International
Virtual
Observatory

Alliance

Operational ldentification of Software
Components in the Virtual Observatory

Version 1.0

IVOA Note 2021-01-15

Working group
Operations

This version
http://www.ivoa.net /documents /softid /20210115
Latest version
http://www.ivoa.net/documents/softid
Previous versions

This is the first public release
Author(s)

Markus Demleitner, Mark Taylor
Editor(s)
Markus Demleitner

Abstract

In the Virtual Observatory, software often talks to other software. Dur-
ing development, while gathering statistics (e.g., ignoring validators), or in
operations (e.g., enabling workarounds for known bugs), it is often beneficial
to know something about the counterpart. This note collects recommended
practices on both the client and the server side for HT'TP-based protocols.
These recommendations make use of the existing standard HTTP headers

User-Agent for client requests and Server for server responses.

http://www.ivoa.net/documents/softid/20210115
http://www.ivoa.net/documents/softid
https://wiki.ivoa.net/twiki/bin/view/IVOA/WebHome?topic=MarkusDemleitner
https://wiki.ivoa.net/twiki/bin/view/IVOA/MarkusDemleitner?topic=MarkTaylor

Status of this document

This is an IVOA Note expressing suggestions from and opinions of the
authors. It is intended to share best practices, possible approaches, or other
perspectives on interoperability with the Virtual Observatory. It should not
be referenced or otherwise interpreted as a standard specification.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net /documents, .

Contents
1 Introduction 3
1.1 UseCaseso v v v i vt 3
1.1.1 Recognising Maintenance Queries 4
1.1.2 Dropping Workarounds 4
1.1.3 Client Snooping 4
1.1.4 Debugging 4
1.1.5 Notifications oL 4
1.2 Security and Privacy Considerations 4
2 Client Identification 5
2.1 User-Agent Header Standard Usage 5
2.2 User-Agent Header IVOA Recommendations 6
2.3 Examples 7
3 Server Identification 7
3.1 Server Header Standard Usage 7
3.2 Server Header IVOA Recommendations 7
3.3 Examples 8
3.4 Notes e 8
A Changes from Previous Versions 8
References 8
Acknowledgement

The bulk of this material was taken from a page on the IVOA wiki! that
resulted from a discussion at the 2018 College Park Interop (client side) and
a talk? at the 2019 Groningen Interop (server side).

"https://wiki.ivoa.net/twiki/bin/view/IVOA/UserAgentUsage
*https://wiki.ivoa.net/internal/IVOA/InterOpOct20190ps/serversoftware. pdf

http://www.ivoa.net/documents/
https://wiki.ivoa.net/twiki/bin/view/IVOA/UserAgentUsage
https://wiki.ivoa.net/internal/IVOA/InterOpOct2019Ops/serversoftware.pdf

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard RFC2119 (Bradner, 1997).

The Virtual Observatory (VO) is a general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

1 Introduction

Very early on in the construction of client-server architectures it was found
that it is useful to have mechanisms for discovering which software runs at the
other side of a connection, rather typically to aid in debugging. In particular,
HTTP, which is the basis of many of the VO’s protocols (Fielding and Gettys
et al., 1999), specifies the request header User-Agent that identifies the
client software (“for statistical purposes, the tracing of protocol violations,
and automated recognition of user agents for the sake of tailoring responses
to avoid particular user agent limitations”) and the response header Server.

These general rules were found insufficient for various purposes in the
Virtual Observatory. For instance, use case 1.1.1 was brought up at the
College Park Interop in 2018. Also, it was found that most servers did not
identify the relevant protocol implementations; the server headers rather
identified libraries the services were built with or even reverse proxies they
ran behind — information that is usually not useful when diagnosing oper-
ational problems in the VO, which mostly originate in the higher layers of
request handling.

This note gives recommendations on how to make the header fields more
useful for VO operations. While strictly only applicable to HTTP-based
protocols, we believe similar practices should be implemented where, as with
most VOEvent transports, communication mechanisms are not built on top
of HTTP.

To facilitate per-client analyses or similar use cases, adopters of this note
are requested to give the identification strings for their software on the SoftID
page in the IVOA wiki®.

1.1 Use Cases

Shttps://wiki.ivoa.net/twiki/bin/view/IVOA/SoftID

http://www.ivoa.net
https://wiki.ivoa.net/twiki/bin/view/IVOA/SoftID

1.1.1 Recognising Maintenance Queries

In the VO, several clients connect to services for operational purposes, for
instance in order to perform service validation or monitoring. If service
providers are gathering statistics on service usage, they may wish to distin-
guish these different classes of requests from requests presumably coming
from science users.

