
A Short Course on pyVO

Markus Demleitner Hendrik Heinl

July 25, 2024

Abstract

This is a course on pyVO, an astropy-affiliated Python library implementing client parts
for many protocols in the Virtual Observatory: Simple discovery protocols like SCS, SIAP,
and SSAP as well as the sophisticated Table Access Protocol TAP, which allows users to
send complex queries to remote tables and retrieve metadata-rich results. There is also an
interface to the VO Registry to enable data and service discovery.

The course comes with many exercises, most of which also have solutions. We hope
it is suitable for both self-study and as lecture notes in teacher-led situations. Participants
should have a working knowledge of Astronomy, Python and ADQL.

Contents

1 Introduction 2

2 pyVO Basics 3

3 pyVO and TAP 9

4 Higher SAMP Magic 19

5 pyVO and the Registry 23

6 Datalink 26

1

7 At the Limit: VO-Wide TAP Queries 32

8 Odds and Ends 38
8.1 EPN-TAP . 38
8.2 Custom Parameters to Simple Services . 40
8.3 TAP Uploads: The right way . 42

9 Solutions for Most of the Exercises 43

1 Introduction

This course will introduce you to the primary concepts of pyVO, an astropy-affiliated package
for accessing Virtual Observatory services from Python. It is too much for a day in an inter-
active situation, so if you are reading this at the beginning of a course day: Say what you are
interested in – we will have to select material anyway.
The course assumes familiarity with VO concepts (services, protocol types, the registry) as well
as astropy, but you can probably gather missing parts as you go (or ask, if you are reading this
in an interactive course situation). You should know enough of ADQL to be able to understand
and edit queries.
The course is structured into an general introduction that you should at least cursorily read,
and several more advanced topics that can be independently studied. The general introduction
covers a few general patterns for pyVO usage, and it discusses the basics of the Table Access
Protocol TAP, which arguably is the most versatile protocol in the VO. It does this along a few
more or less contrived use cases designed to touch the central topics.
Examples for the more advanced topics in the second part include receiving SAMP messages,
using EPN-TAP, or Datalink. Look at these as need arises.
The full source code for the programs discussed here is also available as an attachment if
you read this in pdf. One way to retrieve them is to get pdftk (there are packages for it for
Debian-derived systems), run pdftk pyvo.pdf unpack files. Other PDF tools may also sup-
port attachments. For instance, in KDE’s Okular its at File/Embedded Files, and in Adobe’s
proprietary Acrobat Reader 9, attachments can be retrieved through the paperclip icon in the
lower left corner. Tools may also save attachments when you click on the Ψ icons. If all else
fails, git clone the course’s source repository (see below). All attachments are in there, too.
It is also a good idea to have a browser tab open on pyVO’s documentation1 as well as astropy’s
documentation2.
The sources for everything (including these notes and the slides) are available in a git reposi-
tory at codeberg.org3. Feel free to file bugs or even merge requests.

1http://pyvo.readthedocs.io/en/latest/
2http://docs.astropy.org/en/stable/
3https://codeberg.org/msdemlei/pyvo-course.git

2

http://pyvo.readthedocs.io/en/latest/
http://docs.astropy.org/en/stable/
https://codeberg.org/msdemlei/pyvo-course.git

What is the VO?

The VO is a set of standards that let clients discover and interrogate astronomical data services
in a uniform manner. Standards include:

• Registry – describing and finding services

• VOTable, UCD – writing tables with rich metadata

• SAMP – connecting software components

• SCS, SIAP, SSAP – querying catalog, image, and spectral services

• TAP – running remote database queries

• Datalink – bundling up complex data and services

• MOC, HiPS – sky coverage and hierarchical imaging

The purpose of all this is so machines instead of humans can operate the services. With an
average web page, that’s hard to impossible.
Machines operating services, in turn, are important to save manual work. This is part conve-
nience, but mainly it is so you can use more and diverse data for your research.
See the IVOA home page4 for more information.
We will speak almost all of the protocols mentioned above within this course, but there is no
need to dig into what all of them do here – they will come in quite naturally when we want to
solve problems.

2 pyVO Basics

Prerequisites

• python and astropy, of course (we assume Debian stable, at least; anaconda on propri-
etary systems should do, too)

• TOPCAT5 for viewing and visualising tables

• Aladin6 to work with images

• pyVO. Get it from

– https://pypi.python.org/pypi/pyvo

– or try apt-get install python3-pyvo

– or try pip install pyvo

– or try conda install pyvo

4http://ivoa.net
5http://www.star.bris.ac.uk/∼mbt/topcat/
6http://aladin.u-strasbg.fr/aladin.gml

3

http://ivoa.net
http://www.star.bris.ac.uk/~mbt/topcat/
http://aladin.u-strasbg.fr/aladin.gml

Python Matters

In this course, we will use python scripts most of the time rather than the jupyter notebooks
you may be more familiar with.
This is partly personal preference, but for “production” scripts have several important advan-
tages:

• Meaningful version control

• Can use proper editors

• Files can work as modules

However, if you prefer notebooks, you can use pyVO from Python notebooks, too. If you are
unsure how this looks like, see the attached tap-obscore.ipynb (which covers several of the
topics we will later discuss).

tap-obscore.ipynb

To fit things on slides, I am PEP 8-relaxed. PEP 87 is a set of relatively sensible rules for how
you should format your Python source code so other people want to read it. I am not always
following it here. In particular, on slides, I am using indents of two spaces against the PEP 8
standard of four, which you may need to fix when cutting and pasting.

What’s pyVO?

pyVO provides APIs for lots of VO protocols.
It is glue between astropy and python in general and the astronomical data services in the VO.

It is a community project. You are most welcome to contribute at
https://github.com/astropy/pyvo.

Running Simple Services

When querying “simple” remote services (image, spectral, cone search; not directly TAP),
pyVO has a consistent pattern:

<prot> is SIA, SSA, SCS, SLA...

import pyvo

construct a service object with a service's endpoint URL

service = pyvo.dal.<prot>Service(access_url)

#call the search method with the protocol's parameters

for result in service.search(<parameters>):

...work on dict-like object result...

The “dal” in here means “Data Access Layer”, which essentially means: the VO protocols
dealing with how to query services and how the services are supposed to respond.

You will soon learn how to find out the access URLs.
7https://peps.python.org/pep-0008/

4

{
 "cells": [
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "This notebook introduces a few VO techniques for use with python. You need astropy and pyvo installed to make this work. python3 is assumed. It is part of the pyvo course at http://docs.g-vo.org/pyvo, which probably will help a lot to understand what's going on here."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Our use case will be something like \"Find all time series of all bright AGB stars\", but the techniques introduced here have much wider applicability. Oh, and as of this writing, there are not too many time series in the VO, but we're working on this."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "While there are ways to do this with pre-made clients, scripting this gives you great flexibility as well as the analysis capabilities of python. So, let's interface python with the VO. The most complete module to do that is pyvo. See https://pyvo.readthedocs.io/en/latest for more documentation. If you don't have it, try pip3 install pyvo.\n",
 "\n",
 "You also want TOPCAT. If you don't have that yet, this is probably not something you'd like to try – get some less nerdy VO exposure first."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "%matplotlib inline\n",
 "import matplotlib.pyplot as plt\n",
 "import pyvo\n",
 "# the following calms down astropy's overzealous VOTable\n",
 "# parser\n",
 "import warnings\n",
 "warnings.filterwarnings('ignore', module=\"astropy.io.votable.*\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "The first step is: Find a list of bright Herbig-Haro objects. There are many ways to do that, but a good first step towards problems like this is typically to use SIMBAD. And we want powerful query modes (that perhaps we don't really need here, but they're definitely good to have), so we're looking for a TAP service."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Since it's so much faster to discover Simbad's TAP service using TOPCAT's TAP window or registry interfaces like http://dc.g-vo.org/WIRR, we do that and find out that the TAP access URL is http://simbad.u-strasbg/simbad/sim-tap. Keep the table browser in TOPCAT open, as you will want to use it for query construction (not that you couldn't introspect table metadata from pyVO, but that interface is built for machines, not for humans)."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "First create an object representing the Simbad TAP service:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "sim_tap = pyvo.dal.TAPService(\n",
 " \"http://simbad.u-strasbg.fr/simbad/sim-tap\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "There are analogous classes for other VO protocols (SIAP, SSA, SCS). They all have additional attributes allowing their manipulation and inspection. For a TAP service, your program might want to check table metadata. Here's an example looking for columns with magnitudes:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "for table_name, table in sim_tap.tables.items():\n",
 " for column in table.columns:\n",
 " if column.ucd and column.ucd.startswith(\"phot.mag\"):\n",
 " print(table_name, column.name)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Regrettably, this isn't useful in this case; the real magnitudes in Simbad are given in the allfluxes table, and tehy don't have UCDs there because... well, I simply don't know. Try asking them; a contact address in, for instance, in the Service tab in TOPCAT.\n",
 "\n",
 "Anyway, the TOPCAT table browser gets us on the right track (the allfluxes tables). Also, use the Reference URL from the Service tab to investigate the object types and what to write in otype. Once you have a query (and of course it's a good idea to prototype it in TOPCAT):"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "agbs = sim_tap.run_sync(\"\"\"\n",
 "select ra, dec, main_id\n",
 "from basic join allfluxes on (oidref=oid)\n",
 "where otype='AGB'\n",
 "and V<10\n",
 "\"\"\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "What's coming back can be turned into an astropy table using the to_table() method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "agbs.to_table()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Now let's see if there's any time series for these out there. You could do an all-VO query using SSAP (and that's a good exercise; use servicetype=\"SSA\" in the registry query) -- SSAP is currently being used to publish time series, too. But my bets for the future are on obscore, so let's use that. \n",
 "\n",
 "Let's first develop a query on a single server. And let's use my own, http://dc.g-vo.org/tap"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "What do we want to run? Well, check out the Obscore table structure; either in TOPCAT's table browser or even in the underlying standard (see http://ivoa.net/documents). You'll see we want to constrain dataproduct_type to timeseries, and we want to upload join s_ra and s_dec to the positions from Simbad. Let's try things first with one service; also note how table uploads work in pyVO:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "timeseries = pyvo.dal.TAPService(\"http://dc.g-vo.org/tap\"\n",
 ").run_sync(\"\"\"\n",
 " select\n",
 " obs_collection, access_url, access_estsize, \n",
 " t_min, t_max, em_min, em_max, \n",
 " h.*\n",
 " from tap_upload.agbs as h\n",
 " join ivoa.obscore\n",
 " on 1=contains(point('', h.ra, h.dec), \n",
 " circle('', s_ra, s_dec, 1/3600.))\n",
 " where dataproduct_type='timeseries'\n",
 " \"\"\",\n",
 " uploads= {'agbs': agbs})"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Mainly because of generalised confusion this query may run for some 10 seconds.\n",
 "\n",
 "In a few years, when everyone has TAP 1.1 and ADQL 2.1, you would certainly write what you can already write on this particular server for the join condition:\n",
 "\n",
 "```\n",
 "ON 1./3600>DISTANCE(s_ra, s_dec, h.ra, h.dec)\n",
 "```\n",
 "\n",
 "But alas, that wouldn't have worked on many ObsTAP servers yet (2018)."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Let's see what we have:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "timeseries.to_table()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "You can now load a time series and plot it, perhaps like this. I frankly don't know if there's a simple way to make astropy fetch a table from a remote URL, and I got tired looking for one, so I define a quick function to do that:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "from astropy import table\n",
 "from urllib.request import urlopen\n",
 "from io import BytesIO\n",
 "def load_remote_table(url):\n",
 " if isinstance(url, bytes):\n",
 " url = url.decode(\"utf-8\")\n",
 " f = urlopen(url)\n",
 " return table.Table.read(\n",
 " BytesIO(f.read()))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# If the following fails for you, don't worry -- you have an outdated\n",
 "# pyvo, that's all. Ignore it and happily continue.\n",
 "ts = load_remote_table(\n",
 " timeseries.to_table()[0][\"access_url\"])\n",
 "plt.plot(ts[\"obs_time\"], ts[\"flux\"])"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Or we send the access URLs we've discovered to TOPCAT. Again, astropy's SAMP interface is quite clunky as of version 3, so let's define a couple of functions to make this more palatable (you don't need to understand everything that's happening in the next cell)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import contextlib, os, tempfile\n",
 "from astropy.vo.samp import SAMPIntegratedClient, SAMPProxyError\n",
 "\n",
 "\n",
 "def find_client(conn, samp_name):\n",
 " \"\"\"returns the SAMP id of the client with samp.name samp_name.\n",
 "\n",
 " This will raise a KeyError if the client is not on the hub.\n",
 " \"\"\"\n",
 " for client_id in conn.get_registered_clients():\n",
 " if conn.get_metadata(client_id).get(\"samp.name\")==samp_name:\n",
 " return client_id\n",
 " raise KeyError(samp_name)\n",
 "\n",
 "\n",
 "@contextlib.contextmanager\n",
 "def samp_accessible(astropy_table):\n",
 " \"\"\"a context manager making astropy_table available under a (file)\n",
 " URL for the controlled section.\n",
 "\n",
 " This is useful with uploads.\n",
 " \"\"\"\n",
 " handle, f_name = tempfile.mkstemp(suffix=\".xml\")\n",
 " with os.fdopen(handle, \"w\") as f:\n",
 " astropy_table.write(output=f,\n",
 " format=\"votable\")\n",
 " try:\n",
 " yield \"file://\"+f_name\n",
 " finally:\n",
 " os.unlink(f_name)\n",
 " \n",
 " \n",
 "def send_product_to(conn, dest_client_id, data_url, mtype, name=\"data\"):\n",
 " \"\"\"sends SAMP messages to load data.\n",
 "\n",
 " This is a helper for send_spectrum_to and send_image_to, which work\n",
 " exactly analogous to each other, except that the mtypes are different.\n",
 "\n",
 " If dest_client_id, this is a broadcast (and we don't wait for any\n",
 " responses). If dest_client_id is given, we wait for acknowledgement\n",
 " by the receiver.\n",
 " \"\"\"\n",
 " message = {\n",
 " \"samp.mtype\": mtype,\n",
 " \"samp.params\": {\n",
 " \"url\": data_url,\n",
 " \"name\": name,\n",
 " }}\n",
 " if dest_client_id is None:\n",
 " conn.notify_all(message)\n",
 " else:\n",
 " conn.call_and_wait(dest_client_id, message, \"10\")\n",
 "\n",
 "\n",
 "@contextlib.contextmanager\n",
 "def SAMP_conn(\n",
 " client_name=\"pyvo client\", \n",
 " description=\"A generic PyVO client\",\n",
 " **kwargs):\n",
 " \"\"\"a context manager to give the controlled block a SAMP connection.\n",
 "\n",
 " The program will disconnect as the controlled block is exited.\n",
 " \"\"\"\n",
 " client = SAMPIntegratedClient(\n",
 " name=client_name,\n",
 " description=description,\n",
 " **kwargs)\n",
 " client.connect()\n",
 " try:\n",
 " yield client\n",
 " finally:\n",
 " client.disconnect()\n",
 "\n",
 "\n"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "I told you the interface was clunky. But the reward is that SAMP is now quite simple:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "with SAMP_conn() as conn:\n",
 " topcat_id = find_client(conn, 'topcat')\n",
 " for match in timeseries:\n",
 " send_product_to(conn, \n",
 " topcat_id, \n",
 " match[\"access_url\"].decode(\"utf-8\"),\n",
 " \"table.load.votable\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "You should now see the various time series popping up in TOPCAT, where you can investigate them as usual.\n",
 "\n",
 "Now it's your turn: Build a thing that does an all-VO obscore search for spectra – perhaps of these guys, or perhaps of something you are interested in.\n",
 "\n",
 "You'll need a few extra ingredients, though. First, here's how to discover the access URLs of all the TAP services out there that claim to support obscore (once you have those, you know how to query the services, right?):"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "for svc in pyvo.regsearch(datamodel='ObsCore'):\n",
 " print(svc.access_url)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "When querying lots of external resources, it pays to expect failures. Let's define a function that runs TAP queries, well, resiliently:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "def run_sync_resilient(svc, *sync_args, **sync_kw_args):\n",
 " try:\n",
 " return svc.run_sync(*sync_args, **sync_kw_args) \n",
 " except (\n",
 " pyvo.dal.DALServiceError, \n",
 " pyvo.dal.DALQueryError,\n",
 " requests.ConnectionError) as ex:\n",
 " print(\"{}:{}\".format(svc.baseurl, ex))\n",
 " return\n",
 " except KeyboardInterrupt: # Let the user abort slow queries\n",
 " return"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "One more think I should tell you to save you some poking around in documentation: How to merge the astropy tables coming back from different services. Here's a trivial example that should get you going:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "results = []\n",
 "for svc_url in [\n",
 " \"http://vao.stsci.edu/CAOMTAP/TapService.aspx\",\n",
 " \"http://dc.g-vo.org/tap\"]:\n",
 " svc = pyvo.dal.TAPService(svc_url)\n",
 " results.append(\n",
 " svc.run_sync(\n",
 " \"SELECT TOP 2 obs_collection, access_url FROM ivoa.obscore\"\n",
 ").to_table())\n",
 "merged = table.vstack(results)\n",
 "merged"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "What remains to do: Change the query above to your liking (at least add a TOP 10 or so lest you be flooded with results when someone puts up an AGB spectrum central), iterate over the services, and then merge the results. To investigate them (e.g., by wavelength and time range, etc), send the merged table to TOPCAT."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

