
Datalink in PyVODatalink in PyVO
Markus Demleitner1, Stefan Becker1,2

1 Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstraße 12-14, Germany
2 SFB 881 “The Milky Way System”

msdemlei@ari.uni-heidelberg.de

Fig. 1: Spectra for EI
Eri, pulled as previews through
datalink and arranged in 10
seconds, using example 1.

Abstract

The Virtual Observatory standard Datalink facilitates the efficient dissemination of complex datasets consisting of multiple artifacts (e.g.,
science data, calibration files, observation logs, associate plots; see [3]). It also supports the association of server-side preprocessing
services (e.g., cutouts, rebinning). Such machine-readable declarations can save large amounts of unneccessary traffic in particular
when doing automated processing of multiple, diverse datasets. They also mesh nicely with the focus of the astropy-affiliated package
pvVO. We have therefore added support for datalink services and documents to pyVO. This contribution will briefly discuss the compact
API we have designed as the glue between user code and datalink.

The Datalink Protocol

The Datalink VO standard [3, 4] provides a file format to group the various parts
of a science data product and to declare relationships between them. A datalink
document could thus say:

K9O201.fits is the main observation
K9O201.jpg is a preview of the observation
proc/K9O201 masks.fits is a bright star mask
proc/K9O201 objs.vot is a extracted sources
proc/K9O201 cmd.png is a CMD derived from the observation

Note that this part of datalink is also very useful as an index file within product
packages (e.g., a .tar.gz).

Datalink further defines an access protocol for such documents, and it allows the
declaration of server-side processing services. An auxiliary standard called SODA
[2] defines some standard operations, in particular for cutouts.

Datalink Service API

(This is work in progress and subject to change)

Datalink-compliant processing services can be accessed through the
services attribute of a datalink result. Each element in that ex-
poses the parameters accepted by the service in a parameters at-
tribute (which has attributes like upper limit, lower limit, le-
gal values, ucd, unit, description, and, in particular, value).
From these, arguments to the query method can be built with au-
tomatic, astropy-type unit conversion.

For SODA-defined services, there is a shortcut that supports the
standards SODA parameters. Its use is illustrated in the following
little program that arranges cutouts from historical plates around
Mira, which, based on an obscore query, yields Figure 2 with very
moderate resource consumption:

import math, requests, io, Image

import pyvo

from astropy.coordinates import SkyCoord

from astropy.io import fits

svc = pyvo.dal.tap.TAPService("http://dc.g-vo.org/tap")

roi = SkyCoord.from_name(’Mira’)

cutouts = []

for rec in svc.run_sync(

"SELECT access_url, access_format FROM ivoa.obscore"

" WHERE obs_collection=’HDAP’"

"AND 1=CONTAINS(CIRCLE(’ICRS’, {}, {}, 0.05),"

"s_region)".format(roi.ra.deg, roi.dec.deg)):

processed = rec.processed(

circle="{} {} {}".format(roi.ra.deg, roi.dec.deg, 0.05))

pixels = fits.open(io.BytesIO(processed.read()))[0].data

cutouts.append(

Image.fromarray(((pixels/float(pixels.max()))*255).astype(’uint8’)))

per_line = int(math.ceil(math.sqrt(len(cutouts))))

dest_size, stamp_size = 1600, 1600/per_line

montage = Image.new("L", (dest_size, dest_size))

for index, img in enumerate(cutouts):

montage.paste(

img.resize((stamp_size, stamp_size)),

(index/per_line*stamp_size, index%per_line*stamp_size))

montage.save("cutouts.jpg")

Example 2

Datalink Files API

The pyVO package has beta-level support for datalink in its development releases.

With this, DAL results have an additional method iter datalinks, which on
services supporting datalink, iterates over datalink documents for the results re-
turned.

Datalink documents are modeled as DatalinkResult instances. You can iterate
over these to obtain all links including their descriptions, media types, etc, or you
can directly access specific items through the bysemantics method.

Here’s some sample code to pull spectral previews for EI Eri and paste them
together; this code produces Fig. 1 in about 10 seconds:

import io, requests, pyvo, Image

from astropy.coordinates import SkyCoord

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")

matches = svc.search(SkyCoord.from_name("EI Eri"), 0.001)

xoff, yfact = 2, 0.7

previews = []

for dl in matches.iter_datalinks():

prev_url = dl.bysemantics("#preview").next()["access_url"]

im = Image.open(io.BytesIO(requests.get(prev_url).content))

previews.append(im)

xsz, ysz = previews[0].size

montage = Image.new("L",

(xsz+(len(previews))*xoff, int(ysz*yfact*(len(previews)))),

color=240)

for index, preview in enumerate(previews):

montage.paste(preview, (index*xoff, int(ysz*yfact*index)))

montage.save("montage.png")

Example 1

Fig. 2: Cutouts around Mira, pulled from plate scans roughly 1 Gigabyte apiece in a
couple of seconds by employing SODA cutouts (example 2).

Getting pyVO with Datalink

The Datalink file API is already released with
pyVO 0.6.1 (pip install pyvo is enough).
The service API is currently available by cloning
the master git repository [1] and checking out
the soda branch.

We expect to provide a release containing the
service API in late 2017.

[1] Stefan Becker et al. pyVO current source code. git repository, 2017.

[2] François Bonnarel, Markus Demleitner, Patrick Dowler, Douglas Tody, and James Dempsey. IVOA
server-side operations for data access version 1.0. IVOA Recommendation, May 2017.

[3] Markus Demleitner. Introducing datalink. Poster presented at the ADASS XXV, Sydney, October
2015, October 2015.

[4] P. Dowler, F. Bonnarel, L. Michel, and M. Demleitner. IVOA DataLink Version 1.0. IVOA Recom-
mendation 17 June 2015, June 2015.

Acknowledgement: This work was supported by Sonderforschungsbereich SFB 881 “The Milky Way
System” (subproject INF) of the German Research Foundation (DFG).


