
IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 1 -

International

Virtual

Observatory

Association

IVOA Registry Relational Schema
Version 1.0

IVOA Working Draft 5 March 2013

Working Group:
Registry WG

This version:
http://www.ivoa.net/Documents/RegTAP-20130305

Latest version:
http://www.ivoa.net/Documents/RegTAP/

Previous versions:
None (The schema discussed here started its existence as part of the Registry Interfaces Version 2
working draft)

Authors:
Markus Demleitner
Paul Harrison
Marco Molinaro
Gretchen Greene
Theresa Dower
.

Abstract

Registries provide a mechanism with which VO applications can discover and select resources—first and
foremost data and services—that are relevant for a particular scientific problem. This specification defines an
interface for searching this resource metadata based on the IVOA's TAP protocol. It specifies a set of tables
that comprise a useful subset of the information contained in the registry records, as well as the table's data
content in terms of the XML VOResource data model. The general design of the system is geared towards
allowing easy authoring of queries.

Status of this Document

This is an IVOA Working Draft for review by IVOA members and other interested parties. It is a draft document
and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use IVOA
Working Drafts as reference materials or to cite them as other than "work in progress".

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaResReg
http://www.ivoa.net/Documents/RegTAP-20130305
http://www.ivoa.net/Documents/RegTAP/
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarkusDemleitner
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/PaulHarrison
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarcoMolinaro
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/GretchenGreene
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/TheresaDower

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 2 -

A list of current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/
Documents/.

Acknowledgments

This document has been developed in part with support from the German Astronomical Virtual Observatory
(BMBF Bewilligungsnummer 05A08VHA).

Conformance-related definitions

The words "MUST ", "SHOULD", "MAY", "RECOMMENDED", and "OPTIONAL" (in upper or lower case) used
in this document are to be interpreted as described in the IETF standard RFC 2119 [std:RFC2119].

Contents

1. Introduction... 2
1.1. The Relational Registry within the VO Architecture... 3

2. Design Considerations... 4
3. Note on case normalization... 5
4. QNames in VOResource attributes.. 5
5. VOResource Utypes.. 6
6. Discovering Relational Registries.. 7
7. VOResource Tables... 7

7.1. The resource Table.. 8
7.2. The res_role Table... 11
7.3. The subject Table... 12
7.4. The capability Table... 12
7.5. The res_schema Table... 13
7.6. The res_table Table... 14
7.7. The table_column Table... 15
7.8. The interface Table.. 16
7.9. The intf_param Table... 18
7.10. The relationship Table.. 19
7.11. The validation Table... 19
7.12. The res_date Table.. 20
7.13. The res_detail Table... 20

8. ADQL User Defined Functions.. 24
9. Common Queries to the Relational Registry... 25
A. A Stylesheet Generating Utypes... 27
B. The Extra UDFs in PL/pgSQL... 30
C. Implementation notes.. 31
D. Changes from Previous Versions.. 34

D.1. Changes from WD-20121112.. 34
References.. 34

1. Introduction

In the Virtual Observatory (VO), registries provide a means for discovering useful resources, i.e., data and
services. Individual publishers offer the descriptions for their resources ("resource records") in publishing reg-
istries. At the time of writing, there are roughly 14000 such resource records active within the VO, originating
from 20 publishing registries.

http://www.ivoa.net/Documents/

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 3 -

The protocol spoken by these publishing registries, OAI-PMH, is not suitable for data discovery, and even if it
were, data discovery would at least be fairly time consuming if each client had to query dozens or, potentially,
hundreds of publishing registries.

To enable efficient data discovery nevertheless, there are services harvesting the resource records from the
publishing registries and offering interfaces more suitable for querying by their users. The IVOA Registry
Interfaces specification [std:RI1] defined, among other aspects of the VO registry system, such an interface
using SOAP and an early draft of an XML-based query language.

This document provides an update to the query ("full registry") part of this specifiation, aimed towards usage
with current VO standards, in particular TAP [std:TAP] and ADQL [std:ADQL]. It follows the model of ObsCore
[std:OBSCORE] of defining a representation of a data model within a relational data base. In this case, the
data model is a simplification of the VO's resource metadata interchange representation, the VOResource
XML format [std:VOR]. The simplification yields 13 tables. This specification gives the table metadata together
with rules for how to fill these tables from VOResource-serialized metadata records.

This architecture allows client applications to perform "canned" queries on behalf of their user as well as
complex queries formulated directly by advanced users, using tools they already know.

It is a design goal of this specification that different registries operating on the same set of registry records
will return identical responses for most queries.

1.1. The Relational Registry within the VO Architecture

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 4 -

Figure 1: IVOA Architecture diagram with the Relational Registry specification (RegTAP) and the related stan-
dards marked up.

This specification directly relates to other VO standards in the following ways:

VOResource, v1.03 [std:VOR]
VOResource sets the foundation for a formal definition of the data model for resource records via its
schema definition. This document refers to concepts laid down there via the utypes given here.

VODataService, v1.1 [std:VODS11]
VODataService extends the VOResource data model by important concepts and resource types (table-
sets, data services, data collections). These concepts and types are reflected in the database schema.
Again utypes on the tables and columns link this specification and VODataService.

Other Registry Extensions
Registry extensions are VO standards defining how particular resources (e.g., Standards) or capabili-
ties (e.g., IVOA defined interfaces) are described. Most aspects introduced by them are reflected in the
res_detail table using utypes algorithmically generated from the XML schema documents given by
these standards. This document should not in general need updates for registry extension updates. Still,
in particular with a view to the caveat on the limits of the utypes generation algorithm given in section 5, we
note the versions current as of this specification: SimpleDALRegExt 1.0 [std:DALREGEXT], Standard-
sRegExt 1.0 [std:STDREGEXT], TAPRegExt 1.0 [std:TAPREGEXT], Registry Interfaces 1.0 [std:RI1].

TAP, v1.0 [std:TAP]
The queries against the schema defined here, and the results of these queries, will usually be transported
using the Table Access Protocol TAP. It also allows discovering local additions to the registry relations
via TAP's metadata publishing mechanisms.

IVOA Identifiers, v1.12 [std:VOID]
IVOA identifiers are something like the primary keys within the VO registry. Also, the notion of an authority
as laid down in IVOA Identifiers plays an important role as publishing registries can be viewed as a
realization of a set of authorities.

This standard also relates to other IVOA standards:

ADQL, v2.0 [std:ADQL]
The rules for ingestion are designed to allow easy queries given the constraints of ADQL 2.0. Also, we
give three functions that extend ADQL using the language's built-in facility for user-defined functions.

utypes
To link columns and tables in the relational resource model to entities defined in VOResource and ancil-
lary specifications, we employ utypes; as of this writing, no IVOA recommendation conclusively defines
utypes. It is expected that a Recommendation on utypes will tie building them to a formal data model
definition in a language much simpler than XML schema. Since our data model comes in XML schema,
we thus need custom rule. We do, however, strive to keep with the spirit of what is expected to become
a recommendation.

RegTAP-STC
This specification is complemented by a schema of four tables, also under the rr schema, that gives
coverages of resources on the spatial, temporal, spectral and redshift axes. These will be defined in a
separate document.

2. Design Considerations

In the design of the tables, the goal has been to preserve as much of VOResource and its extensions, including
the element names, as possible.

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 5 -

An overriding consideration has been, however, to make natural joins between the tables behave usefully, i.e.,
to actually combine rows relevant to the same entity (i.e., resource, table, capability, etc.). To disambiguate
column names that name the same concept on different entities (name, description, etc.) and would there-
fore interfere with the natural join, a shortened tag for the source object is prepended to the name. Thus,
description from a resource becomes res_description, whereas the same element from a capability
becomes cap_description.

Furthermore, camel-case identifiers have been converted to underscore-separated ones (thus, standardId
becomes standard_id) to have all-lowercase column names; this saves potential headache if users choose
to reference the columns using SQL delimited identifiers. Dashes in VOResource attribute names are convert-
ed to underscores, too, with the exception of ivo-id, which is just rendered ivoid.

3. Note on case normalization

ADQL has no operators for case-insensitive matching of strings. To allow for robust and straightforward queries
nevertheless, most columns containing values not usually intended for display are required to be converted
to lower case; in the table descriptions below, there are explicit requirements on case normalization near the
end of each section. This is particularly important when the entities to be compared are defined to be case-
insensitive (e.g., ucds, IVORNs, utypes). Client software that can inspect user-provided arguments (e.g., when
filling template queries) should also convert the respective fields to lower-case.

This conversion MUST cover all ASCII letters, i.e., A through Z. The conversion SHOULD take place according
to algorithm R2 in section 3.13, "Default Case Algorithms" of [std:UNICODE]. In practice, non-ASCII characters
are not expected to occur in columns for which lowercasing is required.

Analogously, case-insensitive comparisons as required by some of the user-defined functions for the relational
registry MUST compare the ASCII letters without regard for case. They SHOULD compare according to D144
in [std:UNICODE].

4. QNames in VOResource attributes

VOResource and its extensions make use of XML QNames in attribute values, most prominently in xsi:type.
The standard representation of these QNames in XML instance documents makes use of an abbreviat-
ed notation using prefixes declared using the xmlns mechanism as discussed in [std:XMLNS]. Within an
ADQL database, no standard mechanism exists that could provide a similar mapping of URLs and abbrevi-
ations. The correct way to handle this problem would thus be to have full QNames in the database (e.g.,
{http://www.ivoa.net/xml/ConeSearch/v1.0}ConeSearch for the canonical cs:ConeSearch).
This, of course, would make for excessively tedious and error-prone querying.

For various reasons, VOResource authors have always been encouraged to use a set of "standard" prefixes.
This allows an easy and, to users, unsurprising exit from the problem of the missing xmlns declarations: For
the representation of QNames within the database, these recommended prefixes are now mandatory. Future
VOResource extensions define their mandatory prefixes themselves.