https://github.com/astropy/pyvo
https://peps.python.org/pep-0008/

Query a Single Image Service

Example: SIAP, the VO’s protocol to access image servers.
Query a VO service for a list of images covering a small field on the sky, and download one of
these images:

svc = pyvo.sia.SIAService(ACCESS_URL)

images = svc.search((340.1,3.36), size=(0.1, 0.1))

image=images[0]

image.cachedataset()

basicsiap.py

For SIAP, pos (as a tuple of ra and dec) and size (in degrees, either one radius or extent in ra
and dec) are mandatory. More parameters: in the pyvo docs8.
Also: row.cachedataset saves the image to your local disk under a name sensible for the
metadata. In case the filename produced by cachedataset has an extension .None on your
machine: that’s a bug in pyVO that was fixed in 2024.
Note how you do not have to know anything about the service except its access URL. Since
pyVO uses a standard protocol, it knows enough to be able to, in this case, retrieve the file and
(mostly) give it a reasonable name.
This is a very basic example, though. pyVO provides you with more functionality that helps
analysing the results before selecting the images. We will see some of these functions by using
pyVO in a more interactive setting (e.g. ipython).
Getting source code: In case your PDF viewer gives you a hard time saving the attached Python
code or does not support attachments at all, you can find all the files in this course’s repository.
Just run

git clone https://codeberg.org/msdemlei/pyvo-course

Exercise 1
Get our example basicsiap.py from the notes.
Now find an image service publishing the ROSAT survey and pointed observations and
see if it has an image for the position given (or try some other service and position you
are actually interested in).
Use WIRR9 to search the VO Registry for now.
What is coming back from SIAService’s search is a sequence of SIARecords. Have a
quick look at its pyvo documentation10 and make your program print the file size and
the instrument name rather than calling cachedataset.

8http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIAService.html#pyvo.dal.SIAService.search
9http://dc.g-vo.org/WIRR

10https://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIARecord.html#pyvo.dal.SIARecord

5

"""
A very basic example for how to operate a SIAP service from PyVO:
find images for a specific position.
"""

import pyvo

ACCESS_URL = "http://dc.g-vo.org/maidanak/res/rawframes/siap/siap.xml?"

Make Service Instance:
svc = pyvo.sia.SIAService(ACCESS_URL)

Query the Service and return the list metadata of datarecords matching the
criteria. Note: This does not download the actual data!
images = svc.search((340.1,3.36), size=(0.1, 0.1))

Select a specific image to download. Here usually much more
sophistacted code is used, e.g. user input. We focus on a very basic
selection
image=images[0]

Download the selected image.
image.cachedataset()

Now use your favourite FITS viewer (ds9? aladin?) to look at
what you have just downloaded.

http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIAService.html#pyvo.dal.SIAService.search
http://dc.g-vo.org/WIRR
https://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIARecord.html#pyvo.dal.SIARecord

This is Python

The advantage of doing this in Python is that it is easy to add your own logic. Here is how to
add time constraints (SIAP version 1 unfortunately does not specify how to tell the service you
are only interested in a specific time interval – we will later see how more modern standards
let you push time constraints to the server) and search multiple positions:

svc = pyvo.sia.SIAService(ACCESS_URL)

for pos in [

(213.97, 11.50),

(230.44, 52.92)]:

images = svc.search(pos, size=(0.5, 0.5))

for row in images:

if not DATE_MIN<row.dateobs<DATE_MAX:

continue

row.cachedataset()

multisiap.py

A word on row.dateobs: While SIAP (as most of the VO) delivers dates as modified julian dates
(MJD), pyVO turns these values into astropy.time.Time instances. You could turn these back into
floats (my taking their .mjd.real attribute) and compute with MJD yourself, but it is smarter to
keep your times in Time instances, too, as shown in the multisiap.py.

Metadata in pyVO

You can access the metadata coming with the response VOTables from pyVO, too, albeit some-
what obscurely:

>>> import pprint

>>> pprint.pprint(images.votable.infos)

[<INFO ID="legal" name="legal" value="The data from Maydanak observatory

>>> pprint(images.votable.resources[0].infos)

[<INFO ID="queryPars" name="queryPars" value="(%(siaarea0)s && c

<INFO ID="QUERY_STATUS" name="QUERY_STATUS" value="OK"/>,

<INFO ID="request" name="request" value="/maidanak/res/rawframes/siap/s

<INFO ID="standardID" name="standardID" value="ivo://ivoa.net/std/sia"/

<INFO ID="server_software" name="server_software" value="DaCHS/2.9.3 tw

<INFO ID="server" name="server" value="http://dc.zah.uni-heidelberg.de"

<INFO ID="citation" name="citation" ucd="" value="http://dc.zah.uni-hei

<INFO ID="citation" name="citation" ucd="" value="http://dc.zah.uni-hei

<INFO ID="ivoid" name="ivoid" ucd="meta.ref.ivoid" value="ivo://org.gav

For why the information is available in this way, you need to understand a bit of VOTable. But
this pattern works for all responses you will deal with in current VOTable.

Excursion: The Python Debugger

To inspect metadata like this from within a running program (as opposed to a notebook), it is
really convenient to use the python debugger. To drop into it, call pdb.set_trace():

for pos in [

(150.36, 55.90)]:

images = svc.search(pos, size=(0.5, 0.5), verbosity=2)

import pdb;pdb.set_trace()

for row in images:

6

"""
A trivial example for how to operate a SIAP service from PyVO:
find images from a list of positions and by date.

Get ACCESS_URL from, e.g., http://dc.g-vo.org/WIRR.
"""

from astropy.time import Time
import pyvo

ACCESS_URL = "http://dc.g-vo.org/maidanak/res/rawframes/siap/siap.xml?"
DATE_MIN = Time("2004-02-26", scale="tt")
DATE_MAX = Time("2004-03-01", scale="tt")

def main():
 svc = pyvo.sia.SIAService(ACCESS_URL)
 for pos in [
 (213.97, 11.50),
 (230.44, 52.92),
 (150.36, 55.90)]:
 images = svc.search(pos, size=(0.5, 0.5), verbosity=2)

 for row in images:

 if not DATE_MIN < row.dateobs < DATE_MAX:
 continue

 print("{} Get ({} bytes)?".format(
 row.title,
 row.filesize), end=" ")
 if input().strip().lower().startswith("y"):
 row.cachedataset()

if __name__ == "__main__":
 main()

You can then enter Python statements (like the info expressions) and do many other things
described in the Python reference11. When done looking around, you can type cont to let your
program continue of quit to exit it.

