GERMAN ASTROPHYSICAL

GAVO

VIRTUAL OBSERVATORY X
Fig. 1

* Federal Ministry
¥ | of Education
and Research

Fig. 2
1. Whither ADQL

(vgl. Fig. 1)

Markus Demleitner
msdemlei@ari.uni-heidelberg.de

(vgl. Fig. 2)

e Bugs
o Wishlist
e Vision

e Validation

2. Bugs and Misfeatures

(These come from TAP implementation notes)

e Missing language on the separator nonterminal. A naive implementation of the grammar
will only allow comments between parts of split-up string literals.

Reference system argument on Geometries: Can we deprecate it? I've yet to meet a single
person who likes it, I've yet to see convincing use cases for it, and the behavior is only
vaguely defined. However, it's yet another of these little things that make implementing
ADQL painful.

Decay of INTERSECTS to CONTAINS: Can we deprecate it? This one again means im-
plementation effort, since you'll have to keep track of the argument types. This is the only
feature in current ADQL that positively requires type-annotation of inner nodes of the parse
tree (at least on top of pgSphere).

Lack of a type system. The table listing valid types in the TAP standard should have been in
the ADQL document, complete with suggested VOTable types. This would also be a good
opportunity to outfit ADQL with booleans. ..

3. Wishlist

Simple crossmatch function: t1 join t2 on (l=crossmatch(tl.ra, tl.dec, t2.ra,
t2.dec, 0.001). The thing with contains and circle is all nice and flexible, but the default
circular crossmatch is so frequent we should support it with a simple function.

User defined geometric (and maybe string)-valued functions. I'd like to have a function
to, e.g., apply proper motion to positions. Right now, this doesn't (really) work since user
defined functions are always numeric: select move_pm(pos, pm, -22)

ILIKE or LOWER — right now, there's no portable way to do case-insenstive compari-
sons/matching in ADQL.

UNION — well, it's one of the fundamental operations of relational algebra. There's also no
way to concatenate relations otherwise.

Booleans — though we probably cannot fix CONTAINS and INTERSECTS any more, but
within the type system we should definitely mention booleans. I'm not aware of a major
RDMS that would be ruled out as a basis of ADQL because of that.

4. Units and UCDs

A big step forward for an astrophysical query language would be unit-awareness. A fairly easy
addition could be a unit cast, e.g., by a function

in_unit(expression, unit_string) -> numeric

that would fail if the service doesn’t know the unit of expression or cannot convert between the
two units.

In reality, to be able to come up with valid units in the resulting VOTables, ADQL would need
to get numeric literals with units. That requires new syntax, and we'd need to carefully weigh
the benefits against adding syntax.

Another cool feature in data discovery could be column selection by UCD, e.g.,

SELECT [[pos.eq.rax]], [[pos.eq.dec*]], [[phot.magx]]...

— but that wants more thought.

5. Visions

If you're looking for a topic for a grant application: ADQL 3.0 should, in my view:

e support subqueries syntactically, like functions, to facilitate factoring,

o still be text-based, but easy enough to parse and interpret that graphical front-ends are
feasible,

o more explicitely support the idea of pipelines (in the Unix sense, except that joining them
would be a much more common operation) — people seem to be quite comfortable with that
metaphor,,

o lean towards declarative constructs (“my problem is" rather than “do this, then that").

e have a sqlite-based implementation from start.

e still be non-Turing complete — actually, it should be provably possibly to transform any valid

ADQL 3.0 program to SQL.
| frankly have no clue what such a beast would look like, except that | think some rather
interesting work has been done within AstroWISE.

6. Validation

There are now a number of ADQL implemenations out there, and more are coming. ADQL is
complex, and the grammar has a few pitfalls.

Thus: We need a validation suite. A while ago, | made an attempt at starting one two years ago,
which didn't take off but still is at

http://svn.ari.uni-heidelberg.de/svn /gavo/ADQLValidation/trunk/

Bold coworkers wanted to take that up again.