Following the existing practice, minor version changes are not in general reflected in the recommended pre-
fixes—e.g., both VODataService 1.0 and VODataService 1.1 use vs:. For reference, here is a table of XML
namespaces and prefixes for namespaces relevant to this specification:

oai http://www.openarchives.org/OAI/2.0/

ri http://www.ivoa.net/xml/RegistryInterface/v1.0

vg http://www.ivoa.net/xml/VORegistry/v1.0

vr http://www.ivoa.net/xml/VOResource/v1.0

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 6 -

dc http://purl.org/dc/elements/1.1/

vs http://www.ivoa.net/xml/VODataService/v1.0

vs http://www.ivoa.net/xml/VODataService/v1.1

cs http://www.ivoa.net/xml/ConeSearch/v1.0

sia http://www.ivoa.net/xml/SIA/v1.0

ssap http://www.ivoa.net/xml/SSA/v1.0

tr http://www.ivoa.net/xml/TAPRegExt/v1.0

vstd http://www.ivoa.net/xml/StandardsRegExt/v1.0

5. VOResource Utypes

This specification piggybacks on top of the well-established VOResource standard. It explicitely does not
define a full data model, but rather something like a reasonably query-friendly view of a partial representation
of one. The link between the actual data model, VOResource and extensions as defined by the XML Schema
documents, and the fields within this database schema, is provided by utypes.

These utypes are generated from the XML schema files for VOResource and its extensions by means of an
XSL stylesheet. They are intended to be compatible with the utypes generated according to a future IVOA
specification. It is expected to be based on a modelling language called VO-DML; since VOResource is not
modelled in VO-DML — and probably never will, since interoperability with other OAI-PMH applications makes
XML Schema a compelling choice as the modelling language —, we have to provide some custom method to
define utypes and their relation to modelling elements

The basic premise here is that 1:1 relationships are mapped to utypes by concatenating type and attribute
names until the leaf element is reached; attributes and elements (in XSD terms) are not distinguished. 1:n
relationships yield one utype for the attribute (the "collection utype", which is used on some tables), while utypes
for the elements of the collection are rooted in the collection element's types. For example, the capabilities
of a service have the collection utype vr:Service.capability, but the standard identifier of a capability
has the utype Capability's standardID.

XML namespaces are ignored in utype generation. In particular, the xsi:type attributes that provide poly-
morphism for VOResource's Resource and Capability elements yield utypes ending in type, as in
vr:Resource.type and vr:Capability.type.

At the utype level, polymorphism is reflected by using the names of the type definitions in which an element
or attribute is defined as a utype fragment. For example, in the description of a single data collection there
can be values for vr:Resource.created (as the definition of the created attribute is on vr:Resource
itself) as well as vs:DataCollection.instrument (since instrument comes from the definition of the
XML Schema DataCollection type in this case).

The data model name of the utypes, i.e., the part in front of the colon, is the canonical target name space
prefix taken from the XML schema. The remarks on versioning those from section 4 apply here as well.

An XSLT stylesheet producing utypes together with short documentation strings from the XML schema files
is given in Appendix A. Note that due to limitations of XSLT version 1, the complexity of XML schema, as well
as considerations of implementation simplicity, this stylesheet is not completely general (see also comments
in the file). Future VOResource extensions could break it if, e.g., they were to inherit from types derived from
vr:Resource in a different file. As given here, the stylesheet produces the desired results for the versions
of VOResource and its extensions given in section 1.1.

Note that for readability utypes are given in camel case throughout the normative text of this document, fol-
lowing the XML Schema names. However, utypes are generally considered to be case insensitive. Hence,

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 7 -

in the database tables, all utypes are stored all-lowercase; this is mandated by the case conversion rules in
the table descriptions.

6. Discovering Relational Registries

The relational registry can be part of any TAP service. The presence of the tables discussed here is indicated by
declaring support for the data model Registry 1.0 with the IVORN ivo://ivoa.net/std/RegTAP/vor
in the service's capabilities (see [std:TAPREGEXT]). Technically, this entails adding

<dataModel ivo-id="ivo://ivoa.net/std/RegTAP/vor">Registry 1.0</dataModel>

as a child of the capability element with the type {http://www.ivoa.net/xml/TAPRegExt/
v1.0}TableAccess.

A client that knows the access URL of one relational registry can thus discover all other services exposing one.
The "Find all TAP endpoints offering the relational registry" example in section 9 shows a query that does this.

7. VOResource Tables

In the following table descriptions, names and utypes of tables and columns are normative and MUST be
used as given, and all-lowercase. Descriptions are not normative (as given, they usually are taken from the
schema files of VOResource and its extensions with slight redaction). Registry operators MAY provide addi-
tional columns in their tables, but they MUST provide all columns given in this specification.

All table descriptions start out with brief remarks on the relationship of the table to the VOResource XML
data model. Then, the columns are described in a selection of TAP_SCHEMA metadata. For each table,
recommendations on explicit primary and foreign keys as well as indexed columns are given, where it is
understood that primary and foreign keys are already indexed in order to allow efficient joins; these parts are
not normative, but operators should ensure decent performance for queries assuming the presence of the
given indices and relationships. Finally, lowercasing requirements (normative) are given.

The following tables make up the data model ivo://ivoa.net/std/RegTAP/vor:

Table
Utype

Description

rr.capability
vr:Service.capability

Pieces of behaviour of a resource.

rr.interface
vr:Interface

Information on access modes of a capability.

rr.intf_param
vs:InputParam

Input parameters for services.

rr.relationship
vr:Resource.content.relationship

Relationships between resources, e.g., mirroring, de-
rivation, but also providing access to data within a re-
source.

rr.res_date
vr:Resource.curation.date

A date associated with an event in the life cycle of
the resource. This could be creation or update. The
role column can be used to clarify.

rr.res_detail
N/A

Utype-value pairs for members of resource or capa-
bility and their derivations that are less used and/or
from VOResource extensions. The pairs refer to a re-
source if cap_index is NULL, to the referenced capa-
bility otherwise.

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 8 -

Table
Utype

Description

rr.res_role
N/A

Entities, i.e., persons or organizations, operating on
resources: creators, contacts, publishers.

rr.res_schema
vs:TableSchema

Sets of tables related to resources.

rr.res_table
vs:Table

(Relational) tables that are part of schemata or re-
sources.

rr.resource
vr:Resource

The resources, i.e., services, data collections, organi-
zations, etc., present in this registry.

rr.subject
vr:Resource.content.subject

Topics, object types, or other descriptive keywords
about the resource.

rr.table_column
vs:Table.column

Metadata on columns of tables pertaining to re-
sources.

rr.validation
N/A

Validation levels for resources and capabilities.

7.1. The resource Table

The rr.resource table contains most atomic members of vr:Resource that have a 1:1 relationship to
the resource itself. Members of derived types are, in general, handled through the res_detail table even
if 1:1 (see 7.13). The content_level, waveband, and rights members are 1:n but still appear here. If there are
multiple values, concatenate them with hash characters (#). Use the ivo_hashlist_has ADQL extension
function to check for the presence of a single value. This convention saves on tables while not complicating
common queries significantly.

A local addition is the creator_seq column. It contains all content of the name elements below a resource
element curation child's creator children, concatenated with a sequence of semicolon and blank charac-
ters ("; "). The individual parts must be concatenated preserving the sequence of the XML elements. The re-
sulting string is primarily intended for display purposes ("author list") and is hence not case-normalized. It was
added since the equivalent of an author list is expected to be a metadatum that is displayed fairly frequently,
but also since the sequence of author names is generally considered significant. The res_role table, on the
other hand, does not allow recovering the input sequence of the rows belonging to one resource.

The res_type column reflects the lower-cased value of the ri:Resource element's xsi:type attribute,
where the canonical prefixes are used. While custom or experimental VOResource extensions may yield more
or less arbitrary strings in that column, here is an enumeration of res_types from the VOResource and its
IVOA-recommended extensions at the time of writing, together with explanations taken from the schema files
and comments.

vg:authority
A naming authority (these records allow resolving who is responsible for IVORNs with a certain authority;
cf. [std:VOID])

vg:registry
A registry is considered a publishing registry if it contains a capability element with
xsi:type="vg:Harvest". Old, RegistryInterface 1-compliant registries also use this type with a ca-
pability of type vg:Search. The relational registry as specified here, while superceding these old
vg:Search capabilities, does not use this type any more. See section 6 on how to locate services sup-
porting it.

vr:organisation
The main purpose of an organisation as a registered resource is to serve as a publisher of other re-
sources.

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 9 -

vr:resource
Any entity or component of a VO application that is describable and identifiable by a IVOA Identifier;
while it is technically possible to publish such records, the authors of such records should probably be
asked to use a more specific type.

vr:service
A resource that can be invoked by a client to perform some action on its behalf

vs:catalogservice
A service that interacts with one or more specified tables having some coverage of the sky, time, and/
or frequency.

vs:dataservice
A service for accessing astronomical data; publishers choosing this over vs:catalogservice probably
intend to communicate that there are no actual sky positions in the tables exposed.

vs:datacollection
A schema as a logical grouping of data which, in general, is composed of one or more acces-
sible datasets. Use the rr.relationship table to find out services that allow access to the
data (the served_by relation), and/or look for values for vs:datacollection.accessurl in
rr.res_detail.

vstd:standard
A description of a standard specification.

The status attribute of vr:Resource is considered an implementation detail of the XML serialization and
is not kept here. Neither inactive nor deleted records may be kept in the resource table. Since all other
tables in the relational registry should keep a foreign key on the ivoid column, this implies that only active
records can be found in the relational registry; in other words, users can expect a resource they find using
the relational registry to exist and work.