And now all-VO

The nice thing about standard services: Handle one, and you get them all. So, let’s add a query
to the Registry and run our query all over the VO –

for svc in registry.search(servicetype="sia", waveband="optical"):

try:

search_one_service(svc.accessurl)

except Exception:

import traceback; traceback.print_exc()

globalsiap.py

Wisdom: In multi-service queries, expect at least one service to be broken. Write your scripts
to cope.
The registry.search function we are using here interfaces to a big directory of all the services
that are in the VO: The Registry, which is also what is underlying the WIRR web page em-
ployed in problem 1.
The way we are querying the Registry here is a bit simplistic. In particular, you probably do not
want to use servicetype constraints when doing science work. Global dataset discovery (which
is what we are approaching here) is a lot more involved than just querying all services of a
type (although this used to somewhat work in the early days of the VO). For now, however, we
when we query like this, for everything that comes back from registry.search, we can request
an image (“SIA”) service. This happens in search_one_resource with

svc = res_rec.get_service("sia", lax=True)

Accept the lax argument for now. We will have a closer look at pyVO’s Registry API later.
The exception catcher is there since not all services claiming to be standards-compliant actu-
ally are. It does not hurt to complain to the service operators if a service you are interested
in behaves weirdly – sometimes the operators simply have not noticed that it is broken, or
possibly has just broken.
To find out who to complain to, you can again use the Registry; the objects that are returned
from registry.search have a get_contact method:

>>> svcs = pyvo.registry.search(keywords="pyvo")

>>> svcs[0].get_contact()

'Hendrik Heinl (+49 6221 541849) <gavo@ari.uni-heidelberg.de>'

You will probably also see lots of warnings from astropy’s VOTable parser. This is partly
because astropy is overly paranoid, rejecting UCDs actually required by the SIAP standard,
partly because operators botch things. Interoperability is not always easy. At this point it is
probably too early to complain to operators about astropy’s VOTable warnings. We will later
turn them off.
If a service hangs, you can interrupt it by hitting Control-C. In production code, you can set
timeouts. We will later see how to do that.

11https://docs.python.org/3/library/pdb.html

7

"""
A little script doing an all-VO SIAP query for some positions and a date
range.
"""

import random
import sys

from astropy.time import Time
from pyvo.dal import sia
from pyvo import registry

from astropy import coordinates

POS = coordinates.SkyCoord.from_name("M51")

def search_one_resource(res_rec):
 print("\nNow querying ", res_rec.res_title)
 svc = res_rec.get_service("sia", lax=True)
 images = svc.search(pos=POS, size=0.5)
 for match in images:

 if match.dateobs is None:
 # behave like a database: comparisons with NULL are always
 # False.
 continue

 print(f"{match.title} {match.filesize} Get? ", end=" ")
 if input().strip().lower().startswith("y"):
 match.cachedataset()

def main():
 for res_rec in registry.search(servicetype="image"):
 if random.random()<0.9:
 continue

 try:
 search_one_resource(res_rec)
 except KeyboardInterrupt:
 if input("\nQuit? ").strip().lower().startswith("y"):
 sys.exit()
 except:
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

https://docs.python.org/3/library/pdb.html

Exercise 2
Get the globalsiap.py script from the attachment and change it so it skips 90% of the
services discovered randomly (use random.random()). Also, remove the constraint on
the date (we don’t need that here) and change the position to something you are
interested in or expect to have pretty pictures (M1 or M51 are always good candiates).
Run the thing and see what you find.

Add SAMP Magic

SAMP lets you exchange data between VO clients. Your script is a VO client, too. Let’s make
it broadcast some of the found images:

with pyvo.samp.connection() as conn:

... (search) ...

pyvo.samp.send_image_to(conn, image.acref)

globalsiapsamp.py

Before running this, start Aladin (or some other SAMP-enabled image client) so the images are
displayed.
In general, SAMP-enabling programs may not come quite natural to people who so far have
mainly written fairly linear science code, because when doing SAMP you usually want to react
to external events. In linear code this is rather uncommon.
In this example we are just sending data, which does not require much reacting to external
signals. We still have to manage the connection to the SAMP hub – things get ugly if you do
not properly close the connection –, which is taken care of by a context manager from pyvo.samp.
A context manager is a python construct consisting of an opening line of the form with cm [as name]:

and then a block, the “controlled block”. It is designed to ensure what is called “external in-
variants”, some piece of state that the system should be in outside of the controlled block. You
may know this from files, where the external invariant is “the file is closed”:

with open("test.txt", "w") as f:

f.write("some content\n")

print("f is closed")

By the time the print statement is reached, Python’s semantics guarantee that f is closed and
the content is written, regardless of what else happened (think exceptions) happened in the
controlled block. The SAMP connection similarly ensures that once the controlled block is left,
the connection is closed.
Given we are doing function calls between different processes written in different languages,
we would argue this kind of code actually is surprisingly compact.

Exercise 3
Get the pyVO source code and find the source of pyvo.samp. Start TOPCAT, find the
implementation of the connection context manager, and then open a SAMP connection
manually from an interactive Python prompt. And then again, and a third time. What
do you observe in TOPCAT?
Hint: To get the source code, try:
git clone https://github.com/astropy/pyvo.

8

"""
A little script doing an all-VO SIAP query for some positions and a date
range; the results can be sent to SAMP clients.
"""

import sys

from astropy.time import Time
import pyvo

DATE_MIN = Time("1990-01-01", scale="tt")
DATE_MAX = Time("2005-12-31T23:59:59", scale="tt")

def search_one_resource(res_rec, conn):
 print("\nNow querying ", res_rec.res_title)
 svc = res_rec.get_service("sia", lax=True)

 for pos in [
 (213.97, 11.50)]:
 images = svc.search(pos, size=0.5)
 for match in images:

 if match.dateobs is None:
 # behave like a database: comparisons with NULL are always
 # false.
 continue
 if not DATE_MIN <= match.dateobs <= DATE_MAX:
 continue

 print(f"{match.title} Show? ", end="")
 if input().strip().lower().startswith("y"):
 pyvo.samp.send_image_to(
 conn, match.acref, name=match.suggest_dataset_basename())

def main():
 with pyvo.samp.connection() as conn:
 for res_rec in pyvo.registry.search(
 keywords=["quasars"],
 servicetype="image"):
 try:
 search_one_resource(res_rec, conn)
 except KeyboardInterrupt:
 if input("\nQuit? ").strip().lower().startswith("y"):
 sys.exit()
 except:
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

Or, on Debian-derviced boxes:
apt source python3-pyvo

Exercise 4
Still in samp.py, inspect how send_image_to is implemented. From reading the code, can
you figure out how to only send the image to Aladin? If you can, try your solution in
globalsiapsamp.py by having Aladin and ds9 (Debian package: saods9) open at the
same time.
Hint: To find out Aladin’s client name, check TOPCAT’s SAMP status window.

3 pyVO and TAP

Enter TAP

What we have seen so far does not scale when you are interested in more regions.
Also, only fairly basic constraints are supported.

TAP is far more powerful.
Sample use case: Integrate photometry from different source catalogues, do some local work
on results, try to obtain spectra for interesting candidates.

Run Sync TAP Queries

Run queries via TAP:

access_url = "http://dc.g-vo.org/tap"

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(

"""SELECT raj2000, dej2000, jmag, hmag, kmag

FROM twomass.data

WHERE jmag<3""")

for row in result:

print(row["raj2000"], row["jmag"])

Exercise 5
Write a program that prints the number of rows in the table arihip.main in the TAP
service at http://dc.g-vo.org/tap (do not pull all the rows and use python’s len).
Hint: With ADQL’s AS construct you can control the names of table columns.

This is another instance of the pyVO pattern “create a service object, then call a method”. In
this case, we are calling run_sync – this is not called query as for the other services because TAP
has two modes of operation; we will get to the other one (unsurprisingly called async) in a
moment.
What is coming back from run sync is a sequence of dal.Record elements (well, the truth
about TAPResults12 is a bit more complex, but that’s the gist of it).
You can make a normal astropy table from the result by calling result.to_table(), and there
often are good reasons to do that. For instance, to save the table to a disk file, you can write:

result.to_table().write("saved.vot", format="votable")

12http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.TAPResults.html

9

http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.TAPResults.html

Step 1a: Multiple TAP Queries

Imagine more interesting queries here.

QUERIES = [

("twomass", "http://dc.zah.uni-heidelberg.de/tap",

"""SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag

...CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),

...}

with pyvo.samp.connection() as conn:

for short_name, access_url, query in QUERIES:

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(query.format(**locals()), maxrec=90000)

pyvo.samp.send_table_to(

conn,

result.to_table(),

client_name="topcat",

name=short_name)

fetch3.py

This does several things we have not seen before:

• QUERIES is a sequence of tuples; for examples, check the full source. Tuples are often a
good choice when you have “inhomogeneous” (e.g., each item in a sequence “means”
something different) data without much behaviour. When the rows become more com-
plex, consider using python’s dataclasses module, and when they have non-trivial be-
haviour, a “normal” class. Here, we just group a service title, a service URL, and a tem-
plate for the query to run, for which a tuple works nicely.

• query.format(**locals()) is a trivial example of what’s called templating; you write a string
that gets filled in, in this case using python’s plain format method. You can (and some-
times should) get a lot more fancy with templating; one reason to do that could be to
automatically quote strings. But as long as you control both the template and the fillers,
it is probably better to not pull in extra dependencies just for templating.

**locals() is a way to say: make all local variables available as keyword arguments. In
general, ** in an argument list means: what’s next is a mapping, and turn it into keyword
arguments, which sometimes is convenient if you want to build up a set of arguments
step by step.

• maxrec=90000 asks the server to return up to 90’000 rows (the match limit). When you do not
pass maxrec, a service-specific default kicks in; you can find that default at service.maxrec
(but take it with a grain of salt; this may be something like a lower limit). PyVO will issue
a warning if your result overflowed your maxrec.

• pyvo.samp.send_table_to does a SAMP transfer of an astropy table (hence the .to_table())
to a SAMP client; it does a broadcast if you do not pass a client_name.

Exercise 6
The following program should print URIs and titles for images in some collection for
whatever names are in OBJECTS:

import pyvo

OBJECTS = ["IC 4756", "NGC 3377"]

10

#!/usr/bin/python

This code is in the public domain.

Step 1: Query three VO services, broadcast the result via SAMP
(requires: pyvo).

Queries are configured as triples of short name, access url (as from a
registry query) query. You *could* use TAP_SCHEMA to automate query
generation, but that's left as an exercise to the reader

import sys
import pyvo

Note that it's of course silly to use TAP to do just cone searches.
Imagine more interesting queries here.
QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("allwise", "http://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("sdss", "https://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),]

def main():
 # arguments: ra, dec, and sr; fill in a known-good default
 if len(sys.argv) != 4:
 ra, dec, radius = 30, 10, 0.05
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 # make (and close when done) a SAMP connection so we can
 # talk to other clients
 with pyvo.samp.connection() as conn:
 # now run the three queries, sending the results via samp:
 for short_name, access_url, query in QUERIES:
 service = pyvo.dal.TAPService(access_url)
 # you could now figure out interesting things about the service,
 # e.g., its table schema and such, to potentially construct queries.
 result = service.run_sync(query.format(**locals()), maxrec=90000)
 pyvo.samp.send_table_to(
 conn,
 result.to_table(),
 client_name="topcat",
 name=short_name)

if __name__ == "__main__":
 main()

QUERY = """select accref, imagetitle

from maidanak.reduced

where object={object}"""

svc = pyvo.dal.TAPService("https://dc.g-vo.org/tap")

for object in OBJECTS:

print(svc.run_sync(QUERY.format(**locals())).to_table())

(Note: this is not the way to match against multiple objects; you would instead use SQL
sets or, probably more commonly, TAP uploads outside of silly exercises).
What really happens: An error message. Can you figure out where it comes from and
how to fix things?

Exercise 7
Use TOPCAT’s TAP data browser to locate services and table names for TGAS and
RAVE (or just use the GAVO DC TAP service with tables tgas.main and rave.main).
Also figure out where the positions and some usable magnitude are, plus the proper
motions from TGAS and the radial velocities from RAVE (or just blindly use ra, dec,
pmra, pmdec, phot g mean mag for TGAS and raj2000, dej2000, rv, and hmag for
RAVE).
Re-write fetch3.py to query the retrieve all stars between 8 and 8.2 mags from each table
(don’t worry about the difference between H and G magnitudes for this problem). Also,
send the results to Aladin (which is known as Aladin (capitalised) on the SAMP bus).
See if you can get a nice plot of rv, pmra, and pmdec.
Hint: Check Aladin’s Catalog/Create filter for fancy plotting options.