1.1.2 Dropping Workarounds

Clients occasionally work around bugs in server software; these workarounds
over time are a maintenance liability, and hence it is advantageous to drop
them when they are no longer needed. To establish when a workaround can
safely be dropped, developers need a simple way to enumerate which server
software is still running in the VO.

Conversely, a server may contain workarounds for client bugs. Again,
being able to find out whether code implementing these can be safely dropped
without adverse consequences on users is obviously beneficial.

1.1.3 Client Snooping

A server may offer experimental or advanced features to clients it knows
(though such use should in general be frowned upon, as it violates the spirit of
interoperability). Similarly, a client might under certain circumstances want
to enable or disable certain behaviour when realising it is communicating
with a known server component.

1.1.4 Debugging

For diagnosing failures, it is often useful to know which components are
part of a communication leading up the failure. This is in particular true
to avoid unnecessary analysis when known-obsolete or highly experimental
components are the root cause.

1.1.5 Notifications

As part of a responsible disclosure of a software weakness (or simply a request
for a software update), server developers might want to contact deployers of
vulnerable or otherwise broken software.

1.2 Security and Privacy Considerations

Several guidelines on IT security discourage giving details on the software
that drives a certain site in order to not give attackers information that
might be useful in an attack.

Following the practices proposed here will, indeed, weaken the “security
by obscurity” put forward in these treatments; on the other hand, when, as
is the case in the VO, attackers only have to scan perhaps several hundred
URLs, relying on security by obscurity does not seem a promising policy.

On the other hand, in the VO, where software providers rather typically
are members of the community, and given the Registry which allows rapid
discovery of active services, these software providers can contact operators
of vulnerable services given sufficiently precise software identification even
before a vulnerability is disclosed.

The identification of the client has fewer security implications, as it seems
unlikely that rogue services could be aided by information on the client
version when they target clients.

Software identification does play a role in user privacy; user agents are
regularly employed in user tracking on the WWW. While, presumably, the
generally non-profit operators in the VO will not use such data to signif-
icantly violate their users’ privacy, client authors may want to give users
the possibility to somewhat reduce the information content of the headers
proposed here.

On the other hand, the mechanisms proposed here are most relevant for
automated clients for which there usually are no privacy concerns.

Note also that the recommendations presented in this Note have only
incremental impacts on security and privacy; the standard server and client
header usage on which they build already have implications in these areas.

2 Client ldentification

2.1 User-Agent Header Standard Usage

The HTTP User-Agent header may be used by clients to identify their nature
or origin. The definition and usage of this header is described in RFC 2616
(Fielding and Gettys et al., 1999) section 14.43, with additional text on
syntax in sections 3.8 and 2.2. The definition was updated in RFC 7231
(Fielding and Reschke, 2014), section 5.5.3. The basic rule is that the content
of this field should consist of a sequence of tokens, where each token is either
a product name (with an optional version indicator), or a free-text comment
enclosed in parentheses. Formally (BNF from RFC 2616):

User-Agent = "User-Agent" ":" 1*(product | comment)
product = token ["/" product-version]
product-version = token

comment = "(" *(ctext | quoted-pair | comment) ")"
ctext = <any TEXT excluding "(" and ")">

token = 1*<any CHAR except CTLs or separators>
quoted-pair = "\" CHAR

Additional rules and conventions are that more-significant tokens should
appear earlier in the sequence, and that the content should be “short and to
the point”.

2.2 User-Agent Header IVOA Recommendations

The Operations IG endorses and encourages use of these standard rules con-
cerning the User-Agent header, and adds a further convention, which does
not conflict with the above rules: clients whose primary purpose is opera-
tional, as opposed to scientific, should indicate that purpose by including a
comment token of the form

(IVOA-<op-purpose> <optional-extra-text>).
Suggested op-purpose values are currently:

test The purpose of the access is to test service availability or performance
(monitoring) or standards-compliance (validation); at this point, no
good reason to separate the different cases was identified.

copy The purpose of the access is to replicate (parts of) the content published
through the service, be it for aggregation (harvesting) or re-publication
(mirroring).

This list may evolve in the future; extensions should be proposed on the
ops@ivoa.net mailing list. Custom op-purpose values are permitted. Case
is significant in op-purpose values and its “IVOA-" prefix.