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) Unambiguous reference to the re-
source conforming to the IVOA
standard for identifiers

res_type
vr:Resource.type

adql:VARCHAR(*) Resource type (some-
thing like vs:datacollection,
vs:catalogservice, etc)

created
vr:Resource.created

adql:TIMESTAMP The UTC date and time this re-
source metadata description was
created. This timestamp must not
be in the future. This time is not re-
quired to be accurate; it should be
at least accurate to the day. Any in-
significant time fields should be set
to zero.

short_name
vr:Resource.shortName

adql:VARCHAR(*) A short name or abbreviation giv-
en to something. This name will be
used where brief annotations for
the resource name are required.
Applications may use to refer to
this resource in a compact display.
One word or a few letters is rec-
ommended. No more than sixteen
characters are allowed.

res_title adql:VARCHAR(*) The full name given to the resource

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 10 -

Name
Utype

Type Description

vr:Resource.title

updated
vr:Resource.updated

adql:TIMESTAMP The UTC date this resource meta-
data description was last updated.
This timestamp must not be in the
future. This time is not required to
be accurate; it should be at least
accurate to the day. Any insignifi-
cant time fields should be set to ze-
ro.

content_level
vr:ContentLevel

adql:VARCHAR(*) Description of the content level or
intended audience

res_description
vr:Resource.content.description

adql:VARCHAR(*) An account of the nature of the re-
source.

reference_url
vr:Resource.content.referenceURL

adql:VARCHAR(*) URL pointing to a human-readable
document describing this resource.

creator_seq
vr:Creator.name

adql:VARCHAR(*) The creator(s) of the resource in
the order given by the resource
record author.

content_type
vr:Resource.content.type

adql:VARCHAR(*) Nature or genre of the content of
the resource

source_format
vr:Resource.content.source.format

adql:VARCHAR(*) The format of source_value. Rec-
ognized values include "bibcode",
referring to a standard astronom-
ical bibcode (http://cdsweb.u-
strasbg.fr/simbad/refcode.html).

source_value
vr:Resource.content.source

adql:VARCHAR(*) A bibliographic reference from
which the present resource is de-
rived or extracted.

version
vr:Resource.curation.version

adql:VARCHAR(*) Label associated with creation or
availablilty of a version of a re-
source.

region_of_regard
vr:Resource.coverage.regionOfRegard

adql:REAL A single numeric value represent-
ing the angle, given in decimal de-
grees, by which a positional query
against this resource should be
"blurred" in order to get an appro-
priate match.

waveband
vs:Waveband

adql:VARCHAR(*) A hash-separated list of regions of
the electro-magnetic spectrum that
the resource's spectral coverage
overlaps with.

rights
vr:Rights

adql:VARCHAR(*) Information about rights held in and
over the resource.

This table should have the ivoid column explicitely set as its primary key.

The following columns MUST be lowercased during ingestion: ivoid, res_type, content_level,
content_type, source_format, waveband, footprint_ivoid. Clients are advised to query the

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 11 -

res_description and res_title columns using the the ivo_hasword function, and to use
ivo_hashlist_has on content_level, waveband, and rights.

7.2. The res_role Table

This table subsumes the contact, publisher, contributor, and creator members of the VOResource data model.
They have been combined into a single table to reduce the total number of tables, and also in anticipation of
a unified data model for such entities in future versions of VOResource.

The actual role is given in the base_role column, which can be one of contact, publisher,
or creator. Depending on this value, here are the utypes for the table fields (we have abbrevi-
ated vr:Resource.curation.publisher as Rcp, vr:Contact as Co, vr:Creator as Cr, and
vr:ResourceName as R):

base_role value contact publisher creator contributor

role_name Co.name Rcp Cr.name R

role_ivoid Co.name.ivoid Rcp.ivoid Cr.name.ivoid R.ivoid

address Co.address N/A N/A N/A

email Co.email N/A N/A N/A

telephone Co.telephone N/A N/A N/A

logo Co.logo N/A Cr.logo N/A

Not all columns are available for each role type in VOResource. For example, contacts have no logo, and
creators no telephone members. Unavailable metadata MUST be represented with NULL values in the corre-
sponding columns.

Note that, due to current practice in the VO, it is not easy to predict what role_name will contain; it could be a
single name, where again the actual format is unpredictable (full first name, initials in front or behind, or even
a project name), but it could as well be a full author list. Thus, when matching against role_names, you will
have to use rather lenient regular expressions. Changing this, admittedly regrettable, situation would probably
require a change in the VOResource schema.

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) The parent resource.

role_name
N/A

adql:VARCHAR(*) The real-world name or title of a
person or organization

role_ivoid
N/A

adql:VARCHAR(*) An IVOA identifier of a person or
organization

address
N/A

adql:VARCHAR(*) A mailing address for a person or
organization

email
N/A

adql:VARCHAR(*) An email address the entity can be
reached at

telephone
N/A

adql:VARCHAR(*) A telephone number the entity can
be reached at

logo
N/A

adql:VARCHAR(*) URL pointing to a graphical logo,
which may be used to help identify
the entity

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 12 -

Name
Utype

Type Description

base_role
N/A

adql:VARCHAR(*) The role played by this entity; this
is one of contact, publisher, and
creator

The ivoid column should be an explicit foreign key into the resource table. It is recommended to maintain
indexes on at least the role_name column, ideally in a way that supports regular expressions.

The following columns MUST be lowercased during ingestion: ivoid, role_ivoid, base_utype. Clients
are advised to query the remaining columns, in particular role_name, case-insensitively, e.g., using
ivo_nocasematch.

7.3. The subject Table

Since subject queries are expected to be frequent and perform relatively complex checks (e.g., resulting from
thesaurus queries in the clients), the subjects are kept in a separate table rather than being hash-joined like
other string-like 1:n members of resource.

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) The parent resource.

subject
xs:token

adql:VARCHAR(*) Topics, object types, or other de-
scriptive keywords about the re-
source.

The ivoid column should be an explicit foreign key into resource. It is recommended to index the subject
column, preferably in a way that allows to process case-insensitive and pattern queries using the index.

The ivoid column MUST be lowercased during ingestion. Clients are advised query the subject column
case-insensitively, e.g., using ivo_nocasematch.

7.4. The capability Table

The capability table describes the capabilities of a resource; it only contains the members of the base type
vr:Capability. Members of derived types are kept in the res_detail table (see 7.13).

The table has an integer-typed column cap_index to disambiguate multiple capabilities on a single resource.
Operators are free to choose the actual values as convenient, although it is recommended to just enumerate
the capabilities in their physical sequence per-resource.

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) The parent resource.

cap_index
N/A

adql:SMALLINT Running number of this capability
within the resource.

cap_type
vr:Capability.type

adql:VARCHAR(*) The type of capability covered
here.

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 13 -

Name
Utype

Type Description

cap_description
vr:Capability.description

adql:VARCHAR(*) A human-readable description of
what this capability provides as
part of the over-all service

standard_id
vr:Capability.standardID

adql:VARCHAR(*) A URI for a standard this capability
conforms to.

This table should have an explicit primary key made up of ivoid and cap_index. The ivoid column should
be an explicit foreign key into resource. It is recommended to maintain indexes on at least the cap_type
and standard_id columns.

The following columns MUST be lowercased during ingestion: ivoid, cap_type, standard_id. Clients are
advised to query the cap_description column using the ivo_hasword function.

7.5. The res_schema Table

The res_schema table corresponds to VODataService's schema element. It has been renamed to avoid
clashes with the SQL reserved word SCHEMA.

The table has an integer-typed column schema_index to disambiguate multiple schema elements on a single
resource. Operators are free to choose the actual values as convenient, although it is recommended to just
enumerate the schema elements in their physical sequence per-resource.

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) The parent resource.

schema_index
N/A

adql:SMALLINT A running number for the
res_schema rows belonging to a
resource.

schema_description
vs:TableSchema.description

adql:VARCHAR(*) A free text description of the table-
set explaining in general how all of
the tables are related.

schema_name
vs:TableSchema.name

adql:VARCHAR(*) A name for the set of tables.

schema_title
vs:TableSchema.title

adql:VARCHAR(*) A descriptive, human-interpretable
name for the table set.

schema_utype
vs:TableSchema.utype

adql:VARCHAR(*) An identifier for a concept in a data
model that the data in this schema
as a whole represent.

This table should have an explicit primary key made up of ivoid and schema_index. The ivoid column
should be an explicit foreign key into resource.

The following columns MUST be lowercased during ingestion: ivoid, schema_name, schema_utype.
Clients are advised to query the schema_description and schema_title columns using the the
ivo_hasword function.

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 14 -

7.6. The res_table Table

The res_table table models VODataService's table element. It has been renamed to avoid name clashes
with the SQL reserved word TABLE.

The table contains an integer-typed column table_index to disambiguate multiple tables on a single re-
source. Operators are free to choose the actual values as convenient, although it is recommended to just
enumerate the tables in their physical sequence per-resource (but not per schema—table_index MUST
be unique within a resource).

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) The parent resource.

schema_index
N/A

adql:SMALLINT Index of the schema this table be-
longs to, if it belongs to a schema
(otherwise NULL).

table_description
vs:Table.description

adql:VARCHAR(*) A free-text description of the table's
contents

table_name
vs:Table.name

adql:VARCHAR(*) The fully qualified name of the ta-
ble. This name should include all
catalog or schema prefixes needed
to distinguish it in a query.

table_index
N/A

adql:INTEGER An artificial counter for the tables
belonging to a resource

table_title
vs:Table.title

adql:VARCHAR(*) A descriptive, human-interpretable
name for the table

table_type
vs:Table.type

adql:VARCHAR(*) A name for the role this table plays.
Recognized values include "out-
put", indicating this table is out-
put from a query; "base_table",
indicating a table whose records
represent the main subjects of its
schema; and "view", indicating that
the table represents a useful com-
bination or subset of other tables.
Other values are allowed.

table_utype
vs:Table.utype

adql:VARCHAR(*) An identifier for a concept in a data
model that the data in this table as
a whole represent.

This table should have an explicit primary key made up of ivoid and table_index. The pair ivoid,
schema_index should be an explicit foreign key into res_schema. It is recommended to maintain an index
on at least the table_description column, ideally one suited for queries with ivo_hasword.

