custom parameters as keyword arguments to search:

svc.search((107, -10), (0.05, 0.05),

dateObs="57050/58050",

bandpassId="SDSS i'")

siapextra.py

62

"""
Use extra (non-protocol) parameters in SIAP. To see what a service supports,
look at ACCESS_URL?FORMAT=METADATA (the INPUT: PARAMs); in the pyvo
course, there's viewparams.py.

This example: Use the custom dateObs parameter to fetch a few
SODA cutouts from a survey of the galactic plane.
"""

from pyvo.dal import sia

ACCESS_URL = "http://dc.g-vo.org/bgds/q/sia/siap.xml?"

svc = sia.SIAService(ACCESS_URL)

for index, match in enumerate(svc.search((107, -10), (0.1, 0.1),
 dateObs="57050/57150",
 bandpassId="SDSS i'").iter_datalinks()):
 with open(f"cutout-{index:03d}.fits", "wb") as f:
 f.write(
 match.get_first_proc()
 .processed(circle=(107, -10, 0.1)).read())

Custom Parameters: Syntax Trouble

We often have to pass intervals. You need some syntax to write

upper/lower limits.

Old-style VO services (most of them) have intervals declared as

char[*] or double) and expect min/max.

Others have two simple float parameters with _MIN and _MAX.

New-style (SIAv2, datalink...) services have interval xtypes and

type double[2]. These intervals are written with a blank.

63

Efficient Uploads: The Problem

TAP uploads are powerful, but they do have limits. In general, you

cannot upload billion-row tables and expecte services to go along.

To make things fast and save the server’s resources, you should

only upload enough to select the relevant data. So, avoid:

first_result = svc1.run_sync(...).to_table()

second_result = svc2.run_sync(

"SELECT * FROM local.t JOIN TAP_UPLOAD.up as b USING (foo, bar)",

uploads={"up": first_result})

– this will upload all of first_result and download it right again;

transferring data you already have, ingesting it into the remote

database in between is just a waste of resources.

64

Efficient Uploads: The Pattern

Instead, if you want to join on first result’s columns foo and bar,

make a new local table containing just those plus a unique local

identifier (add a record number if no such identifier exists),

somewhat like this:

first_result = svc1.run_sync(...).to_table()

remote_match = svc2.run_sync(

"SELECT * FROM local.t JOIN TAP_UPLOAD.up as b USING (foo, bar)",

uploads={"up": table.Table([

first_result["main_id"],

first_result["foo"],

first_result["bar"])})

full_result = table.join(

first_result,

remote_match.to_table(),

keys="main_id")

65

Efficient Uploads: Slicing

If you still run into resource limits, you process your data in

batches. Use case: retrieve quality measures for Gaia DR3 data by

matching on Gaia’s source_id.

def iter_slices(total_length, batch_size):

limits = list(range(0, total_length, batch_size))+[batch_size]

for lower, upper in zip(limits[:-1], limits[1:]):

if lower < upper:

yield slice(lower, upper)

def remote_match(svc, source_table, remote_table, batch_size, match_column):

matched_records = []

match_on = source_table[match_column]

only match the match_column (for a positional crossmatch, use

an id column (create one if necessary) and the positions).

for slice in iter_slices(len(source_table), batch_size):

result = svc.run_sync(

f"""SELECT a.* FROM

{remote_table} AS a JOIN

TAP_UPLOAD.mine AS b

USING ({match_column})"""),

uploads={"mine": table.Table([match_on[slice]])})

matched_records.append(result.to_table())

joined_match = table.vstack(matched_records)

return table.join(source_table, joined_match, keys=match_column)

smart-tap-upload.py

66

#!/usr/bin/env python
"""
A little and artificial example to show how to properly and efficiently
do cross-server upload joins.

get_basic_data is of course a silly function.

remote_match, on the other hand, probably is a good starting point for a
more general functionality.

In real life, you'd have a much larger batch_size (1e7 ought to be possible
depending on several details), and you probably need to use run_async
rather than run_sync, but that's about it.

This assumes there's enough RAM for the full match; if that assumption is
not true, you either need to get a computer manufactured in this millenium
or re-think your problem.
"""

from astropy import table
import pyvo

def iter_slices(total_length, batch_size):
 """iterates over slices of up to batch_size filling 0 to total_length.
 """
 limits = list(range(0, total_length, batch_size))+[batch_size]
 for lower, upper in zip(limits[:-1], limits[1:]):
 if lower < upper:
 yield slice(lower, upper)

def remote_match(svc, source_table, remote_table, batch_size, match_column):
 """adds records from remote_table on svc to source_table.
 """
 matched_records = []
 match_on = source_table[match_column]

 # only match the match_column (for a positional crossmatch, use
 # an id column (create one if necessary) and the positions).
 for slice in iter_slices(len(source_table), batch_size):
 result = svc.run_sync(f"""SELECT a.* FROM
 {remote_table} AS a JOIN
 TAP_UPLOAD.mine AS b
 USING ({match_column})""",
 # the next line is where most of the magic is.
 uploads={"mine": table.Table([match_on[slice]])})
 matched_records.append(result.to_table())

 joined_match = table.vstack(matched_records)
 del matched_records

 # now fiddle back what we've pulled from the server into the source_table.
 return table.join(source_table, joined_match, keys=match_column)

def get_basic_data(svc):
 """returns some test data from svc.

 Here, that's a some subset of upstream Gaia data.
 """
 result = svc.run_sync("""
 SELECT TOP 400
 source_id, ra, dec, ra_error, dec_error, ruwe, parallax,
 phot_g_mean_mag
 FROM gaiadr3.gaia_source
 WHERE
 source_id BETWEEN 4657847914607935488 AND 4657988652096290815
 """)
 return result.to_table()

def main():
 my_gaia_part = get_basic_data(
 pyvo.dal.TAPService("https://gea.esac.esa.int/tap-server/tap"))
 with_remote_data = remote_match(
 pyvo.dal.TAPService("http://dc.g-vo.org/tap"),
 source_table=my_gaia_part,
 remote_table="gedr3spur.main",
 batch_size=100,
 match_column="source_id")

 with open("matched_stuff.vot", "wb") as f:
 with_remote_data.write(output=f, format="votable")

if __name__ == "__main__":
 main()

	Introduction
	pyVO Basics
	pyVO and TAP
	pyVO and the Registry
	Datalink
	Higher SAMP Magic
	At the Limit: VO-Wide TAP Queries
	Odds and Ends
	EPN-TAP
	Custom Parameters to Simple Services
	TAP Uploads: The right way