Step 2: Go Async

When doing a lot of queries or long-running queries, run them asynchronously and in parallel.
Asynchronous means that you go to a service, submit your query there and immediately re-
ceive some sort of token. With this token, you can come back later and retrieve your result. In
the meantime, you are free to do whatever else you have to do – which includes turning off
and/or moving your machine, for instance.
In this case, the main advantage is that we can run our queries in parallel. If all you want is
have more time for your query, see the next slide for simpler options to run async TAP jobs.

jobs = set()

for short_name, access_url, query in QUERIES:

job = pyvo.dal.TAPService(access_url).submit_job(

query.format(**locals()), maxrec=9000000)

job.run()

jobs.add((short_name, job))

while jobs:

time.sleep(5)

for short_name, job in list(jobs):

if job.phase not in (’QUEUED’, ’EXECUTING’):

jobs.remove((short_name, job))

pyvo.samp.send_table_to(...)

job.delete()

fetch3-async.py

11

#!/usr/bin/python

This code is in the public domain.

Step 2: as fetch3.py (see there for comments what's going on)
but now we're querying async, in parallel

import sys
import time

import pyvo

QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 # limiting wise matches since both vizier and astropy's
 # VOTable parser are lame in some sense
 ("allwise", "https://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE w1mag<14 AND
 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("sdss", "https://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),]

def main():
 if len(sys.argv) != 4:
 ra, dec, radius = 30, 10, 0.20
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 jobs = set()
 for short_name, access_url, query in QUERIES:
 # in async, you first create a job:
 job = pyvo.dal.TAPService(access_url).submit_job(
 query.format(**locals()), maxrec=9000000)
 # then start it. This immediately returns.
 job.run()
 # we keep note of the jobs we started -- we'll watch them later.
 jobs.add((short_name, job))

 with pyvo.samp.connection() as conn:
 # now watch jobs until they return, then take them off the watch list
 # and send their result
 while jobs:
 # we do the list(.) so we can remove jobs with impunity
 for short_name, job in list(jobs):
 # async jobs are in phases; they're done (or failed) when
 # they're neither queued nor executing.
 print(short_name, job.phase)
 if job.phase not in ('QUEUED', 'EXECUTING'):
 jobs.remove((short_name, job))
 pyvo.samp.send_table_to(
 conn,
 # this is how you get the result from a finished job
 job.fetch_result().to_table(),
 client_name="topcat",
 name=short_name)
 # be a good citizen: clean up your job (it'll be cleaned up
 # eventually anyway, but that might take a while)
 job.delete()

 # wait a bit before doing the next round of polling
 time.sleep(0.5)

if __name__ == "__main__":
 main()

We told you sync is easier to program with. But on the other hand: With this program, all three
queries run in parallel, which is nice, in particular if they take a while. Additionally, you have
a little more control about when to receive the data.
What’s happening here? First, we submit all jobs. Rather than run sync we now use TAPSer-
vice’s submit job method. While taking the same arguments as run sync, it immediately re-
turns. Since it cannot peek into the future, it cannot return the finished result. Instead, you
get an object that one can use to manipulate the remote job. That remote job is not started by
submit job. It is instead waiting for further configuration (e.g., increasing its maximal run-
time) or a request to put it into the processing queue.
For our task, it is enough to just start the job using the run method. We then add it to a watch
set of running jobs.
The rest of the code above is all about managing this set. In a polling loop – be sure to introduce
sleeps or your code will hit the remote services all the time – we iterate through the jobs.
Actually, we iterate over a copy of the job set since we want to delete completed from it, and
we couldn’t do that if there was an iterator over it active.
In the loop body, we check the phase attribute of the job. Although this looks like an attribute
access, in each iteration pyVO goes to the remote service and asks it what our job is doing.
While it is in either QUEUING or EXECUTING states, it is still worth waiting for a result.
Other states include PENDING (not yet started), COMPLETED (done, result available), ER-
ROR (done, some kind of failure happened; call the raise if error method to turn it into a
python exception), and ABORTED (interrupted by client or operator intervention).
Once we find a job is done, we remove it from the job list and send the result over to TOPCAT
as before.
Finally, we delete the remote job. That’s a nice thing to do. Services will eventually delete
your job anyway (you can figure out when and even change that date in the job’s destruction
attribute), but it is good style to discard jobs once you do not need them any more.
This example is primarily intended to illustrate async mode itself.

Lightweight async

If you can live without real-time monitoring, you can write more concisely:

job.wait()

job.raise_if_error()

result = job.fetch_result()

In its default configuration, job.wait() waits for a change in the job status or a timeout and then
returns. On modern TAP services, this generally is only one request every 10 minutes or so;
this saves server-side ressources.
The raise_if_error() method gives you more reasonable exceptions than if you blindly try to
access results from jobs that failed server-side.
With only a single job at a time, it is even simpler:

result = svc.run_async(query, ...)

The interface of run_async is that of run_sync, i.e., it will block until the results are in. Use it if
you have to go async because your job runs too long for sync (in general, sync jobs have to
finish in seconds to minutes, while async jobs can run for hours) but you want to avoid the
dance with checking the phases.

12

Step 3a: UCDs build SEDs

Can we build SEDs from the results of the three services?
Not simply; photometry metadata in the VO is not quite sufficient for that yet. However, UCDs
let us do a workaround:

UCD_TO_WL = {

"phot.mag;em.opt.u": 3.5e-7,

"phot.mag;em.opt.b": 4.5e-7,

"phot.mag;em.opt.v": 5.5e-7,

"phot.mag;em.opt.r": 6.75e-7, ...}

for row in rows:

for index, col in enumerate(row):

ucd = row.columns[index].meta.get("ucd", "").lower())

if ucd.startswith("phot.mag"):

if ucd in UCD_TO_WL:

phots.append((UCD_TO_WL[ucd], col))

Calling our multi-band data a SED (“Spectral Energy Distribution”, that is some sort of flux
densities plotted as a function of the spectral coordinate) is perhaps somewhat pretentious. To
make this an actual SED, we would at least have to worry about photometry systems, which
is a real concern even in the narrower optical, not to mention when you leave the optical. But
bear with us.
UCDs (“Unified Content Descriptors”) are VO-standardised strings defining the physics con-
tained in columns. They even have a bit of syntax. In our example, we can see that first, we
have magnitudes (“phot.mag”) and then that they were taken in a certain band.
Similarly, “pos.eq.ra” would tell you that something is a right ascension as part of an equa-
torial position; since tables sometimes have multiple positions in a single row (e.g., different
reduction, position in some reference catalogue, or position of a sub-feature), you may want to
single out a particular column as your preferred, primary, default, or whatever RA. For that,
use “pos.eq.ra;meta.main”.
UCDs are particularly nifty in data discovery when you are looking for tables that have a
certain kind of physics. Of course, that only works when people properly mark up their tables
with UCDs – be sure to do that on your data whenever you let a VOTable leave your disk. The
full list of UCD atoms is available from the IVOA document respository13.
The clean way, incidentally, is a proper annotation of the columns in question with full pho-
tometry metadata (e.g., central wavelength, bandwidth, the system, perhaps a URL of the
detector’s response curve, etc). The details are hellish, but there actually is a photometry DM
in the VO. There is just not a good way to put that information into a VOTable yet. If you
are looking for something to contribute to the VO: this would be a good task. Just ask on the
IVOA’s data models mailing list.

Step 3b: Aggregate Photometry

Construction of “clusters” is in vohelper.py and uses astropy’s SkyCoords and match catalog to sky

(asymmetric!).
For three catalogues, we must perform six sky matches to get pairs, then walk the graph to
gather the clusters.

13http://www.ivoa.net/documents/latest/UCDlist.html

13

http://www.ivoa.net/documents/latest/UCDlist.html

This actually is pure astropy and has nothing to do with pyVO as such. As a matter of fact, it
is usually smarter to have the remote sides do the cross matches if at all possible.
In this case, since we do not have a “master catalogue” to match against, that is actually hard.
For smallish crossmatches, the code in vohelper works reasonably well (but it scales horribly
when then number of tables increases; use specialised packages when your problem takes that
direction).
What is happening in that code? sky coords are astropy.SkyCoord instances (in the example
code, there is a function get coordinates for table that makes these for essentially arbitrary
tables as long as they are properly marked up).
The code then goes through all pairs of input SkyCoords and uses their catalogue match method
to generate pairs of indices into these objects that are the closest pairs (that operation is not
symmetrical, which is why we compute the matches with all permutations).
The remaining code filters out those pairs that are closer than a limit that is passed in and adds
a new pair of rows to be matched to a set. Each row is designated as a pair of table index and
row index within that table.
The rest is a graph problem: If you compute the connected subsets of the graph formed in
this way, you will have all measurements that are crossmatched together and thus, hopefully,
correspond to one object.
Sorry for this excursion. Feel free to ignore this.

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

2MASS SDSS WISE

Graph-based clustering

as
Sky

as
C

atalogue

For this course, but perhaps also for convenience in wider usage, we have gathered some
helper functions in a module vohelper that you can find on the web page and attached to the
PDF. Have a glance at the source code if you want. Otherwise, just dump it next to your scripts
so you can import it.

vohelper.py

Combine with “your” Code

This is python: Add your own logic!
Here: Let’s display the approximate SEDs and let the user interactively select “interesting”
cases.

for pos, phots in seds:

to_plot = np.array(phots)

plt.semilogx(to_plot[:,0], to_plot[:,1], ’-’)

plt.show(block=False)

selection = input(

"s)elect SED, q)uit, enter for next? ")

if selection=="q":

break

if selection=="s":

14

Helpers for using PyVO and astropy, as used by the PyVO talk(s) given
by GAVO Heidelberg.
#
This code is in the public domain.

import requests
import pyvo
import numpy
import functools
import itertools
import re
import traceback
import warnings

astropy's votable code is overzealous in complaining about things
-- that's worthless for a consumer, so let's turn it off.
warnings.filterwarnings('ignore', module="astropy.io.votable.*")

def show_exception(func):
 """decorates func such that any exceptions coming out of it are
 shown in the terminal (and then re-raised).
 """
 def _(*args, **kwargs):
 try:
 return func(*args, **kwargs)
 except Exception:
 traceback.print_exc()
 raise

 return functools.update_wrapper(_, func)

def get_name_for_ucd(ucd, table):
 """returns the name of a column having ucd in an astropy table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 pyVO, for its result sets, already has a similar method on result sets,
 fieldname_with_ucd, but we are expecting astropy tables here.
 """
 ucd = ucd.lower()

 for col in table.columns.values():
 if col.meta.get("ucd", "").lower() == ucd:
 return col.name
 raise KeyError(ucd)

SOME_SQL_RESERVED_WORDS = set(
 "area box centroid circle coordsys distance exp log point region"
 " avg case cross current date day desc distinct double exists"
 " found full global group hour key left level max min month"
 " precision prior public real right second set size sum"
 " time timestamp to true upper user value when where year".split())

def quote_if_necessary(identifier):
 """returns a delimited version of identifier if it doesn't look it would
 pass for a SQL regular identifier.

 We actually allow dots since we don't want to parse table references
 with schema names. If someone is devious enough to break this
 with a simple dot, they have waived their moaning rights.

 We only check for a few of the most tempting SQL keywords, though.

 This function shouldn't really be necessary here as TAP operators ought
 to give pre-quoted identifiers in tap_schema and friends. They don't
 yet, though.
 """
 if re.match('".*"$', identifier):
 # we are already quoted
 return identifier

 elif (re.match("[A-Za-z][A-Za-z0-9_.]*$", identifier)
 and not identifier.lower() in SOME_SQL_RESERVED_WORDS):
 return identifier

 else:
 return '"{}"'.format(
 identifier.replace('"', '""'))

def compute_multi_join(sky_coords, radius):
 """does an len(sky-coords)-way crossmatch of rows in sky_coords and returns
 the indices to match up.

 This is essentially an n-way symmetric crossmatch. It's not efficient,
 though, and also exclusively positional.