The following columns MUST be lowercased during ingestion: ivoid, table_name, table_type,
table_utype. Clients are advised to query the table_description and table_title columns using
the the ivo_hasword function.

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 15 -

7.7. The table_column Table

The table_column table models the content of VOResource's column element. The table has been renamed
to avoid a name clash with the SQL reserved word COLUMN.

Since it is expected that queries for column properties will be fairly common in advanced queries, it is the
column table that has the unprefixed versions of common member names (name, description, ucd, utype, etc).

The flag column contains a concatenation of all values of a column element's flag children, separated by
hash characters. Use the ivo_hashlist_has function in queries against flag.

The table_column table also includes information from VODataService's data type concept. VODataService
1.1 includes several type systems (VOTable, ADQL, Simple). The typesystem column contains the value of
the column's datatype child, with the VODataService XML prefix fixed to vs; hence, this column will contain
one of NULL, vs:TAPType, vs:SimpleDataType, and vs:VOTableType.

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) The parent resource.

table_index
N/A

adql:INTEGER An artificial counter for the tables
belonging to a resource

description
vs:BaseParam.description

adql:VARCHAR(*) A free-text description of the
column's contents

name
vs:BaseParam.name

adql:VARCHAR(*) The name of the column

ucd
vs:BaseParam.ucd

adql:VARCHAR(*) A unified content descriptor that
describes the scientific content of
the parameter.

unit
vs:BaseParam.unit

adql:VARCHAR(*) The unit associated with all values
in the column.

utype
vs:BaseParam.utype

adql:VARCHAR(*) An identifier for a role in a data
model that the data in this column
represents.

std
vs:TableParam.std

adql:SMALLINT If 1, the meaning and use of this
parameter is reserved and defined
by a standard model. If 0, it repre-
sents a database-specific parame-
ter that effectively extends beyond
the standard.

datatype
vs:DataType

adql:VARCHAR(*) The type of the data contained in
the column.

extended_schema
vs:DataType.extendedSchema

adql:VARCHAR(*) An identifier for the schema that
the value given by the extended at-
tribute is drawn from.

extended_type
vs:DataType.extendedType

adql:VARCHAR(*) The data value represented by this
type can be interpreted as of a cus-
tom type identified by the value of
this attribute.

arraysize
vs:DataType.arraysize

adql:VARCHAR(*) The shape of the array that consti-
tutes the value.

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 16 -

Name
Utype

Type Description

delim
vs:DataType.delim

adql:VARCHAR(*) The string that is used to delimit el-
ements of an array value when ar-
raysize is not '1'.

type_system
vs:DataType.type

adql:VARCHAR(*) The type system used, as
a QName with a canonical
prefix; this will ususally be
one of vs:SimpleDataType,
vs:VOTableType, and vs:TAPType.

flag
vs:TableParam.flag

adql:VARCHAR(*) hash-separated keywords repre-
senting traits of the column. Rec-
ognized values include "indexed",
"primary", and "nullable".

The pair ivoid, table_index should be an explicit foreign key into res_table. It is recommended to main-
tain indexes on at least the description, name, ucd, and utype columns, where the index on descrip-
tion should ideally be able to handle queries using ivo_hasword.

The following columns MUST be lowercased during ingestion: ivoid, name, ucd, utype, datatype,
type_system. Clients are advised to query the description column using the ivo_hasword function,
and to query the flag column using the ivo_hashlist_has function.

7.8. The interface Table

The interface table subsumes both the vr:Interface and vr:accessURL types from VOResource. The
integration of accessURL into the interface table means that an interface in the relational registry can
only have one access URL, where in VOResource it can have many. In practice, this particular VOResource
capability has not been used by registry record authors. Since access URLs are probably the item most queried
for, it seems warranted to save one indirection when querying for them.

Should interfaces with multiple access URLs become necessary in the future, we propose a slight denormal-
ization by creating mulitple interfaces with one access URL each within the registry's ingestion logic.

The table contains an integer-typed column intf_index to disambiguate multiple interfaces on a single
capability. Operators are free to choose the actual values as convenient, although it is recommended to just
enumerate the interfaces in their physical sequence per capability.

Analogous to resource.res_type, the intf_type column contains type names; VOResource extensions
can define new types here, but at the time of writing, the following types are mentioned in IVOA-recommended
schemata:

vs:paramhttp
A service invoked via an HTTP query with either form-urlencoded or multipart form-data parameters.

vr:webbrowser
A (form-based) interface intended to be accessed interactively by a user via a web browser.

vg:oaihttp
A standard OAI PMH interface using HTTP queries with form-urlencoded parameters.

vg:oaisoap
A standard OAI PMH interface using a SOAP Web Service interface.

vr:webservice
A Web Service that is describable by a WSDL document.

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 17 -

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) The parent resource.

cap_index
N/A

adql:SMALLINT The index of the parent capability

intf_index
N/A

adql:SMALLINT A running number for the interfaces
of a capability.

intf_type
vr:Interface.type

adql:VARCHAR(*) The type of the interface (Web-
Browser, ParamHTTP, etc).

intf_role
vr:Interface.role

adql:VARCHAR(*) A tag name the identifies the role
the interface plays in the particu-
lar capability. If the value is equal
to "std" or begins with "std:", then
the interface refers to a standard
interface defined by the standard
referred to by the capability's stan-
dardID attribute.

std_version
vr:Interface.version

adql:VARCHAR(*) The version of a standard inter-
face specification that this interface
complies with. When the interface
is provided in the context of a Ca-
pability element, then the standard
being refered to is the one identi-
fied by the Capability's standardID
element.

query_type
vs:ParamHTTP.queryType

adql:VARCHAR(*) The type of HTTP request, either
GET or POST.

result_type
vs:ParamHTTP.resultType

adql:VARCHAR(*) The MIME type of a document re-
turned in the HTTP response.

wsdl_url
vr:WebService.wsdlURL

adql:VARCHAR(*) The location of the WSDL that de-
scribes this Web Service. If not
provided, the location is assumed
to be the accessURL with '?wsdl'
appended.

url_use
vr:AccessURL.use

adql:VARCHAR(*) A flag indicating whether this
should be interpreted as a base
URL, a full URL, or a URL to a di-
rectory that will produce a listing of
files.

access_url
vr:AccessURL

adql:VARCHAR(*) The URL at which the interface is
found.

This table should have the triple ivoid, cap_index, and intf_index as an explicit primary key. The pair
ivoid, cap_index should be an explicit foreign key into capability. It is recommended to maintain an
index on at least the intf_type column.

The following columns MUST be lowercased during ingestion: ivoid, intf_type, intf_role,
std_version, query_type, result_type, url_use.

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 18 -

7.9. The intf_param Table

The intf_param table keeps information on the parameters avalailable on interfaces. It is therefore closely
related to table_column, but the differences between the two are significant enough to warrant a separation
between the two tables. Since the names of common column attributes are used where applicable in both
tables (e.g., name, ucd, etc), the two tables cannot be (naturally) joined.

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) The parent resource.

cap_index
N/A

adql:SMALLINT The index of the parent capability

intf_index
N/A

adql:SMALLINT A running number for the interfaces
of a capability.

description
vs:BaseParam.description

adql:VARCHAR(*) A free-text description of the
column's contents

name
vs:BaseParam.name

adql:VARCHAR(*) The name of the column

ucd
vs:BaseParam.ucd

adql:VARCHAR(*) A unified content descriptor that
describes the scientific content of
the parameter.

unit
vs:BaseParam.unit

adql:VARCHAR(*) The unit associated with all values
in the column.

utype
vs:BaseParam.utype

adql:VARCHAR(*) An identifier for a role in a data
model that the data in this column
represents.

std
vs:InputParam.std

adql:SMALLINT If 1, the meaning and use of this
parameter is reserved and defined
by a standard model. If 0, it repre-
sents a database-specific parame-
ter that effectively extends beyond
the standard.

datatype
vs:DataType

adql:VARCHAR(*) The type of the data contained in
the column.

extended_schema
vs:DataType.extendedSchema

adql:VARCHAR(*) An identifier for the schema that
the value given by the extended at-
tribute is drawn from.

extended_type
vs:DataType.extendedType

adql:VARCHAR(*) The data value represented by this
type can be interpreted as of a cus-
tom type identified by the value of
this attribute.

use_param
vs:InputParam.use

adql:VARCHAR(*) An indication of whether this para-
meter is required to be provided for
the application or service to work
properly.

The triple ivoid, cap_index, and intf_index should be an explicit foreign key into interface. It is
recommended to maintain indexes on at least the description, name, ucd, and utype columns.

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 19 -

See section 7.7 for requirements on lowercasing of column attributes.

7.10. The relationship Table

The relationship element is a slight denormalization of the vr:Relationship type: Whereas in VOResource,
a single relationship element can take several IVORNs, in the relational model, the pairs are stored directly. It
is straightforward to translate between the two representations in the database ingestor.

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) The parent resource.

relationship_type
vr:Relationship.relationshipType

adql:VARCHAR(*) The named type of relationship;
this can be mirror-of, service-for,
served-by, derived-from, related-to,
or something user-defined.

related_id
vr:Relationship.relatedResource.ivoId

adql:VARCHAR(*) The URI form of the IVOA identifier
for the resource refered to.

related_name
vr:Relationship.relatedResource

adql:VARCHAR(*) The name of resource that this re-
source is related to.

The ivoid column should be an explicit foreign key into the resoure table. You should index at least the
related_id column.

The following columns MUST be lowercased during ingestion: ivoid, relationship_type, related_id.

7.11. The validation Table

The validation subsumes the vr:validationLevel members of both vr:Resource and
vr:Capability.

If the cap_index column in NULL the validation comprises the entire resource. Otherwise, only the referenced
capability has been validated.

