
Fig. 1

1. TAP Cross-Server Queries

Markus Demleitner
msdemlei@ari.uni-heidelberg.de

• A word on TAP

• Cross-server queries and a bottleneck

• The idea of the shortcut. . .

• . . . and the practice with STILTS and pyVO.

(cf. Fig. 1)

2. A Word on TAP

TAP = Table Access Protocol: Rules for sending database queries to remote servers, monitor
the execution, and fetch the results.

Two modes:

• synchronous (sync) – send your query and keep a connection to the server until the results
come in.

• asynchronous (async) – send your query and get a URL at which you can watch its progress
and result at your leisure.

async is more than just “use it when your queries take a while”!

1

Server A Server B

Your TOPCAT

UCAC
query

UCAC
data

GA
IA

qu
ery

+U
CA

C
da
ta

GA
IA
+U

CA
C
da
ta

Fig. 2

Server A Server B

Your TOPCAT

UCAC
query

Ok signal GA
IA

qu
ery

GA
IA
+U

CA
C
da
ta

UCAC data

Fig. 3

3. Cross-Server Queries: Plain

Imagine you’re matching something from UCAC4 on server A with Gaia DR 2 on server B. Here’s
the conventional way:

(cf. Fig. 2)

You’re transferring the UCAC data twice for no good reason. Wouldn’t be be smarter to. . .

4. Cross-Server Queries: Smart

. . . transfer the UCAC data directly from server A to server B, like this:

(cf. Fig. 3)

Save an extra download and upload. Also, server A and server B may have a thick pipe between
them.

2

5. Is that possible?

Sure. In TAP from day 1.

Idea: Run an async query on server A and use the result URL as an upload on server B.

TOPCAT doesn’t support that, though. But pyVO does. And STILTS almost.

6. Cross-Server Uploads in pyVO

Sketch:
svc1 = TAPService(url1)

svc1.submit_query("SELECT FROM ucac4")

result = svc1.run()

svc2 = TAPService(url2)

svc2.submit_query("SELECT FROM gaia JOIN upload",

upload=result.url)

result = svc2.run()

samp.send_table_to(result, "topcat")

In practice, there’s a bit more technics around it, but not much. See attachment.

See PDF attachment(s): withpyvo.py

7. Cross-Server Uploads in STILTS

STILTS can upload from a URL. In async TAP, the job URL always is <job url>/results/result.

Sketch:

JOBURL=$(stilts tapquery tapurl=UCAC_URL omode=joburl UCAC-QUERY)

stilts tapquery omode=topcat \

tapurl=GAIA_URL \

nupload1 upload1=$JOBURL/results/result\

GAIA-QUERY

In reality, unfortunately, it doesn’t work like this because STILTS so far insists on retrieving the
uploads and reformatting them.

See the attached withstilts.sh for a rather whacky workaround involving a bit of shell. Be sure
to let STILTS’s author, Mark Taylor, know when you’d like to do this without magic.

See attached file for how you can do this already in real life.

See PDF attachment(s): withstilts.sh

3

8. Open Issue

As usual, things get ugly when access restrictions are in effect: If server A requires authentication,
server B needs to get the credentials.

In 2010, the IVOA has published the Credential Delegation Protocol CDP that uses X.509 proxy
certificates to solve this.

I’m not aware of living implementations of this.

OAuth lets you do similar things. I don’t think any servers implement that, either.

If you’re running authenticated TAP services: How about prototyping it?

9. More Info

Slides and scripts for this talk:
http://docs.g-vo.org/talks/2019-ag-tap.pdf

A course on pyVO: http://docs.g-vo.org/pyvo

4

"""
An example for cross-service uploads based on pyvo. The result
is blindly sent to TOPCAT, so start it before running this.
"""

import pyvo

ucac_svc = pyvo.dal.TAPService("http://dc.g-vo.org/tap")
job = ucac_svc.submit_job("""
	select ucacid, magm, raj2000, dej2000
	from ucac4.main
	where distance(point(raj2000, dej2000),
 	gavo_simbadpoint('Praesepe'))<2""", maxrec=1000000)
job.run() # start the remote job, come back immediately
wait for it to complete -- we won't have a result before that
job.wait(["ERROR", "COMPLETED"])
job.raise_if_error()

try:
	gaia_svc = pyvo.dal.TAPService("http://gaia.ari.uni-heidelberg.de/tap")
	result = gaia_svc.run_sync("""
 	select ra, dec, phot_g_mean_mag, pmra, pmdec, u.*
 	from gaiadr2.gaia_source
 	join tap_upload.up1 as u
 	on (1=contains(point('', ra, dec),
 	circle('', raj2000, dej2000, 1/3600.)))
 	""", uploads={
 	"up1": job.result_uri})

finally:
 job.delete()

Send the result off to TOPCAT (this assumes it's there to begin with)
with pyvo.samp.connection() as conn:
	pyvo.samp.send_table_to(conn, result.to_table(), "topcat")

#!/bin/bash
A small demo of a cross-server TAP query with a direct, server-to-server,
upload (here, ucac4 objects in the direction of praesepe).
The result is blindly sent to TOPCAT, so start it before running this.
#
stilts can't do direct from-URL uploads yet, so we'll have to do that
part with some shell thing. Talk to Mark if you'd like to see this in
stilts.

submit_query() {
$1 -> tap url $2 -> query, everything else are curl args
sets joburl.
tapurl=$1
query=$2
shift 2
joburl=$(curl -s -i -FLANG=ADQL -FQUERY="$query" -FREQUEST=doQuery $@ \
	$tapurl/async | sed -ne '/^[Ll]ocation:/{s/.*\(https\?:\/\/[!-~]*\).*/\1/p}')
}

echo "Running job on UCAC4 server..."
submit_query http://dc.g-vo.org/tap "select ucacid, magm, raj2000, dej2000
from ucac4.main
where distance(point(raj2000, dej2000),
	gavo_simbadpoint('Praesepe'))<2"
ucac_job=`echo $joburl`
echo "UCAC4 result will be at $ucac_job/results/result"

now run the job we've created
stilts tapresume joburl="$ucac_job" delete=never omode=discard

echo "...handing on to Gaia server..."

submit_query http://gaia.ari.uni-heidelberg.de/tap \
	"select ra, dec, phot_g_mean_mag, pmra, pmdec, u.*
		from gaiadr2.gaia_source
		join tap_upload.up1 as u
		on (1=contains(point('', ra, dec),
		 circle('', raj2000, dej2000, 1/3600.)))" \
	-FUPLOAD="up1,$ucac_job/results/result"
echo "Gaia job: >$joburl<"
stilts tapresume joburl="$joburl" delete=finished omode=topcat

remove the ucac4 job, too, now that the result has been digested.
#stilts tapresume joburl="$ucac_job" omode=discard delete=now