 You probably want to use a real clustering algorithm here. Astroml,
 http://www.astroml.org/, for instance, looks like a nice package.
 """
 # match all tables against all tables for now
 matches = set()
 for left, right in itertools.permutations(range(len(sky_coords)), 2):
 idx, dist2, _ = sky_coords[left
].match_to_catalog_sky(sky_coords[right])

 pairs = numpy.array([numpy.arange(len(idx)), idx]).transpose()
 for left_ind, right_ind in pairs[dist2 < radius]:
 matches.add(((left, left_ind), (right, right_ind)))

 # aggregate the matches (i.e., put everything matched to the same thing
 # in one box
 to_join = {}
 for ob1, ob2 in matches:
 if (ob1 in to_join and ob2 in to_join
 and to_join[ob1] is not to_join[ob2]):
 to_join[ob1] = to_join[ob2] = to_join[ob1] | to_join[ob2]
 elif ob2 in to_join:
 to_join[ob1] = to_join[ob2]
 to_join[ob1].add(ob1)
 elif ob1 in to_join:
 to_join[ob2] = to_join[ob1]
 to_join[ob2].add(ob2)
 else:
 to_join[ob1] = to_join[ob2] = set([ob1, ob2])

 return set(frozenset(v) for v in to_join.values())

def run_sync_resilient(svc, *sync_args, **sync_kw_args):
 """runs a sync query in a TAP service svc, catching and logging all
 kinds of errors.

 On error, this just returns None.

 In particular, this catches ^C so people can cancel individual
 queries.

 This is really intended for all-VO-queries where we don't and shouldn't
 care about a couple of broken services.
 """
 try:
 return svc.run_sync(*sync_args, **sync_kw_args)
 except (
 pyvo.dal.DALServiceError,
 pyvo.dal.DALQueryError,
 requests.ConnectionError) as ex:
 print("{}:{}".format(svc.baseurl, ex))
 return
 except KeyboardInterrupt: # Let the user abort slow queries
 return

selected.append(pos)

plt.cla()

return selected

fetch3-cluster.py

This is fairly standard matplotlib. We are interacting through input in the shell here for sim-
plicity. It is not actually hard to interact through the matlotlib window, but that requires a bit
object magic that we wanted to avoid here.

Exercise 8
Go through the source code of fetch3-cluster.py. You will see we have put in two
workarounds for where the data providers messed up. Can you see in each case what
might have gone wrong? Have the service operators fixed their software or do things
still fail when you remove a workaround? In a course setting, coordinate with your
neighbours and split up the work so each only looks at one workaround.

Exercise 9
Run fetch3-cluster.py and select a couple of objects. Keep the resulting file
(selected positions.vot) – we will want to reuse it later.

Write Tables in Style

Please furnish your tables with metadata. fetch3-cluster shows you how to do it with astropy:

t = table.Table()

t.add_column(table.Column(

name='ra',

data=selected[:, 0],

unit=u.degree,

description="ICRS RA of a selected object",

meta={"ucd": "pos.eq.ra;meta.main"}))

Looking for Spectra

Suppose you have a couple of positions for “interesting” objects. Can we find spectra for them?
SSAP is the traditional VO protocol to access spectra, quite like SIAP, and we could query SSAP
services just like we queried SIAP services. However, SSAP only lets you access one object at
a time, which is kind of tedious.
Let’s use

ObsTAP = TAP with table ivoa.obscore

ivoa.obscore has lots of metadata on observational data products (spectra, cubes, timeseries).
Having what people generally call a “data model” – here, rather a set of pre-defined columns
– enables a lot of powerful data discovery scenarious when coupled with TAP. So, why do we
bother with SCS, SIAP, and SSAP?
Good question. It mainly has historical reasons – the S-protocols where easier to define than
TAP and Obscore. And until datalink was there, there were a few tricks you could play with
them that just do not work with simple ObsTAP (cutouts, for instance).
Even now, there is still much less data in ObsCore services than in SSAP; hence, if your problem
easily admits querying through SSAP, it is certainly no mistake to do so, perhaps in addition
to Obscore (beware: there is some data that’s in Obscore but not in SSAP).
What we are doing here is another instance of the more general problem of global dataset
discovery, to which I will return later in more generality.

15

#!/usr/bin/python

This code is in the public domain.

Step 3: as Step 1, but this time cluster the points retrieved to
combine the different photometry, then show sketches of the SED
and let users select objects for closer inspection.

import pickle
import os
import sys

from astropy import coordinates
from astropy import units as u
from astropy import table
from matplotlib import pyplot as plt
import numpy as np
import pyvo

import vohelper

for rough SED: map filter UCDs to representative wavelengths
to do this better, we'd need more takeup of the photometry DM
UCD_TO_WL = {
 "phot.mag;em.opt.u": 3.5e-7,
 "phot.mag;em.opt.b": 4.5e-7,
 "phot.mag;em.opt.v": 5.5e-7,
 "phot.mag;em.opt.r": 6.75e-7,
 "phot.mag;em.opt.i": 8.75e-7,
 "phot.mag;em.ir.j": 1.25e-6,
 "phot.mag;em.ir.h": 1.75e-6,
 "phot.mag;em.ir.k": 2.2e-6,
 "phot.mag;em.ir.3-4um": 3.5e-6,
 "phot.mag;em.ir.4-8um": 6e-6,
 "phot.mag;em.ir.8-15um": 11.5e-6,
 "phot.mag;em.ir.15-30um": 22.5e-6,
}

QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 	AND Jmag<15"""),
 ("allwise", "https://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 AND w1mag<14"""),
 ("sdss", "https://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 AND i_mag<16"""),]

def work_around_vizast_bug(col):
 """fixes a non-interoperability problem between VizieR and astropy:
 arraysize=1 has not meant 1-array on Vizier-TAP.

 This function makes arrays of such 1-arrays arrays of scalars.
 """
 if not np.isscalar(col[0]) and col[0].shape == (1,):
 return col.__class__(
 data=col[:, 0],
 name=col.name,
 mask=col.mask[:, 0],
 unit=col.unit,
 meta=col.meta)
 else:
 return col

def work_around_sdss_ucd_bug(name, ucd):
 """guesses better UCDs for SDSS' botched ones.
 """
 if ucd == "phot.mag;em.opt":
 return {
 "u_mag": "phot.mag;em.opt.u",
 "g_mag": "phot.mag;em.opt.b",
 "r_mag": "phot.mag;em.opt.r",
 "i_mag": "phot.mag;em.opt.i",
 "z_mag": "phot.mag;em.opt.i",
 }[name]
 return ucd

def get_tables(ra, dec, radius):
 """returns pairs of (short_name, result) for the queries defined.

 For experimentation, we cache the results here; to clear the cache,
 delete the file cache.pickle.
 """
 if os.path.exists("cache.pickle"):
 with open("cache.pickle", "rb") as f:
 return pickle.load(f)

 results = []
 for short_name, access_url, query in QUERIES:
 service = pyvo.dal.TAPService(access_url)
 results.append(
 (short_name, service.run_sync(query.format(**locals())).to_table()))

 with open("cache.pickle", "wb") as f:
 pickle.dump(results, f)

 return results

def get_coordinates_for_table(table):
 """returns SkyCoord objects for an astropy table.

 This uses pos.eq.*; meta.main UCDs to know where to look.
 """
 ra_column = vohelper.get_name_for_ucd(
 "pos.eq.ra;meta.main", table)
 dec_column = vohelper.get_name_for_ucd(
 "pos.eq.dec;meta.main", table)

 # fix broken metadata (sigh)
 if table[ra_column].unit == "Angle[deg]":
 table[ra_column].unit = "deg"
 if table[dec_column].unit == "Angle[deg]":
 table[dec_column].unit = "deg"

 return coordinates.SkyCoord(
 # WORKAROUND!
 work_around_vizast_bug(table[ra_column]),
 work_around_vizast_bug(table[dec_column]))

def force_scalar(val):
 """returns val[0] if val is an array, val otherwise.

 Again, this is a workaround for a vizier-astropy battle.
 """
 if np.isscalar(val):
 return val
 else:
 return val[0]

def make_photo_cluster(rows):
 """makes a pair of (position, photopoint) from a list of database
 rows.
 """
 pos = [None, None]
 phots = []

 for row in rows:
 for index, col in enumerate(row):
 name = row.columns[index].name
WORKAROUND!
 ucd = work_around_sdss_ucd_bug(
 name,
 row.columns[index].meta.get("ucd", "").lower())

 if ucd.startswith("phot.mag"):
 col = force_scalar(col)
 if ucd in UCD_TO_WL:
 phots.append((UCD_TO_WL[ucd], col))
 elif ucd == "pos.eq.dec;meta.main":
 pos[1] = force_scalar(col)
 elif ucd == "pos.eq.ra;meta.main":
 pos[0] = force_scalar(col)

 return tuple(pos), sorted(phots)

def make_seds(tables, clusters):
 """returns a sequence of (position, photopoints) from database tables
 and the custer result.

 We select columns based on UCDs.
 """
 seds = []
 for cluster in clusters:
 seds.append(
 make_photo_cluster([tables[table_ind][1][row_ind]
 for table_ind, row_ind in cluster]))
 return seds

def select_seds(seds):
 selected = []

 for pos, phots in seds:
 to_plot = np.array(phots)
 plt.semilogx(to_plot[:, 0], to_plot[:, 1], '-')
 plt.ylim([min(to_plot[:, 1]), max(to_plot[:, 1])])
 plt.ylabel("Mag", fontsize=15)
 plt.xlabel("Wavelength", fontsize=15)
 plt.show(block=False)
 selection = input("s)elect SED, q)uit, enter for next? ")
 if selection == "q":
 break
 if selection == "s":
 selected.append(pos)
 plt.cla()

 return selected

def main():
 if len(sys.argv) != 4:
 ra, dec, radius = 130.8, 3.4, 0.3
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 tables = get_tables(ra, dec, radius)

 clusters = vohelper.compute_multi_join([
 get_coordinates_for_table(t) for name, t in tables],
 0.2*u.arcsec)

 seds = make_seds(tables, clusters)

 selected = np.array(select_seds(seds))

 if not len(selected):
 sys.exit("Nothing selected, nothing written.")

 t = table.Table()
 t.add_column(table.Column(
 name='ra',
 data=selected[:, 0],
 unit=u.degree,
 description="ICRS RA of a selected object",
 meta={"ucd": "pos.eq.ra;meta.main"}))
 t.add_column(table.Column(
 name='dec',
 data=selected[:, 1],
 unit=u.degree,
 description="ICRS Declination of a selected object",
 meta={"ucd": "pos.eq.dec;meta.main"}))
 with open("selected_positions.vot", "wb") as f:
 t.write(output=f, format="votable")

if __name__ == "__main__":
 main()

Plan:

• Search for ObsTAP services

• Use TAP upload to search to collect spectra

• Send spectra to SPLAT

Obscore

The obscore “data model” consists of ∼ 40 columns; use a TAP browser to look at them. Some
highlights:

• dataproduct type – states image, timeseries, and the like. The full list of terms is at http:
//www.ivoa.net/rdf/product-type.

• obs publisher did – a dataset identifier. By design, it should be globally unique and
resolvable, but not all data providers are following this design. . .

• access url – where to get the data from.

• s ra, s dec, s fov – centre and FoV of the observation

• s region – area covered by the dataset as an ADQL geometry. This column allows very
concise queries, but alas, operators are free to have this NULL even when the have centre
coordinates and a field of view.

Query the Registry

Iterate over all obscore services (here: see what data collections they house):

for svc_rec in pyvo.registry.search(datamodel="obscore"):

print(f">>>>>> {svc_rec.short_name}...")

try:

svc = svc_rec.get_service("tap", lax=True)

result = svc.run_sync("SELECT DISTINCT obs_collection"

" FROM ivoa.obscore")

except (Exception, KeyboardInterrupt):

import traceback; traceback.print_exc()

continue

print("\n".join(r["obs_collection"] for r in result))

Do not run this script just for fun. It will hit quite a few services and make them seqscan their
obscore tables.
To “use ObsTAP”, just query the ivoa.obscore table via TAP.
To find TAP services having these tables, we once more use pyvo.registry.search but this time
use the datamodel constraint. Also, we again use the get_service method on the RegistryResource
instance that comes back from search; you should always specify what sort of service you want
– "tap" in this case. Prefer this pattern over the explicit use of access_url on RegistryResource-s
you may see in other places; access URLs are not a terribly well-defined concept, in particular
not if one does not constrain the servicetype.
The selling point here is: we are running the same database query on all the ObsTAP services,
and we are processing their results in the same way. That is the power of uniform data models.