While it is recommended that harvesters only accept resource records from their originating registries, rows in
the validation table could very well originate from third-party registries. Hence, rows in rr.validation for
the same resource might originate from completely different registries. This can trigger potentially problematic
behaviour when the original registry updates its resource record in that naive implementations will lose all
third-party validation rows; also, the semantics of validation results over updates of resources and/or resource
records is not fully mapped to VOResource. Implementations are free to handle or ignore validation results as
they see fit, and they may add validation results of their own.

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) The parent resource.

validated_by
vr:Validation.validatedBy

adql:VARCHAR(*) The IVOA ID of the registry or or-
ganisation that assigned the valida-
tion level.

level
vr:Validation.validationLevel

adql:SMALLINT A numeric grade describing the
quality of the resource description,
when applicable, to be used to in-

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 20 -

Name
Utype

Type Description

dicate the confidence an end-user
can put in the resource as part of a
VO application or research study.

cap_index
N/A

adql:SMALLINT If non-NULL, the validation only
refers to the the capability refer-
enced here.

The ivoid should be an explicit foreign key into resource. Note, however, that ivoid, cap_index is not
a foreign key into capability since cap_index may be NULL (in case the validation addresses the entire
resource).

The following columns MUST be lowercased during ingestion: ivoid, validated_by.

7.12. The res_date Table

The res_date table contains information gathered from vr:Curation's date children.

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) The parent resource.

date_value
vr:Date

adql:TIMESTAMP A date associated with an event in
the life cycle of the resource.

value_role
vr:Date.role

adql:VARCHAR(*) A string indicating what the date
refers to.

The ivoid column should be an explicit foreign key into resource.

The following columns MUST be lowercased during ingestion: ivoid, value_role.

7.13. The res_detail Table

The res_detail table is RegTAP's primary means for extensability as well as a fallback for less-used simple
metadata. Conceptually, it stores triples of resource entity references, utypes, and values, where resource
entities can be resource records themselves or capabilities. Thus, metadata with values that are either atomic
or sets of atoms can be represented in this table.

As long as the metadata that needs to be represented in the relational registry for new VOResource extensions
is simple enough, no changes to the schema defined here will be neccessary as these are introduced. Instead,
the extension itself simply defines new utypes to be added in res_detail.

Some complex metadata—tr:languageFeature or vstd:key being examples—cannot be kept in this
table. If a representation of such information in the relational registry is required, this standard will need to
be changed.

The following list gives utypes from the registry extensions that were recommendations at the time of writing.
The utypes double here as partial XPath-like expressions into the VOResource XML trees, which should make
the generation of res_details rows fairly straightforward (see also the rules for utype generation given in
section 5).

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 21 -

From the following list, operators MUST put all rows generatable for the utypes marked with an exclamation
mark into res_details. The remaining metadata may be provided if convenient; it mostly concerns test
queries and other curation-type information not likely to be useful to normal users. Individual ingestors MAY
choose to expose additional metadata using other utypes.

In addition to the metadata listed here, metadata defined in future IVOA-approved VOResource extensions
MUST or SHOULD be present in res_details as the extensions require it.

cs:ConeSearch.maxRecords (!)
The largest number of records that the service will return.

cs:ConeSearch.testQuery.catalog
the catalog to query.

cs:ConeSearch.testQuery.dec
the declination of the search cone's center in decimal degrees.

cs:ConeSearch.testQuery.extras
any extra (non-standard) parameters that must be provided (apart from what is part of base URL given
by the accessURL element).

cs:ConeSearch.testQuery
A query that will result in at least on matched record that can be used to test the service.

cs:ConeSearch.testQuery.ra
the right ascension of the search cone's center in decimal degrees.

cs:ConeSearch.testQuery.sr
the radius of the search cone in decimal degrees.

cs:ConeSearch.testQuery.verb
the verbosity level to use where 1 means the bare minimum set of columns and 3 means the full set
of available columns.

cs:ConeSearch.verbosity (!)
True if the service supports the VERB keyword; false, otherwise.

sia:SimpleImageAccess.imageServiceType (!)
The class of image service: Cutout, Mosaic, Atlas, Pointed

sia:SimpleImageAccess.maxFileSize (!)
The maximum image file size in bytes.

sia:SimpleImageAccess.maxImageExtent.lat
The maximum size in the latitdude (Dec.) direction

sia:SimpleImageAccess.maxImageExtent.long
The maximum size in the longitude (R.A.) direction

sia:SimpleImageAccess.maxImageSize.lat
The image size in the latitdude (Dec.) direction in pixels

sia:SimpleImageAccess.maxImageSize.long
The image size in the longitude (R.A.) direction in pixels

sia:SimpleImageAccess.maxQueryRegionSize.lat
The maximum size in the latitdude (Dec.) direction

sia:SimpleImageAccess.maxQueryRegionSize.long
The maximum size in the longitude (R.A.) direction

sia:SimpleImageAccess.maxRecords (!)
The largest number of records that the Image Query web method will return.

sia:SimpleImageAccess.testQuery.extras
any extra (particularly non-standard) parameters that must be provided (apart from what is part of base
URL given by the accessURL element).

sia:SimpleImageAccess.testQuery
a set of query parameters that is expected to produce at least one matched record which can be used
to test the service.

sia:SimpleImageAccess.testQuery.pos.lat
The sky position in the latitdude (Dec.) direction

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 22 -

sia:SimpleImageAccess.testQuery.pos.long
The sky position in the longitude (R.A.) direction

sia:SimpleImageAccess.testQuery.size.lat
The maximum size in the latitdude (Dec.) direction

sia:SimpleImageAccess.testQuery.size.long
The maximum size in the longitude (R.A.) direction

sia:SimpleImageAccess.testQuery.verb
the verbosity level to use where 0 means the bare minimum set of columns and 3 means the full set
of available columns.

ssap:SimpleSpectralAccess.complianceLevel
The category indicating the level to which this instance complies with the SSA standard.

ssap:CreationType (!)
The category that describes the process used to produce the dataset.

ssap:DataSource (!)
The category specifying where the data originally came from.

ssap:SupportedFrame (!)
The STC name for a world coordinate system frame supported by this service.

ssap:SimpleSpectralAccess.defaultMaxRecords (!)
The largest number of records that the service will return when the MAXREC parameter not specified
in the query input.

ssap:SimpleSpectralAccess.maxAperture
The largest aperture that can be supported upon request via the APERTURE input parameter by a service
that supports the special extraction creation method.

ssap:SimpleSpectralAccess.maxRecords (!)
The hard limit on the largest number of records that the query operation will return in a single response

ssap:SimpleSpectralAccess.testQuery
a set of query parameters that is expected to produce at least one matched record which can be used
to test the service.

ssap:SimpleSpectralAccess.testQuery.pos.lat
The latitude (e.g. Declination) of the center of the search position in decimal degrees.

ssap:SimpleSpectralAccess.testQuery.pos.long
The longitude (e.g. Right Ascension) of the center of the search position in decimal degrees.

ssap:SimpleSpectralAccess.testQuery.pos.refframe
the coordinate system reference frame name indicating the frame to assume for the given position. If
not provided, ICRS is assumed.

ssap:SimpleSpectralAccess.testQuery.queryDataCmd
Fully specified test query formatted as an URL argument list in the syntax specified by the SSA standard.
The list must exclude the REQUEST argument which is assumed to be set to "queryData".

ssap:SimpleSpectralAccess.testQuery.size
the size of the search radius.

tr:DataModelType.ivoid (!)
The IVORN of the data model supported by a TAP service.

tr:DataModelType (!)
The short, human-readable name of a data model supported by a TAP service; for most applications,
clients should rather constrain tr:datamodeltype.ivoid.

tr:Language.name (!)
An IVOA defined data model, identified by an IVORN intended for machine consumption and a short
label intended for human comsumption.

tr:OutputFormat.ivoid (!)
An optional IVORN of the output format.

tr:OutputFormat.mime (!)
The MIME type of a format.

tr:TableAccess.executionDuration.default
The value of this limit for newly-created jobs, given in seconds.

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 23 -

tr:TableAccess.executionDuration.hard
The value this limit cannot be raised above, given in seconds.

tr:TableAccess.outputLimit.default
The value of this limit for newly-created jobs.

tr:TableAccess.outputLimit.default.unit
The unit of the limit specified.

tr:TableAccess.outputLimit.hard
The value this limit cannot be raised above.

tr:TableAccess.outputLimit.hard.unit
The unit of the limit specified.

tr:TableAccess.retentionPeriod.default
The value of this limit for newly-created jobs, given in seconds.

tr:TableAccess.retentionPeriod.hard
The value this limit cannot be raised above, given in seconds.

tr:TableAccess.uploadLimit.default
The value of this limit for newly-created jobs.

tr:TableAccess.uploadLimit.default.unit
The unit of the limit specified.

tr:TableAccess.uploadLimit.hard
The value this limit cannot be raised above.

tr:TableAccess.uploadLimit.hard.unit
The unit of the limit specified.

vg:Authority (!)
A naming authority; an assertion of control over a namespace represented by an authority identifier.

vg:Authority.managingOrg (!)
The organization that manages or owns this authority.

vg:Harvest.maxRecords
The largest number of records that the registry search method will return. A value greater than one implies
that an OAI continuation token will be provided when the limit is reached. A value of zero or less indicates
that there is no explicit limit and thus, continuation tokens are not supported.

vg:Registry.managedAuthority (!)
An authority identifier managed by a registry

vr:Organisation.facility (!)
The observatory or facility used to collect the data contained or managed by this resource.

vr:Organisation.instrument (!)
The Instrument used to collect the data contain or managed by a resource.

vs:DataCollection.accessURL (!)
The URL that can be used to download the data contained in this data collection.

vs:DataCollection.coverage.footprint.ivoid (!)
The URI form of the IVOA identifier for the service describing the capability refered to by this element.

vs:DataCollection.coverage.footprint (!)
A reference to a footprint service for retrieving precise and up-to-date description of coverage.

vs:DataCollection.facility (!)
The observatory or facility used to collect the data contained or managed by this resource.

vs:DataCollection.instrument (!)
The Instrument used to collect the data contain or managed by a resource.

vs:DataService.coverage.footprint.ivoid (!)
The URI form of the IVOA identifier for the service describing the capability refered to by this element.

vs:DataService.coverage.footprint (!)
A reference to a footprint service for retrieving precise and up-to-date description of coverage.

vs:DataService.facility (!)
The observatory or facility used to collect the data contained or managed by this resource.

vs:DataService.instrument (!)
The Instrument used to collect the data contain or managed by a resource.

