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2. Why Registry Interfaces 2?

• RI1 relies on several deprecated technologies (an ad-hoc protocol on top of SOAP, ADQL
version 1 in XML serialization).

• RI1 underspecifies what’s being queried against, so even fairly simple queries behave rather
differently on the various registries, complex queries appear to be impossible. The net result
is that the VO’s registry infrastructure is dramatically underused; that’s particulary bad
since it’s probably going to be what will enable the VO killer application.

• The RI1 infrastructure is in need of lots of work and maintenance; re-using existing com-
ponents (e.g., TAP servers or Solr) will be less work in the medium run.
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3. Registry Interfaces 2

There’s an internal working draft1 on volute, consisting of:

• The IVOA Harvesting Interface (OAI-PMH plus some restrictions, only redactional changes
so far; well, there’s some relaxation on the rules with deleted records, but that’s not a big
deal).

• “Searching the Registry”, a complete rewrite based on TAP (“RegTAP” in parallel to
“ObsTAP”).

• Registering Registries (basically unchanged, except we don’t need to register searchable
interfaces any more, TAPRegExt does it for us).

4. RegTAP in Brief

Basic RegTAP is 13 tables mapping most of VOResource. These were discussed in some breadth
in Urbana, so here’s the short version –

• resource (what’s 1:1 to an IVORN, plus a few #-concatenated values)

• res role (creators, publishers, contacts)

• capability, interface, intf param (access metadata incl. query parameters, where the access
URL is folded into interface)

• res schema, res table, table column (that’s basically VODataService)

• subject, res date (res date is for curation/date and might be another candidate for absorp-
tion into res detail, provided we generated funky utypes here)

• relationship

• validation

• res detail (that’s utype-value pairs for registry extension and arcane features)

5. What’s new in RegTAP?

Compared to what I showed in Urbana, here’s the main changes to the relational registry schema:

• There’s now a single res role table that combines the previous creator table and the publisher
and contact fields from the resource table. This lets you have multiple contacts again.

• accessurl is folded into interface so there’s only one access URL per interface now

• resource.creator seq keeps creator (“author”) names in the source sequence for presentation
purposes

• capability detail is now res detail (which still has a cap index column; if that is NULL, it’s
a detail on the whole resource now. The spec now has a table of utypes for the registry
extensions known to date.)

• resourcevalidation and capabilityvalidation became a single table with a convention as for
res detail to tell resource from capability validation

• New user-defined functions: ivo nocasematch, ivo hasword, ivo hashlist has.

1 http://volute.googlecode.com/svn/trunk/projects/registry/RegistryInterface/RegistryInterface2-

fmt.html
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6. The STC Extension

There’s now a separate “Data Model” with IVORN ivo://ivoa.net/std/RegistryInterface#stc.
It consists of tables like:

ivoid vor:resource.identifier

time start stc:AstroCoordArea.TimeInterval.StartTime

time end stc:AstroCoordArea.TimeInterval.EndTime

for space, time, spectral, and redshift. This means: service coverage is modelled as a union of
intervals (or bounding boxes).

For space, we initially planned to have a column containing an ADQL geometry to allow complex
shapes. That’s very hard without polymorphous geometries in the backend database since a
geometry type that can represent both AllSky and weird polygons is nontrivial, as is splitting up
large coverages to turn them into unions of smaller shapes.

Figuring out bounding boxes is, in comparison, reasonable, even on a sphere.

7. Calls for Discussion

Do we need this?

Well, we need something, and quick. This is actually rather cheap, since we get TAP and ADQL
for (almost) free. If you already have a harvester and OAI-PMH, this is about 500 lines of python,
probably a bit more in XSLT. And it can do all the use cases in the Wiki2.

Do we want all role-like things in one table?

I’m neutral here, except that we should have “creator” easily searchable (on ADS, by far the
most queries involve authors).

Should the RR tables live in the ivoa schema?

The ivoa schema was pioneered by Obscore; of course, obscore only defines a single table. So, I
think we’re fine claiming a new schema.

2 http://wiki.ivoa.net/twiki/bin/view/IVOA/RestfulRegistryInterfaceReq
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8. More Discussion

Should we require a table containing VOResource XML?

This certainly would be useful for presentation, and if you’re running OAI-PMH you’ll probably
have such a table anyway. On the other hand, the details (namespace mappings come to mind)
are ugly.

Utypes

Absent VOResource in VO-URP or whatever else, we’re free to beautify the utypes we use. It
would be nicer to have vor:standard.endorsedVersion rather than vor:resource.endorsedVersion.
But we certainly don’t want vor:standard.curation, so it’s tricky.

9. Still more discussion

Do we want to talk about STC at all?

I think we should. Even if STC-X sucks, if we want to keep all-VO searches feasible we simply
have to filter resources at the registry level, and coverage is an obvious and fairly powerful
filter. The next VOResource should limit the STC-X constructs available, though, or define some
coverage elements itself.

Who’s gonna implement this? How many of these are going to be around?

Well, that is the question. Try it. It’s not terribly hard.

We’ll have a second, geographically distributed server for this stuff soon-ish, and I hope to win
some of the DaCHS deployers. Still, there should be independent implementations.
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