16

http://www.ivoa.net/rdf/product-type
http://www.ivoa.net/rdf/product-type

This script does not come attached. That’s because on large services, the SELECT DISTINCT can
actually be computationally expensive for the remote side; it is likely that you will see timeouts
or very long runtimes. Hence, to try it, you will have to cut and paste, and then add the pyvo
import.
More useful Obscore queries with positional constraints are usually much faster: the wonder
of indexes and one of the major reasons why “just download stuff” is not a good plan with
large datasets.

Query with Upload

For each ObsTAP service, we query against our object list (assumed to be in an astropy Table
in pois):

if not svc.upload_methods:

return

result = svc.run_sync(

"""SELECT TOP 2000 oc.obs_publisher_did, oc.access_url

FROM ivoa.obscore AS oc

JOIN TAP_UPLOAD.pois AS mine

ON 1=CONTAINS(

POINT(’ICRS’, oc.s_ra, oc.s_dec),

CIRCLE(’ICRS’, mine.ra, mine.dec, 0.01))

WHERE oc.dataproduct_type=’spectrum’

"""),

uploads = {"pois": pois})

What is going on here? Right after constructing the service, we check whether it supports table
uploads – not all TAP services do. TAPService objects have a few other attributes that let you
inspect various properties of services. This, in particular, includes resource limits (maximum
upload size, limit to which maxrec can be raised, etc).
Here, it is enough to know there is any upload method at all, because the standard says that
inline upload must be supported if there is any upload support, and inline uploads is what we
are doing.
To actually perform the upload, pass a dictionary to the uploads keyword argument of run_sync
and friends. The keys there are simple names (starting with a letter and letters or numbers after
that), the values can be various things, but you will probably get by passing either a string
(which is interpreted as a URL to fetch a VOTable from) or an astropy table.
You can upload multiple tables using different keys; for each key, a table TAP UPLOAD.key be-
comes available – this is where the TAP UPLOAD.pois above comes from. Remember that TOP-
CAT, which is what many upload examples are written for, has the convention of naming its
uploads t<n>, where the n is the index in the table list in TOPCAT’s main window.
You will almost always join the uploaded table with a table on the service, and thus it is almost
always a good idea to use ADQL’s AS construct to give abbreviated names to tables. The name
mine is typically a good choice if you only have one upload, for the simple reason that other
people use it, too.
Note that even if you do not absolutely have to qualify column names in a query with a join
with the source table names as long as the name only exists in one or the joined tables, you will
regret not doing so in queries you will likely reuse – just because there’s no column s ra in the

17

table uploaded here doesn’t mean the table you have in your next program does not either. If
it has and you have not used the oc. prefix (here), your query will fail.
Instead of the common run sync, this uses vohelper.run sync resilient, which catches all
kinds of exceptions and other trouble. As said above, when you do all-VO queries, expect at
least one service to fail completely and another to give results that look like they come from a
fuzzer.
The actual obscore query does a classical, ADQL 2.0 crossmatch, because we are querying lots
of services, many of which will not be updated to more recent standards even by the time your
read this. Also, stellar spectra come from essentially point-like objects, and thus you probably
do not want to write something like

1=CONTAINS(POINT(mine.ra, mine.dec), s_region)

This could be more attractive if you are looking for images or other artefacts with a reasonable
coverage. Note, however, that proper s region support is not mandatory, whereas all data
providers get the center RA and Dec for their datasets roughly right. The bottom line is: If you
can get by with just positions (rather than s region) in your obscore queries, do it.
The code in get spectra.py is actually a bit more general in that it does not hardcode the column
names in the uploaded table but instead discovers them using UCDs. So, as long as your tables
are properly annotated, the function there will just work for global spectra discovery (or, if you
change the query, really any other global Obscore discovery on sets of positions).

Exercise 10
One particularly cool part about async is that you can keep your results publicly
available on the remote server for a while. That, in turn, you can use to do cross-service
joins without having to download intermediate tables.
You can use URLs in a query’s upload argument. To try this out, review the TGAS and
RAVE exercise 7. Let the initial RAVE query be asynchronous. On the resulting job, call
wait as above. Once it is done, upload what is job’s result uri attribute into the TGAS
server with a normal positional upload join.

Collect Spectra finished

The rest is almost standard SAMP fare to get the spectra retrieved to SPLAT as they come in:

for ds_name, access_url in specs:

print("Opening ...".format(access_url))

try:

pyvo.samp.send_spectrum_to(

conn, access_url, client_name="splat", name=ds_name)

except KeyError as exc:

regrettably, astropy raises the unspecific KeyError

when there it does not find the client.

print(" ** Failed: is splat running?")

except Exception:

print(" *** Unexpected failure:")

import traceback; traceback.print_exc()

get-spectra.py

As for images, spectra are usually passed around by their URLs in SAMP.
What is new here is that we are catching exceptions. Somewhat suboptimally (because it is too
non-specific), pyVO raises a KeyError when it cannot find SPLAT on the SAMP bus.

18

#!/usr/bin/python

This code is in the public domain.

do an all-VO obscore search for spectra around a list of points.

import sys

from astropy import table
import pyvo

import vohelper

def get_spectra_for_table(svc, pois, radius, samplesize):
 """yields pairs of (dataset name, access_url) for spectra within radius
 degrees of points in pois for and obscore service.
 """
 ra_column_name = vohelper.get_name_for_ucd(
 "pos.eq.ra;meta.main", pois)
 dec_column_name = vohelper.get_name_for_ucd(
 "pos.eq.dec;meta.main", pois)

 # the rstrip in the next line is a workaround for a botched registration of
 # VAO
 if not svc.upload_methods:
 # service doesn't support upload, can't use it
 return

 # you'd normally really match
 # CONTAINS(POINT(up.ra, up.dec), s_region); however, we need to fudge here
 # since there's still too little data in obscore.
 result = vohelper.run_sync_resilient(svc,
 """SELECT TOP {samplesize} oc.obs_publisher_did, oc.access_url
 FROM ivoa.obscore AS oc
 JOIN TAP_UPLOAD.pois AS mine
 ON 1=CONTAINS(
 POINT('ICRS', oc.s_ra, oc.s_dec),
 CIRCLE('ICRS',
 mine.{ra_column_name},
 mine.{dec_column_name},
 {radius}))
 WHERE oc.dataproduct_type='spectrum'
 """.format(**locals()),
 # add more constraints (spectral region, resolution... here)
 uploads={"pois": pois})

 if result is None:
 return

 for row in result.to_table():
 yield str(row[0]), str(row[1])

def main():
 args = sys.argv+["selected_positions.vot", "1000", "2"][len(sys.argv)-1:]

 with open(args[1], "rb") as f:
 pois = table.Table.read(f)
 radius = float(args[2])/3600
 n_samp = int(args[3])

 with pyvo.samp.connection() as conn:
 for res in pyvo.registry.search(datamodel="obscore"):
 sys.stdout.write("Querying {} ...".format(res.ivoid))
 sys.stdout.flush()

 try:
 specs = list(get_spectra_for_table(
 res.get_service("tap"), pois, radius, n_samp))
 except (Exception, KeyboardInterrupt) as ex:
 sys.stdout.write(f"broken ({ex}\n")
 continue
 sys.stdout.write(" done. ({})\n".format(len(specs)))

 for ds_name, access_url in specs:
 print("Opening {}...".format(access_url))
 try:
 pyvo.samp.send_spectrum_to(
 conn, access_url, client_name="splat", name=ds_name)
 except KeyError:
 # regrettably, astropy raises the unspecific KeyError
 # when there it does not find the client.
 print(" ** Failed: is splat running?")
 except Exception:
 print(" *** Unexpected failure:")
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

Giving some reminder-type message probably helpful when you run the program after a cou-
ple of months and have forgotten about SPLAT being a part of this analysis chain. Letting
through the KeyError with a key of splat is probably a lot less helpful than the message we
emit, even at the risk of catching KeyErrors of different origin. In practice, you would prob-
ably want to break out of the loop, too; the way this is written, you will get one message per
spectrum, which may be slightly panic-inducing.
We catch all other exceptions; we do not want to exit the loop just because some spectrum is
funny. Given what is in the try-block, the most likely origin of these exceptions is when SPLAT
fails to open a spectrum for some reason and sends back an indication of that. What we are
catching here, in effect, are an exceptions raised within SPLAT.
In general, there is no telling if the target client has already informed the user that something is
wrong – it is probably better to assume it has in generic code most of the time, and so sending
code should avoid modal error messages (“Click here to continue”). But you basically never
want to silence all exceptions, because that will hide all kinds of unexpected misbehaviour. So,
as a relatively safe and diagnosable fallback, we just dump the traceback and trudge on.

Exercise 11
Can you change get_spectra.py such that only spectra of resolving power 10000 or
greater are retrieved?
Hint: Use TOPCAT or the tables property of your TAPService to inspect the metadata
of the ivoa.obscore table to figure out which column to query against. Just in case: It is
almost always better to filter on the remote side rather than the local side. And chuck
the “almost” if the constraint can be expressed as a single condition in a WHERE clause.

4 Higher SAMP Magic

Use Case: An Object Investigator

Let’s say you are debugging your pipeline and want to manually inspect “weird” objects by
querying a set of other catalogues have on them.
Plan: Write a program that other clients

• can send tables to and then

• when a table row is selected, computes a new table with data from other services

• that is then sent to Aladin for inspection.

SAMP: Listening to Messages

SAMP is based on messages; there are several message types (MType-s), which are documented
on the IVOA wiki14.
The SAMP client objects’s bind_receive_message method arranges for the hub to call a function
when a message of a certain MType comes in. The calling pattern is a bit complicated, but what
really counts is a dictionary of the parameters passed to the call on the sender side (params).

14http://wiki.ivoa.net/twiki/bin/view/IVOA/SampMTypes

19

http://wiki.ivoa.net/twiki/bin/view/IVOA/SampMTypes

SAMP has two types of messages: Notifications, which do not expect a response, and calls,
which do. If you use bind_receive_message, you will cover both cases, which is generally a good
idea, because all kinds of messages can come as either.
If a call (as opposed to a notification) comes in, it is associated with a message id, and the
sending client will expect a response. If you do not give one, you will have ugly “pending”
SAMP messages. Notifications have no message id, and they require not responses.
Here is a program that prints sky coordinates of “things” the user pointed to:

import pyvo

import vohelper

@vohelper.show_exception

def print_coord(privkey, sender_id, msg_id, mtype, params, extra):

print("{} {}".format(params["ra"], params["dec"]))

if msg_id is not None:

conn.reply(msg_id, {"samp.status": "samp.ok", "samp.result": {}})

with pyvo.samp.connection(addr="localhost") as conn:

conn.bind_receive_message("coord.pointAt.sky", print_coord)

input()

The handler function has a rather complex signature (i.e., what parameters it takes and what
it returns). Don’t sweat it too much. In particular, do not be alarmed when you ignore
private_key; for all I know no client at this point does any kind of cryptographic validation.
There are security implications from SAMP, but very frankly: if you regularly have your browser
execute Javascript from random web pages, you are in worse trouble.
The important part is params; this is where the parameters given on the SAMPMtypes page are
in; in the case of the coord.pointAt.sky message we receive here, these are in the keys ra and dec.
To try this, start Aladin and then the sample program. When you click on the sky, you will see
the target coordinates in your terminal.
Versus the basic “Add SAMP Magic” method of getting a SAMP connection, we have now
added an addr="localhost". This is a workaround to make listening to messages a bit more
robust on machines that have both IPv4 and IPv6 enabled (most have in 2024). If you get
“connection refused” messages or the like when trying to send a message, try removing the
argument.
As said above, when msg_id is not None (i.e., we got a call, not a notification), we have to send
a reply. The sample code essentially says: “I have no results, and that is fine for this MType”.

MTypes for the Vicinity Searcher

To make our program ready to receive tables via SAMP, we have to listen to table.load.votable.
Params for that as per the MTypes wiki page:

url URL of the VOTable document to load

table-id local identifier for referencing

name human-readable name

To monitor whether a row in a table you received is selected, listen to table.highlight.row. Params:

table-id the local identifier

row the row index

20

Python Classes: Why?

We have to keep quite a bit of state in our program, at least:

• the SAMP connection

• the table sent to us.