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 24 -

vs:Format.isMIMEType
If true, then an accompanying vs:Format item is a MIME Type. Within res_details, this does not work
for services that give more than one format; since furthermore the literal of vs:Format allows a good
guess whether or not it is a MIME type, this does not appear a dramatic limitation.

vs:Format (!)
The physical or digital manifestation of the information supported by a resource. MIME types should
be used for network-retrievable, digital data, non-MIME type values are used for media that cannot be
retrieved over the network.

vstd:EndorsedVersion (!)
A version of a standard that is recommended for use.

vstd:Standard.deprecated (!)
When present, this element indicates that all versions of the standard are considered deprecated by the
publisher. The value is a human-readable explanation for the designation.

Note that within RegTAP tables, all utypes are stored lowercase only; the camel case notation above is for
readability as well as easier relation to VOResource schema files (in which the same capitalization as given
here is used for type and attribute names).

Also note that VOStandard status and use attributes cannot be represented here, and hence their values are
not accessible in the relational registry. Similarly, complex TAPRegExt metadata on languages, user defined
functions, and the like cannot be represented in this table. Since these pieces of metadata do not seem relevant
to resource discovery, a more complex model does not seem warrented just so they can be exposed.

Name
Utype

Type Description

ivoid
vr:Resource.identifier

adql:VARCHAR(*) The parent resource.

cap_index
N/A

adql:SMALLINT The index of the parent capabili-
ty; if NULL the utype-value pair de-
scribes a member of the entire re-
source.

detail_utype
N/A

adql:VARCHAR(*) The utype of the member

detail_value
N/A

adql:VARCHAR(*) (atomic) value of the member

The ivoid column should be an explicit foreign key into resource. It is recommended to maintain indexes
on at least the columns detail_utype and detail_value.

The following columns MUST be lowercased during ingestion: ivoid, detail_utype. Clients are advised
to use the ivo_nocasematch function to search in detail_value if the values have textual content.

8. ADQL User Defined Functions

TAP Servers implementing the ivo://ivoa.net/std/RegTAP/vor data model MUST implement the fol-
lowing three functions in their ADQL 2.0 language:

ivo_nocasematch(value VARCHAR(*), pattern VARCHAR(*))->INTEGER
The function returns 1 if pattern matches value , 0 otherwise. pattern is defined as for the SQL
LIKE operator, but the match is performed case-insensitively.

ivo_hasword(haystack VARCHAR(*), needle VARCHAR(*)) -> INTEGER
The function takes two strings and returns 1 if the second is contained in the first one in a "word" sense,
i.e., delimited by non-letter characters or the beginning or end of the string, where case is ignored. Addi-

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 25 -

tionally, servers MAY employ techniques to improve recall, in particular stemming. Registry clients must
hence expect different results from different servers when using ivo_hasword; for such queries trying
them on multiple registries may improve recall.

ivo_hashlist_has(haslist VARCHAR(*), item VARCHAR(*))->INTEGER
The function takes two strings; the first is a list of words not containing the hash sign (#), concatenated by
hash signs, the second is a word not containing the hash sign. It returns 1 if, compared case-insensitively,
the second argument is in the list of words encoded in the first argument. The behaviour for second
arguments containing a hash sign is undefined.

Reference implementations of the three functions for the PostgreSQL data base system are given in Appendix
B.

9. Common Queries to the Relational Registry

This section contains sample queries to the relational registry, mostly contributed as use cases by various
members of the IVOA Registry working group. They are intended as an aid in designing relational registry
queries, in particular for users new to the data model.

Find all TAP services; return their accessURLs

SELECT ivoid, access_url
FROM rr.capability
NATURAL JOIN rr.interface
WHERE standard_id='ivo://ivoa.net/std/tap'

Other standard_ids relevant include:

• ivo://ivoa.net/std/registry for OAI-PMH services,
• ivo://ivoa.net/std/sia for SIA services,
• ivo://ivoa.net/std/conesearch for SCS services, and
• ivo://ivoa.net/std/ssa for SSA services.

Find all SIA services that might have spiral galaxies

This is somewhat tricky since it is probably hard to image a part of the sky guaranteed not to have
some, possibly distant, spiral galaxy in it. However, translating the intention into "find all SIA services
that mention spiral in either the subject, the description, or the title", the query would become:

SELECT ivoid, access_url
FROM rr.capability
 NATURAL JOIN rr.resource
 NATURAL JOIN rr.interface
 NATURAL JOIN rr.subject
WHERE standard_id='ivo://ivoa.net/std/sia'
 AND (
 1=ivo_nocasematch(subject, '%spiral%')
 OR 1=ivo_hasword(res_description, 'spiral')
 OR 1=ivo_hasword(res_title, 'spiral'))

Find all SIA services that provides infrared images

SELECT ivoid, access_url
FROM rr.capability
 NATURAL JOIN rr.resource
 NATURAL JOIN rr.interface
WHERE standard_id='ivo://ivoa.net/std/sia'
 AND 1=ivo_hashlist_has('infrared', waveband)

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 26 -

Find all searchable catalogs that provide a column containing redshift

SELECT ivoid, access_url
FROM rr.capability
 NATURAL JOIN rr.table_column
 NATURAL JOIN rr.interface
WHERE standard_id='ivo://ivoa.net/std/conesearch'
 AND ucd='src.redshift'

Find all the resources published by a certain authority

SELECT ivoid
FROM rr.resource
WHERE ivoid LIKE 'ivo://org.gavo.dc%'

What registry records are there from a given publisher?

SELECT ivoid
FROM rr.resource
 NATURAL JOIN rr.res_role
WHERE 1=ivo_nocasematch(role_name, '%gavo%')
 AND base_role='publisher'

or, if the publisher actually gives its ivo-id in the registry records,

SELECT ivoid
FROM rr.resource
 NATURAL JOIN rr.res_role
WHERE role_ivoid='ivo://ned.ipac/ned'
 AND base_role='publisher'

What registry records are there originating from registry X?

This is using the CDS registry as an example. Note how this query builds conditions on values in
res_detail:

SELECT ivoid FROM rr.resource
RIGHT OUTER JOIN (
 SELECT 'ivo://' || detail_value || '%' AS pat FROM rr.res_detail
 WHERE detail_utype='vg:registry.managedauthority'
 AND ivoid='ivo://cds.vizier/registry')
 AS authpatterns
ON (resource.ivoid LIKE authpatterns.pat)

Find all TAP endpoints offering the relational registry

SELECT access_url
FROM rr.interface
NATURAL JOIN rr.capability
NATURAL JOIN rr.res_detail
WHERE standard_id='ivo://ivoa.net/std/tap'
 AND detail_utype='tr:datamodeltype.ivoid'
 AND detail_value='ivo://ivoa.net/std/regtap/vor'

Find all TAP services exposing a table with certain features

"Certain features" could be "have some word in their description and having a column with a certain
UCD". Then, a query could look like this:

SELECT ivoid, access_url, name, ucd, description
FROM rr.capability
 NATURAL JOIN rr.interface
 NATURAL JOIN rr.table_column
 NATURAL JOIN rr.res_table

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 27 -

WHERE standard_id='ivo://ivoa.net/std/tap'
 AND 1=ivo_hasword(table_description, 'quasar')
 AND ucd='phot.mag;em.opt.v'

Find all SSAP services that provide theoretical spectra

SELECT access_url
FROM rr.res_detail
 NATURAL JOIN rr.capability
 NATURAL JOIN rr.interface
WHERE detail_utype='ssap:datasource'
 AND standard_id='ivo://ivoa.net/std/ssa'
 AND detail_value='theory'

Find all ConeSearch services that provide stellar distance information

SELECT access_url, name, ucd, description
FROM rr.capability
 NATURAL JOIN rr.interface
 NATURAL JOIN rr.table_column
WHERE standard_id='ivo://ivoa.net/std/conesearch'
 AND ucd LIKE 'pos.parallax%'

Since there are multiple UCDs that might fit the concept of "stellar distance", one might need to give
multiple UCDs here.

The service at http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap is down, who can fix it?