The <optional-extra-text> could be used to indicate a URL at which
more information about the client, or perhaps about the results it is gathering
from the current request, can be found. However, in accordance with the
injunction from RFC 7231 “A user agent SHOULD NOT generate a User-
Agent field containing needlessly fine-grained detail”, such additional text
should be added only when it serves a real purpose.

Formally:
ivoa-comment = "(IVOA-" op-purpose *(
ctext | quoted-pair | comment) ")"
op-purpose = "test" | "copy" | token

Tokens of the form ivoa-comment should not appear in the User-Agent
field if the request is a “normal” user science query. There are obviously
grey areas between operational and science requests; this convention does
not attempt to provide a rigid definition of these categories.

This arrangement allows service operators to test in their logs for
User-Agent values whose content matches the sequence “(IVOA-”, or per-
haps “(IVOA-test”, and adjust their usage statistics appropriately. Note,

however, that it is not feasible to force operational clients to follow this con-
vention, so service operators will still need to be careful in analysing their
usage statistics.

2.3 Examples

A science query from the STILTS tapquery TAP client might contain the
HTTP header

User-Agent: STILTS/3.1-4 Java/1.8.0_181

while a query from the STILTS taplint TAP service validator might contain
the header

User-Agent: STILTS/3.1-4 (IVOA-test) Java/1.8.0_181

or maybe (line break for typographic reasons)

User-Agent: STILTS/3.1-4 (IVOA-test
http://validators.org/results) Java/1.8.0_181

The server identification example, tapstat.py, discussed in section 3 illus-
trates one way to add such headers using Python’s built-in urllib.

In Java, an application can be configured to add tokens in this way to the
User-Agent value for all HT'TP client requests by setting the http.agent
system property.

3 Server ldentification

3.1 Server Header Standard Usage

The HTTP Server header may be used by servers to identify their imple-
mentation software. It is defined by RFC 2616 section 14.38, updated by
RFC 7231 section 7.4.2. The header value syntax is identical to that for the
User-Agent header described in section 2.1.

3.2 Server Header IVOA Recommendations

We recommend using the Server header in accordance with standard usage,
but VO servers should where possible include product tokens for the VO
software actually processing the request. As on the client side, list VO
components in front of more generic HT'TP server software.

3.3 Examples

A server running DaCHS might take steps to issue HT'TP responses contain-
ing the header:

DaCHS/2.2.1 twistedWeb/18.9.0

which would be preferred over the basic

TwistedWeb/18.9.0

which the server infrastructure might provide by default.
This note comes with an example programme obtaining global server

statistics for registered TAP services®.

3.4 Notes

Use case 1.1.2 might appear to require Registry support for server identi-
fication to enable queries like “give me a list of all server software in use
in the VO” or “which operators run version 21.2 of software X?7” However,
given that it is unlikely that the VO will ever host more than a few hun-
dred distinct servers of a given type (under the assumption that each piece
of software on a large data centre will serve many different resources), the
use cases for global server identification can probably be satisfied by running
one request each against these servers, access URLs for which can readily be
discovered in the Registry as it is.

A Changes from Previous Versions

No previous versions yet.

References

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
http://www.ietf.org/rfc/rfc2119.txt

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.
and Berners-Lee, T. (1999), ‘Hypertext transfer protocol — HTTP /1.1’
rfc2616.
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Fielding, R. and Reschke, J. (2014), ‘Hypertext transfer protocol
(HTTP/1.1): Semantics and content’, RFC 7231.
https://tools.ietf.org/html/rfc7231

“http:/ /www.ivoa.net/documents/softid /20210115 /tapstats.py; for the S*AP proto-
cols, some URL heuristics might be necessary in order to achieve true server enumeration.

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/Protocols/rfc2616/rfc2616.html
https://tools.ietf.org/html/rfc7231
http://www.ivoa.net/documents/softid/20210115/tapstats.py

	Introduction
	Use Cases
	Recognising Maintenance Queries
	Dropping Workarounds
	Client Snooping
	Debugging
	Notifications

	Security and Privacy Considerations

	Client Identification
	User-Agent Header Standard Usage
	User-Agent Header IVOA Recommendations
	Examples

	Server Identification
	Server Header Standard Usage
	Server Header IVOA Recommendations
	Examples
	Notes

	Changes from Previous Versions
	References