There is also quite a bit of behaviour:

• receive and store the remote table

• see when rows are selected

• do searches when that happens.

When you have state and behaviour linked together, in Python think: “class”.

Python Classes: How?

class VicinitySearcher:

vicinity_size = 30

client_name = "Aladin"

def __init__(self, conn):

self.conn = conn

self.cur_table = self.cur_id = None

def load_VOTable(self,

private_key, sender_id, msg_id, mtype, params, extra):

...

def handle_selection(self,

private_key, sender_id, msg_id, mtype, params, extra):

...

vicinitysearcher.py

The trivial version of object lore in python is: All functions belonging to an object (method-
s) have a first argument conventionally called self (the instance), and whenever you put an
attribute on self, you can find it again in other methods’ self, provided these other methods
are called on the same instance (i.e., object).
You can also have attributes in the class itself; consider these constants, as assigning to these
may not always do what you expect.
To call other methods of the same object, use self.methodname().
Create an instance by calling the class (here: VicinitySearcher(conn)). Whatever you pass
into that call will be passed to the __init__ method (the constructor).

21

"""
A quick example showing astropy and pyvo working hand in hand with the
rest of the VO

This program expects Aladin to run. It then waits for tables to be sent,
and when a row is selected, it will search some (SERVICE_META) cone
search services. The results are joined and sent to aladin with
positions, proper motions, and source.

Sample use:

(1) start TOPCAT, aladin, then python vicinitysearcher.py
(2) in TOPCAT, open VO/Cone Search, look for "transitional YSOs"
(3) select the Magnier+ 1999 service, make RA and DEC 0, SR 180, "ok"
(4) broadcast table
(5) in Aladin, pan and zoom until you have a catalog object in a FoV of
 an arcminute or so
(6) hover over the object to pull in the potential matches
(7) select the items to see the catalog entries.
"""

import vohelper

from astropy import table
import pyvo

SERVICE_META = [
 ("PPMXL", "http://dc.zah.uni-heidelberg.de/ppmxl/q/cone/scs.xml?"),
 ("2MASS", "http://dc.zah.uni-heidelberg.de/2mass/res/2mass/q/scs.xml?"),
 ("UCAC4", "http://dc.zah.uni-heidelberg.de/ucac4/q/s/scs.xml?")]

class VicinitySearcher:
 """The SAMP handling class.

 This is where the action takes place: receiving VOTables, handling
 notifications of selected rows, querying the remote services.

 True, in a less one-off program this should be less god-like, and
 at least make_response_table shouln't be part of this.
 """
 vicinity_size = 30 # arcsec
 client_name = "Aladin" # samp.name of the client for the match table

 def __init__(self, conn):
 self.conn = conn
 self.cur_table = self.cur_id = None

 self.services = []
 for short_name, access_url in SERVICE_META:
 self.services.append(pyvo.dal.scs.SCSService(access_url))
 self.services[-1].my_tag = short_name

 self.conn.bind_receive_call(
 "table.load.votable", self.load_VOTable)
 self.conn.bind_receive_message("table.highlight.row",
 self.handle_selection)

 @vohelper.show_exception
 def load_VOTable(self, private_key, sender_id, msg_id, mtype,
 params, extra):
 """the SAMP handler to load VOTables.

 (binding is done in the constructor)
 """
 self.cur_table = table.Table.read(params['url'])
 self.ra_name = vohelper.get_name_for_ucd(
 "POS_EQ_RA_MAIN", self.cur_table)
 self.dec_name = vohelper.get_name_for_ucd(
 "POS_EQ_DEC_MAIN", self.cur_table)
 self.cur_id = params["table-id"]

 self.conn.reply(msg_id,
 {"samp.status": "samp.ok", "samp.result": {}})

 @vohelper.show_exception
 def handle_selection(self, private_key, sender_id, msg_id, mtype,
 params, extra):
 """the SAMP handler for a row selection in our current table.
 """
 print("incoming: ", params)
 if msg_id:
 self.conn.reply(msg_id,
 {"samp.status": "samp.ok", "samp.result": {}})

 if params["table-id"] == self.cur_id:
 table_index = int(params["row"])
 print("Row selected:", table_index)
 response = self.make_response_table(table_index)

 if response is not None:
 pyvo.samp.send_table_to(
 self.conn, response,
 client_name=self.client_name, name="vicinity")

 def make_response_table(self, table_index):
 """returns an astropy table (or None) for the row table_index.

 This is essentially the "user code" that reacts on the incoming
 messages.
 """
 ra = self.cur_table[self.ra_name][table_index]
 dec = self.cur_table[self.dec_name][table_index]
 pm_unit = "deg/yr"

 ras, decs, pmras, pmdecs, svcs = [], [], [], [], []
 for service in self.services:
 print("Querying ", service.my_tag)
 cone_result = service.search((ra, dec),
 self.vicinity_size/3600.).to_table()
 nrecs = len(cone_result)

 ras.extend(cone_result[
 vohelper.get_name_for_ucd("POS_EQ_RA_MAIN", cone_result)])
 decs.extend(cone_result[
 vohelper.get_name_for_ucd("POS_EQ_DEC_MAIN", cone_result)])

 try:
 pmra_name = vohelper.get_name_for_ucd(
 "pos.pm;pos.eq.ra", cone_result)
 pmras.extend(
 cone_result.columns[pmra_name].to(pm_unit).value)
 except KeyError:
 pmras.extend([None]*nrecs)

 try:
 pmdec_name = vohelper.get_name_for_ucd(
 "pos.pm;pos.eq.dec", cone_result)
 pmdecs.extend(
 cone_result.columns[pmdec_name].to(pm_unit).value)
 except KeyError:
 pmdecs.extend([None]*nrecs)

 svcs.extend([service.my_tag]*nrecs)

 if not ras:
 return None
 else:
 print("Found {} matches".format(len(ras)))

 res = table.Table([
 table.Column(name="ra",
 data=ras,
 description="Right Ascension from upstream",
 unit="deg",
 meta={"ucd": "pos.eq.ra;meta.main"}),
 table.Column(name="dec",
 data=decs,
 description="Declination from upstream",
 unit="deg",
 meta={"ucd": "pos.eq.dec;meta.main"}),
 table.Column(name="pmra",
 data=pmras,
 description="Proper motion in Right Ascension from upstream",
 unit=pm_unit,
 meta={"ucd": "pos.pm;pos.eq.ra"}),
 table.Column(name="pmdec",
 data=pmdecs,
 description="Proper motion in declination from upstream",
 unit=pm_unit,
 meta={"ucd": "pos.pm;pos.eq.dec"}),
 table.Column(name="service",
 data=svcs,
 description="Source of the data",
 meta={"ucd": "meta.id"}),])

 return res

def main():
 with pyvo.samp.connection(
 client_name="Vicinity Searcher",
 description="An edifying example for a SAMP service",
 addr="127.0.0.1") as conn:
 _ = VicinitySearcher(conn)
 print("Listening. Send me a table, hit return to exit.")
 input()

if __name__ == "__main__":
 main()

vim:sta:et:sw=2

Handling table.load.votable

class VicinitySearcher:

def __init__(self, conn):

[...]

self.conn.bind_receive_call(

"table.load.votable", self.load_VOTable)

def load_VOTable(self,

private_key, sender_id, msg_id, mtype, params, extra):

self.cur_table = Table.read(params['url'])

self.cur_id = params["table-id"]

self.conn.reply(msg_id,

{"samp.status": "samp.ok", "samp.result": {}})

Since we bind the SAMP table.load.votable MType to self.load VOTable (a bound method, which
VicinitySearcher.load VOTable would not be), we get our instance of VicinitySearcher (self)
passed into our method for free.
When we then get notified of a table load, we set some instance variables that let us work with
the table later.
To make this robust, we should catch exceptions and send replies with a status of samp.error in
case of trouble; as said above, clients really want some reply when they send messages directly
to clients and complain about pending SAMP calls when they receive none.

Handling table.highlight.row

@vohelper.show_exception

def handle_selection(self,

private_key, sender_id, msg_id, mtype, params, extra):

if params["table-id"]!=self.cur_id:

return

table_index = int(params["row"])

print("Row selected:", table_index)

response = self.make_response_table(table_index)

if response is not None:

vohelper.send_table_to(self.conn, self.dest_client, response)

The @vohelper.show_exception thing before the method definition is called a decorator. These are
things (actually: functions) that operate on methods. In this particular case, all it does is make
sure any exceptions raised within the SAMP handler are properly displayed. Since the SAMP
handlers do not run in the main thread (and thus exceptions do not terminate the program),
without this you will miss errors in the handlers.
The actual functionality (in this case, searching for matching data in a few catalogues and
broadcasting any matches found) I have delegated to another method, make_response_table. This
is an example for using Simple Cone Search; have a look at it!

Exercise 12
The action of the SAMP handler is in the make_response_table method; have a brief look
at it to appreciate what is going on. Then, replace what is there with something that
does a SIAP search on the service at
http://dc.g-vo.org/lswscans/res/positions/siap/siap.xml and returns the
corresponding table for sending to Aladin (hint: remember the to_table method of DAL
results).

22

Exercise 13
Listening to the SAMP message coord.pointAt.sky, implement an “odometer” computing
and printing after each step the distance travelled by the pointer.
To do this, you will need to keep the SAMP connection, the last position and the
distance travelled so far as state; take the vicinitysearcher, remove the code keeping the
state and behaviour used for its function, and insert our new logic.
Hints: Look at SkyCoord in Astropy and the mtypes page; when re-using SAMP
bindings, make sure you handle messages, not calls.

Try It Out

Start TOPCAT, Aladin, and the vicinity searcher.
Look for openngc SCS and pull some 40 degree cone.
Send the resulting table to the vicinity searcher, have Send row index as an activation action.
Click on table rows or plot points.

5 pyVO and the Registry

A Closer Look at registry.search

We have seen registry.search already in some places.
To go more deeply, you need to understand a bit more of the Registry data model:

Resource

TAP cap SCS capability
Tableset

TAP intf SCS v1 SCS v2

The illustration shows a resource, the thing that has common metadata like a title, description,
authors, space-time coverage, and the like.
On top of that sit capabilities, which are things the resource “can do for you”: typically, proto-
col endpoints. This particular resource has two capabilities: TAP for database queries and SCS
for simple cone searches.

23

Each capability can have one or more interfaces, that is, things that clients can talk to. For
reasons of practicality, a “good” capability should only have one interface; but this may change
as future standards are defined. Interfaces for multiple versions of a protocol on one capability,
as sketeched here, is not something we are planning for, though; SIA1 and SIA2, the only
example where that would matter right now, are modelled as two different capabilities.
There are many other things that a resource can harbour beyond capabilities; an important
example is the tableset, which lists what tables the resource contains. Be warned that VO-
DataService (the standard that defines how tablesets are written) does not require tablesets,
and so some data publishers still do not provide them. If you catch one of those, complain to
them.

Principles of RegistryResource

What you get back from registry.search is a sequence of RegistryResource instances.
It has attributes for metadata (res_title, res_description. . .), and important methods:

• describe() – return a summary of what pyVO knows about the resource.

• access_modes() – short identifiers for the capabilities of the resource

• get_service(type, lax, keyword) – return a service object to query the resource

• get_tables() – return a sequence of table-like objects with what tables you can query

The main method for practical use really is get_service. Its type argument is something like
"tap" – the strings that will produces something for a given resource can be obtained using
access_modes().
The lax keyword argument deserves some explanation: If there are multiple capabilities of a
given type on a resource – something that is still common for VizieR, who like to keep all tables
belonging to one paper together in one VO resource in this way –, pyVO does not know which
one to pick unless you pass keywords (to be matched within the capabilities’ descriptions).
If you think you know what you are doing, you can ask pyVO to pick one of the capabilities
more or less at random: That is what lax=True does. It is not recommended to do that in code
that matters.
As of 2024, most of this code has recently been refurbished, and there have been bugs off and
on. If you find you need to use lax=True when you do not expect to, it is likely you ran into a a
buggy version. In these cases, don’t feel bad about passing lax=True.
There are some legacy attributes and methods that you should no longer use: access_url,
service, search(); all these only do something sensible when there is only one capability on
a RegistryResource. This is not unlikely if you did constrain the servicetype in your call to search.
But in general it is a much better idea to search for data and decide on access modes later in
data discovery. Most resources today come with multiple capabilities, and it is good if you can
choose the most appropriate for your task at hand.