SELECT DISTINCT base_role, role_name, email
FROM rr.res_role
 NATURAL JOIN rr.interface
WHERE access_url='http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap'

A. A Stylesheet Generating Utypes

<stylesheet version="1.0" xmlns:xml="http://www.w3.org/XML/1998/namespace" xmlns:="http://
www.w3.org/1999/XSL/Transform" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:vr="http://
www.ivoa.net/xml/VOResource/v1.0" xmlns:vs="http://www.ivoa.net/xml/VODataService/v1.1"
xmlns:vm="http://www.ivoa.net/xml/VOMetadata/v0.1">
<!-- extract utypes from VOResource and related XML schema files -->
<!-- This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either ver-
sion 3 of the License, or (at your option) any later version. This program is distributed in
the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warran-
ty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details. For the complete text of the GPL, see http://www.gnu.org/licenses/. -->
<!-- The basic strategy here is: start from all discernible types derived from vr:Resource,
vr:Capability, and vr:Interface; we should catch everything in a VOResource extension even if
we process file by file, unless one extension were to derive from a type defined in a differ-
ent extension. In emulation of the utype generation done by VO-DML, we concatenate along axes
that are simple attribuutes. When something is actually a collection, we start a new utype.
The utype fragment is the *name* of a type or attribute; this means a certain amount of poly-
morphism. In addition, for each schema, the prefix chosen for the target name space becomes
the data model name for utype purposes; when, during inheritance, we leave a file, the mod-
el name changes, too. Hack alert: We need to traverse the type tree; however, due to (practi-
cal) limitations of XSLT1, we don't do that across files. So, if a type were to inherit from
a class derived from VOResource or Capability in another document, this stylesheet would not
notice. Also, we kill all namespace prefixes in attributes. Proper handling of that probably
is close to impossible with XSLT1. -->
<output method="text"/>
<strip-space elements="*"/>
<!-- root classes for utype generation; this must include all types that extensions derive
from, since we don't see VOResource when processing them -->
<variable name="UTYPEROOTS">+Resource+Interface+Capability+Service+DataType+</variable>

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 28 -

<!-- An index used to retrieve the type definitions for the child elements in walk; note that
this only spans one file, which is the primary limitation of this program -->
<key name="definitions" match="xs:simpleType|xs:complexType" use="@name"/>
<!-- types directly derived from another (the key is the name of the base type); we need this
to identify start points for our tree traversal. -->
<key name="derivations" match="xs:simpleType|xs:complexType" use="substring-af-
ter(./xs:complexContent/*/@base, ':')"/>
<template name="add-doc">
<!-- retrieve the "short" doc and add them in parens if present, emit an lf either way -->
<if test="boolean(xs:annotation[1])">
<value-of select="concat(' (', normalize-space(xs:annotation[1]/xs:documentation), ')')"/
>

</if>
<text> </text>

</template>
<template name="concat-dot">
<!-- concatenate to parts with a dot unless there's another non-letter at the end of the
first part -->
<param name="first"/>
<param name="second"/>
<choose>
<when test="substring($first, string-length($first), 1)=':'">
<value-of select="$first"/>
<value-of select="$second"/>

</when>
<otherwise>
<value-of select="$first"/>
.
<value-of select="$second"/>

</otherwise>
</choose>

</template>
<template name="emit-utype-for-current">
<!-- prints a utype for the current element -->
<param name="parent-path"/>
<call-template name="concat-dot">
<with-param name="first" select="$parent-path"/>
<with-param name="second" select="@name"/>

</call-template>
<call-template name="add-doc"/>

</template>
<template name="format-for-attribute">
<!-- emits utypes for an within a type if the element is 0..1:1 -->
<param name="parent-path"/>
<!-- capability and interface are roots of their own -->
<if test="@name!='capability' and @name!='interface'">
<call-template name="emit-utype-for-current">
<with-param name="parent-path" select="$parent-path"/>

</call-template>
<variable name="child-type" select="substring-after(@type, ':')"/>
<if test="key('definitions', $child-type)">
<variable name="child-path">
<call-template name="concat-dot">
<with-param name="first" select="$parent-path"/>
<with-param name="second" select="@name"/>

</call-template>
</variable>
<for-each select="key('definitions', $child-type)">
<call-template name="walk">
<with-param name="parent-path" select="$child-path"/>

</call-template>
</for-each>

</if>
</if>

</template>
<template name="walk">

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 29 -

<!-- the central (recursive) template building up utypes by collecting subelements; the
current node here is a type definition -->
<param name="parent-path"/>
<for-each select="descendant::xs:attribute">
<call-template name="concat-dot">
<with-param name="first" select="$parent-path"/>
<with-param name="second" select="@name"/>

</call-template>
<call-template name="add-doc"/>

</for-each>
<for-each select="descendant::xs:element">
<choose>
<when test="@maxOccurs='unbounded'">
<!-- emit a utype of the collection, then start a new utype hierarchy -->
<call-template name="emit-utype-for-current">
<with-param name="parent-path" select="$parent-path"/>

</call-template>
<variable name="new-root" select="concat(substring-before(@type, ':'), ':')"/>
<for-each select="key('definitions', substring-after(@type, ':'))">
<call-template name="format-for-type">
<with-param name="parent-path" select="$new-root"/>

</call-template>
</for-each>

</when>
<otherwise>
<call-template name="format-for-attribute">
<with-param name="parent-path" select="$parent-path"/>

</call-template>
</otherwise>

</choose>
</for-each>

</template>
<template name="format-for-type">
<!-- generates utypes for the current type and the classes it is derived from -->
<param name="parent-path"/>
<variable name="type-path">
<call-template name="concat-dot">
<with-param name="first" select="$parent-path"/>
<with-param name="second" select="@name"/>

</call-template>
</variable>
<value-of select="$type-path"/>
<call-template name="add-doc"/>
<call-template name="walk">
<with-param name="parent-path" select="$type-path"/>

</call-template>
<call-template name="walk-in-hierarchy">
<with-param name="base-type" select="@name"/>
<with-param name="parent-path" select="$parent-path"/>

</call-template>
</template>
<template name="walk-in-hierarchy">
<!-- generates utypes for stuff derived from base-type -->
<param name="base-type"/>
<param name="parent-path"/>
<for-each select="key('definitions', substring-after(./xs:complexContent|xs:simpleContent/
*/@base, ':'))">
<call-template name="format-for-type">
<with-param name="parent-path" select="$parent-path"/>

</call-template>
</for-each>
<for-each select="key('derivations', @name)">
<call-template name="format-for-type">
<with-param name="parent-path" select="$parent-path"/>

</call-template>
</for-each>

</template>

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 30 -

<template name="isUtypeRoot">
<!-- generates true if the current type is eligible as a root of a utype hierarchy, nothing
otherwise. -->
<variable name="uqbase" select="substring-after(./xs:complexContent/*/@base, ':')"/>
<!-- keep the explicit tests for the base since in VOResource extensions we won't see the
base classes -->
<choose>
<when test="contains($UTYPEROOTS, concat('+', @name, '+')) or contains($UTYPEROOTS, con-
cat('+', $uqbase, '+'))">true</when>
<otherwise>
<for-each select="key('definitions', $uqbase)">
<call-template name="isUtypeRoot"/>

</for-each>
</otherwise>

</choose>
</template>
<template match="xs:complexType">
<!-- initiates a walk through the tree of child constructs if the current element is a re-
source, capability, or interface, or directly derived from one of those -->
<variable name="isRoot">
<call-template name="isUtypeRoot"/>

</variable>
<if test="$isRoot='true'">
<call-template name="format-for-type">
<with-param name="parent-path" select="concat(//xs:appinfo/vm:targetPrefix, ':')"/>

</call-template>
</if>

</template>
<template match="/">
<apply-templates/>

</template>
<template match="text()"/>

</stylesheet>
<!-- vi:et:sw=2:sta -->

B. The Extra UDFs in PL/pgSQL

What follows are implementations of the three user defined functions specificed in section 8 in the dialect
the PostgreSQL server uses for SQL procedures, PL/pgSQL. For more details on PostgreSQL, see, e.g.,
[doc:Postgres92].

CREATE OR REPLACE FUNCTION ivo_hasword(haystack TEXT, needle TEXT)
RETURNS INTEGER AS $func$
BEGIN
 IF to_tsvector(haystack) @@ plainto_tsquery(needle) THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
END;
$func$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION ivo_hashlist_has(hashlist TEXT, item TEXT)
RETURNS INTEGER AS $func$
BEGIN
 -- postgres can't RE-escape a user string; hence, we'll have
 -- to work on the hashlist
 IF lower(item) = ANY(string_to_array(lower(hashlist), '#')) THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
END;
$func$ LANGUAGE plpgsql;

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 31 -

CREATE OR REPLACE FUNCTION ivo_nocasematch(value TEXT, pattern TEXT)
RETURNS INTEGER AS $func$
BEGIN
 IF value ILIKE pattern THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
END;
$func$ LANGUAGE plpgsql;

C. Implementation notes

This appendix contains a set of constraints and recommendations for implementing the relational registry
model on actual RDBMSes; this concerns, in particular, minimum lengths for columns of type adql:VARCHAR.
Implementations MUST NOT truncate strings of length equal to or smaller than the minimal lengths given here;
the limitations are not, however, upper limits, and indeed, when choosing an implementation strategy it is in
general preferable to not impose artificial length restrictions, in particular if no performance penalty is incurred.

These notes can also be useful with a view to preparing user interfaces for the relational registry, since input
forms and similar user interface elements invariably have limited space; the limits here give reasonable defaults
for the amount of data that should minimally be manipulatable by a user with reasonable effort.

These guidelines and rules discussed here originiate partly from an analysis of the data content of the VO
registry in February 2013, partly from a consideration of limits in various XML schema documents.

The ivoid field present in every table of this specification merits special consideration, on the one hand
due to its frequency, but also since other IVOA Identifiers present in the relational registry should probably
be treated analoguously. Given that IVORNs in the 2013 data fields have a maximum length of roughly 100
characters, we propose a maximum length of 255 should be sufficient even when taking possible fragment
identifiers into account.

Field type Datatype suggested Pertinent Fields

ivo-id VARCHAR(255) {all_table}.ivoid
resource.footprint_ivoid
(resource.harvested_from) - not
standard?
res_role.role_ivoid
capability.standard_id
relationship.related_id
validation.validated_by

The relational registry also contains some date-time values. The most straightforward implementation certainly
is to use SQL timestamps. Other relational registry fields that straightforwardly map to common SQL types are
those that require numeric values, viz., adql:REAL, adql:SMALLINT, and adql:INTEGER. The following
table summarizes these:

Field type Datatype Pertinent Fields

floating point adql:REAL resource.region_of_regard

small integer adql:SMALLINT capability.cap_index
res_schema.schema_index
res_table.schema_index
table_column.std
interface.cap_index

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 32 -

Field type Datatype Pertinent Fields
interface.intf_index
intf_param.cap_index
intf_param.intf_index
intf_param.std
validation.level
validation.cap_index
res_detail.cap_index
res_table.table_index
table_column.table_index

The fields containing Utypes, UCDs, and Units are treated in parallel here. The 2013 registry data indicates a
length of 128 characters is sufficient for real-world purposes; actually, at least UCDs and Units could of course
grow without limitations, but it seems unreasonable anything longer than a typical line might actually be useful.
As far as utypes are concerned, we expect those to shrink rather than grow with new standardization efforts.

Field type Datatype suggested Pertinent Fields

Utype(s)
UCD(s)
Units

VARCHAR(128) res_schema.schema_utype
res_table.table_utype
table_column.ucd
table_column.unit
table_column.utype
intf_param.ucd
intf_param.unit
intf_param.utype
res_detail.detail_utype

The relational registry further has an e-mail field, for which we chose 128 characters as a reasonable upper
limit (based on a real maximum of 40 characters in the 2013 data). There are furthermore URLs (in addition
to access and reference URLs, there are also URLs for the WSDL of SOAP services and logos for roles).
Due to the importance of in particular the access URLs we strongly recommend to use non-truncating types
here. Empirically, there are access URLs of up to 224 characters in 2013 (reference URLs are less critical at a
maximum of 96 characters). Expecting that with REST-based services, URL lengths will probably rather tend
down than up, we still permit truncation at 255 characters.

Field type Datatype suggested Pertinent Fields

e-mail VARCHAR(128) res_role.email

URLs VARCHAR(255) resource.reference_url
res_role.logo
interface.wsdl_url
interface.access_url

The next group of columns comprises those that have values taken from a controlled or finite vocabulary.
Trying to simplify the view, lengths in the form of powers of two are considered.

Field type Datatype suggested Pertinent Fields

VARCHAR(255) resource.content_level
resource.content_type

VARCHAR(64) resource.waveband

predefined
values

VARCHAR(32) resource.res_type
resource.rights
capability.cap_type

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 33 -

Field type Datatype suggested Pertinent Fields
res_table.table_type
table_column.flag
table_column.datatype
table_column.extended_schema
table_column.extended_type
table_column.type_system
interface.result_type
intf_param.datatype
intf_param.extended_schema
intf_param.extended_type

VARCHAR(4) interface.query_type
interface.url_use

Finally, there are the fields that actually contain what is basically free text. For these, we have made a choice
from reasonable powers of two lengths considering the actual lengths in the 2013 registry data. A special case
are fields that either contain natural language text (the descriptions) or those that have grown without limit
historically (resource.creator_seq, and, giving in to current abuses discussed above, res_role.role_name). For
all such fields, no upper limit can sensibly be defined. However, since certain DBMSes (e.g.,MySQL older than
version 5.6) cannot index fields with a TEXT datatype and thus using VARCHAR may be necessary at least
for frequenly-searched fields, we give the maximal length of the fields in the 2013 registry in parentheses after
the column designations for the TEXT datatype:

Field type Datatype suggested Interested Fields

TEXT resource.res_description (7801)
resource.creator_seq (712)
res_role.role_name (712)
res_schema.schema_description
(934)
res_table.table_description (934)
table_column.description (3735)
intf_param.description (347)
capability.cap_description (100)

VARCHAR(255) resource.res_title
res_role.address
res_schema.schema_title
res_table.table_title
relationship.related_name
res_detail.detail_value

VARCHAR(128) resource.version
resource.source_value
resource.facility
resource.instrument subject.subject

VARCHAR(64) res_table.table_name
table_column.name
intf_param.name

free string values

VARCHAR(32) resource.source_format
res_role.telephone
res_schema.schema_name
interface.intf_type
interface.intf_role
relationship_type

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 34 -

Field type Datatype suggested Interested Fields
res_date.value_role

VARCHAR(16) resource.short_name
table_column.arraysize
interface.std_version
intf_param.use

D. Changes from Previous Versions

D.1. Changes from WD-20121112

• Adapted all utypes to better match future VO-DML utypes.
• footprint, data_url, facility, and instrument are no longer in rr.resource but are instead kept in rr.res_details

rows.
• For VOResource compliance, intf_param has no flag column any more.
• res_role.base_utype is renamed to res_role.base_role and no longer pretends to be a utype fragments;

also, the content is now a simple word..
• intf_param.use is now called intf_param.use_param to avoid possible clashes with reserved SQL words.
• Removed all material on STC coverage.
• Added an appendix recommending field sizes.

References

[std:RI1] Kevin Benson, Ray Plante, Elizabeth Auden, Matthew Graham, Gretchen Greene, Martin Hill, Tony
Linde, Dave Morris, Wil O'Mullane, Guy Rixon, Aurélien Stébé, and Kona Andrews, Kevin Benson and Ray
Plante, editors.

IVOA registry interfaces version 1.0. IVOA Recommendation, 2009.
[std:RFC2119] S Bradner.

Key words for use in RFCs to indicate requirement levels. RFC 2119, March 1997.
[std:XMLNS] Tim Bray, Dave Hollander, Andrew Layman, Richard Tobin, and Henry S. Thompson.

Namespaces in XML 1.0 (third edition). W3C Recommendation, December 2009.
[std:UNICODE] The Unicode Consortium.

The unicode standard, version 6.1 core specification, 2012.
[std:TAPREGEXT] Markus Demleitner, Patrick Dowler, Ray Plante, Guy Rixon, and Mark Taylor.

TAPRegExt: a VOResource schema extension for describing TAP services, version 1.0. IVOA Recom-
mendation, August 2012.

[std:TAP] Patrick Dowler, Guy Rixon, and Doug Tody.
Table access protocol version 1.0. IVOA Recommendation, March 2010.

[std:STDREGEXT] Paul Harrison, Douglas Burke, Ray Plante, Guy Rixon, and Dave Morris.
StandardsRegExt: a VOResource schema extension for describing IVOA standards, version 1.0. IVOA
Recommendation, May 2012.

[doc:Postgres92] http://www.postgresql.org/docs/9.2/static/index.html.
PostgreSQL 9.2.1 documentation. [Online].

[std:OBSCORE] Mireille Louys, Francois Bonnarel, David Schade, Patrick Dowler, Alberto Micol, Daniel Du-
rand, Doug Tody, Laurent Michel, Jesus Salgado, Igor Chilingarian, Bruno Rino, Juan de Dios Santander, and
Petr Skoda, Doug Tody, Alberto Micol, Daniel Durand, and Mireille Louys, editors.

Observation data model core components and its implementation in the Table Access Protocol, version
1.0. IVOA Recommendation, 2011.

[std:ADQL] Iñaki Ortiz, Jeff Lusted, Pat Dowler, Alexander Szalay, Yuji Shirasaki, Maria A. Nieto-Santisteba,
Masatoshi Ohishi, William O'Mullane, Pedro Osuna, the VOQL-TEG, and the VOQL Working Group, Pedro
Osuna and Iñaki Ortiz, editors.

Ivoa astronomical data query language. IVOA Recommendation, 2008.

http://www.ivoa.net/Documents/RegistryInterface/
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.unicode.org/versions/Unicode6.1.0
http://www.ivoa.net/Documents/TAPRegExt
http://www.ivoa.net/Documents/TAP
http://www.ivoa.net/Documents/StandardsRegExt/20120508/REC-StandardsRegExt-1.0-20120508.html
http://www.postgresql.org/docs/9.2/static/index.html
http://www.ivoa.net/Documents/ObsCore/20111028/REC-ObsCore-v1.0-20111028.pdf
http://www.ivoa.net/Documents/ObsCore/20111028/REC-ObsCore-v1.0-20111028.pdf
http://www.ivoa.net/Documents/latest/ADQL.html

IVOA Registry Relational Schema IVOA Working Draft 5 March 2013

- 35 -

[std:VOR] Raymond Plante, Kevin Benson, Matthew Graham, Gretchen Greene, Paul Harrison, Gerard Lem-
son, Tony Linde, Guy Rixon, and Aurélien Stébé.

VOResource: an XML encoding schema for resource metadata version 1.03. IVOA Recommendation,
February 2008.

[std:DALREGEXT] Raymond Plante, Jesus Delago, Paul Harrison, and Doug Tody.
SimpleDALRegExt: Describing simple data access services, version 1.0. IVOA Proposed Recommen-
dation, May 2012.

[std:VOID] Raymond Plante, Tony Linde, Roy Williams, and Keith Noddle.
IVOA identifiers, version 1.03. IVOA Recommendation, March 2007.

[std:VODS11] Raymond Plante, Aurélien Stébé, Kevin Benson, Patrick Dowler, Matthew Graham, Gretchen
Greene, Paul Harrison, Gerard Lemson, Tony Linde, and Guy Rixon.

VODataService: a VOResource schema extension for describing collections and services version 1.1.
IVOA Recommendation, December 2010.

http://www.ivoa.net/Documents/REC/ReR/VOResource-20080222.html
http://www.ivoa.net/Documents/SimpleDALRegExt/20120517/PR-SimpleDALRegExt-20120517.html
http://www.ivoa.net/Documents/REC/Identifiers/Identifiers-20070302.html
http://www.ivoa.net/Documents/VODataService/

	1. Introduction
	1.1. The Relational Registry within the VO Architecture

	2. Design Considerations
	3. Note on case normalization
	4. QNames in VOResource attributes
	5. VOResource Utypes
	6. Discovering Relational Registries
	7. VOResource Tables
	7.1. The resource Table
	7.2. The res_role Table
	7.3. The subject Table
	7.4. The capability Table
	7.5. The res_schema Table
	7.6. The res_table Table
	7.7. The table_column Table
	7.8. The interface Table
	7.9. The intf_param Table
	7.10. The relationship Table
	7.11. The validation Table
	7.12. The res_date Table
	7.13. The res_detail Table

	8. ADQL User Defined Functions
	9. Common Queries to the Relational Registry
	A. A Stylesheet Generating Utypes
	B. The Extra UDFs in PL/pgSQL
	C. Implementation notes
	D. Changes from Previous Versions
	D.1. Changes from WD-20121112

	References