Interactive Use of the PyVO Registry API

Finally: A jupyter notebook!
data-discovery-demo.ipynb

24

{
 "cells": [
 {
 "cell_type": "markdown",
 "id": "considered-spanking",
 "metadata": {},
 "source": [
 "# Data Discovery in using pyVO"
]
 },
 {
 "cell_type": "markdown",
 "id": "registered-mirror",
 "metadata": {},
 "source": [
 "This notebook is an introduction to using the Virtual Observatory Registry interactively from within pyVO. It belongs to the lecture on using the Virtual Observatory. See \n",
 "https://codeberg.org/msdemlei/pyvo-course for more information on this course and in particular for what the VO Registry is and what it is there for."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "published-fountain",
 "metadata": {},
 "outputs": [],
 "source": [
 "# set up things; we're also ignoring over-zealous\n",
 "# astropy warnings against bleeding-edge VOTable.\n",
 "from pyvo import registry, dal\n",
 "import warnings\n",
 "warnings.filterwarnings('ignore', module=\"astropy.io.votable.*\")\n",
 "warnings.filterwarnings('ignore', module=\"pyvo.io.vosi.vodataservice\")\n",
 "import pyvo"
]
 },
 {
 "cell_type": "markdown",
 "id": "modified-mitchell",
 "metadata": {},
 "source": [
 "The most general way to run registry queries is by passing registry.search Constraints. It is quite a bit more flexible than the alternative keyword-based interface, but admittedly somewhat more verbose.\n",
 "\n",
 "For instance, to find data giving redshifts on quasars, you could say:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "beginning-explanation",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs = registry.search(\n",
 " registry.Freetext(\"quasar\"),\n",
 " registry.UCD(\"src.redshift\"))"
]
 },
 {
 "cell_type": "markdown",
 "id": "smooth-electric",
 "metadata": {},
 "source": [
 "As said above, in simple cases (such as this one) you can use an interface based on keyword arguments as well, like this:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "mineral-national",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs = registry.search(keywords=\"quasar\", \n",
 " ucd=\"src.redshift\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "substantial-emission",
 "metadata": {},
 "source": [
 "The list of constraints available (and explanations what they do) is found in the pyVO documentation at https://pyvo.readthedocs.io/en/latest/registry/.\n",
 "\n",
 "What ``registry.search`` returns here is a collection (works as a sequence, but technically it is a ``RegistryResults`` instance) of resource records. Conceptually, you can thing of one item in there, represented as ``RegistryResource`` instances, as a data collection: A catalogue, the archive of an instrument, a collection of spectra reduced in a common way, etc. The simplest way to have a look at the result as a while is through the ``get_summary`` method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "rotary-brain",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs.get_summary()"
]
 },
 {
 "cell_type": "markdown",
 "id": "skilled-carter",
 "metadata": {},
 "source": [
 "While this particular list is perhaps a bit unwieldy, this lets you relatively quickly browse what is available. In particular, the last column tells you how, i.e., using which protocols, you can talk to a service serving the data.\n",
 "\n",
 "Once you have found data you are interested in, you can pick it out of the list using the numeric index (which, however, is unstable between sessions and thus we don't do it here), using the short name (for which there *could* be clashes, though they should be rare) or through the ivoid (which is globally unique, but somewhat lengthy). In this example, we are using the short name.\n",
 "\n",
 "Let's say we want to work with the resource III/175, “Gaia DR3 Part 2. Extra-galactic”. By the last column, there is a cone search, TAP, and web service that provides access to it.\n",
 "\n",
 "The most immediate way to get to the data usually is the cone search, which gives something like a dump of a catalogue around a position (using 0,0,180 will give you the full catalogue most of the time). To see a relatively concise representation of what a service is about, use the ``describe`` method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "bdf88aff",
 "metadata": {},
 "outputs": [],
 "source": [
 "short_name = \"I/356\"\n",
 "rec = rscs[short_name]\n",
 "rec.describe()"
]
 },
 {
 "cell_type": "markdown",
 "id": "6a20fd58",
 "metadata": {},
 "source": [
 "To interact with the resource, there is ``get_service``. Pass it an identifier of a service type as per the last column of the overview table or whatever the ``access_modes`` method returns:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "touched-ratio",
 "metadata": {},
 "outputs": [],
 "source": [
 "print(rscs[short_name].access_modes())\n",
 "svc = rscs[short_name].get_service(service_type=\"conesearch\", lax=True)\n",
 "svc.search((126, -20), radius=0.2).to_table()"
]
 },
 {
 "cell_type": "markdown",
 "id": "responsible-bradley",
 "metadata": {},
 "source": [
 "The lax=True here is a bit of an uglyness: VizieR often has multiple sub-services on their resources, perhaps one per major table in a publication. See the list of interfaces in the ``describe`` output above, and then pick the interface you actually want a ``keyword`` parameter. ``lax=True`` basically means “leave the choice to VizieR”, which *may* to what you want (it will, for instance, with the TAP capabilities, because they all point to the same service) but may be entirely random, too.\n",
 "\n",
 "We are trying to improve this admittedly unfortunate situation."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "809f2eef",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_service(\"scs\", keyword='QSO' \n",
 ").search((126, -20), radius=0.2)"
]
 },
 {
 "cell_type": "markdown",
 "id": "d748e429",
 "metadata": {},
 "source": [
 "A more powerful interface is TAP, which lets you send database queries to the service (forget about the “#aux” in the interface name for now). To do something sensible in TAP, you need to know the name(s) of the table(s) making up the resource. You can figure these out using the registry record's get_tables method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "brave-biotechnology",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_tables()"
]
 },
 {
 "cell_type": "markdown",
 "id": "comprehensive-consolidation",
 "metadata": {},
 "source": [
 "Let's have a look at what columns one of these tables has – this is a normal astropy table:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "young-hundred",
 "metadata": {},
 "outputs": [],
 "source": [
 "td = rscs[short_name].get_tables()['I/356/qsocand']\n",
 "td.columns"
]
 },
 {
 "cell_type": "markdown",
 "id": "olympic-second",
 "metadata": {},
 "source": [
 "From here, you could inspect the various BaseParams for units, descriptions, and the like, but for this level of interactivity, you may want to use TOPCAT. Just paste the service's access URL in its TAP window:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "sudden-jerusalem",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_service(service_type=\"tap\", lax=True).baseurl"
]
 },
 {
 "cell_type": "markdown",
 "id": "mounted-indianapolis",
 "metadata": {},
 "source": [
 "While I was preparing the first version of this notebook, the metadata of this resource still had a bug, which showed itself as warnings of the type\n",
 "\n",
 "```\n",
 "WARNING: W02: ?:?:?: W02: '' is not a valid datatype according to the VOSI spec [pyvo.io.vosi.vodataservice]\n",
 "```\n",
 "\n",
 "While you might ignore warnings, at least with errors it is usually a good idea to notify the operators. To see who to talk to, use the ``get_contact`` method of the record:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "floral-mountain",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_contact()"
]
 },
 {
 "cell_type": "markdown",
 "id": "disabled-compilation",
 "metadata": {},
 "source": [
 "To actually run queries, get a TAP service and do queries based on the columns that you found. Let's use VizieR's III/175, “Optical Spectroscopy of Radio Sources“, for that:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "a4293846",
 "metadata": {},
 "outputs": [],
 "source": [
 "short_name = \"III/175\"\n",
 "rscs[short_name].describe()"
]
 },
 {
 "cell_type": "markdown",
 "id": "55e9a00c",
 "metadata": {},
 "source": [
 "Phewy, just one capability and one table; no problems with lax or keyword. What tables are there?"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "31e332a3",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_tables()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "c22bde31",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_tables()['III/175/table1'].columns"
]
 },
 {
 "cell_type": "markdown",
 "id": "f95a1c82",
 "metadata": {},
 "source": [
 "Let us see what object types this table lists:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "transsexual-firmware",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc = rscs[short_name].get_service(\"tap\")\n",
 "svc.run_sync('SELECT DISTINCT type FROM \"III/175/table1\"').to_table()"
]
 },
 {
 "cell_type": "markdown",
 "id": "structural-residence",
 "metadata": {},
 "source": [
 "To figure out the correlation between the 5 GHz flux and the optical magnitude for Quasars, you could do:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "ranking-today",
 "metadata": {},
 "outputs": [],
 "source": [
 "flux_and_mag = svc.run_sync(\"SELECT m, S5Ghz FROM \\\"III/175/table1\\\" where type='QSO'\").to_table()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "inner-award",
 "metadata": {},
 "outputs": [],
 "source": [
 "from scipy import stats\n",
 "stats.pearsonr(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"])"
]
 },
 {
 "cell_type": "markdown",
 "id": "62942982",
 "metadata": {},
 "source": [
 "That there's an anticorrelation (the first value returned) is not surprising (magnitudes grow as flux decreases). Judging from the p-value (the second value), you could even convince a medicine journal that that is a real thing. How does all this look like anyway?"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "8ac35b46",
 "metadata": {},
 "outputs": [],
 "source": [
 "from matplotlib import pyplot\n",
 "_ = pyplot.scatter(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"])"
]
 },
 {
 "cell_type": "markdown",
 "id": "demographic-employee",
 "metadata": {},
 "source": [
 "Let's quickly see how the same thing looks like for Blazars:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "8684a466",
 "metadata": {},
 "outputs": [],
 "source": [
 "flux_and_mag = svc.run_sync(\"SELECT m, S5Ghz FROM \\\"III/175/table1\\\" where type in ('BL/QSO')\").to_table()\n",
 "print(stats.pearsonr(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"]))\n",
 "_ = pyplot.scatter(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"])"
]
 },
 {
 "cell_type": "markdown",
 "id": "1c0d5a59",
 "metadata": {},
 "source": [
 "We have not looked at web-typed interfaces yet.\n",
 "They correspond to something you can operate with your web browser, and hence there's just one thing pyVO can do: Open a browser. That happens when you call that fake service's search method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "speaking-latest",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_service(\"web\").search()"
]
 },
 {
 "cell_type": "markdown",
 "id": "trying-bubble",
 "metadata": {},
 "source": [
 "By the way, this is *not* the way to look for a webpage *on* the service. The URL of a documentation-type web page is available (provided the publishers did their homework) in a resources' reference_url attribute. To get there, you could do: "
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "nonprofit-record",
 "metadata": {},
 "outputs": [],
 "source": [
 "import webbrowser\n",
 "webbrowser.open(rscs[\"III/175\"].reference_url, 1)"
]
 },
 {
 "cell_type": "markdown",
 "id": "challenging-discount",
 "metadata": {},
 "source": [
 "There are more constraints available than just free text and UCD.\n",
 "A particularly interesting one is the spatial coverage. For instance, you could look for data on flare stars around the Orion nebula like this:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "circular-express",
 "metadata": {},
 "outputs": [],
 "source": [
 "from astropy.coordinates import SkyCoord\n",
 "flrscs = registry.search(\n",
 " registry.Freetext(\"flare\"),\n",
 " registry.Spatial((SkyCoord.from_name(\"M42\"), 2)))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "binding-brook",
 "metadata": {},
 "outputs": [],
 "source": [
 "flrscs.get_summary().show_in_notebook(display_length=60)"
]
 },
 {
 "cell_type": "markdown",
 "id": "hydraulic-rating",
 "metadata": {},
 "source": [
 "The services here a bit more diverse than with our first example. For instance, there are image services, as you will see when you skim the last column:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "sunrise-tournament",
 "metadata": {},
 "outputs": [],
 "source": [
 "matches = flrscs[\"flare_survey.dat\"].get_service(service_type=\"sia\").search(\n",
 " pos=SkyCoord.from_name(\"M42\"),\n",
 " size=2)\n",
 "matches"
]
 },
 {
 "cell_type": "markdown",
 "id": "applicable-inspection",
 "metadata": {},
 "source": [
 "In order to have at least a few images in this notebook, let's use datalink to fetch a few previews of our matches (this datalink trick does not work on all services; if it does not for a service you care about, complain to its operators, demanding datalink support – see the thing with get_contact above)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "realistic-evans",
 "metadata": {},
 "outputs": [],
 "source": [
 "from IPython.display import Image, display\n",
 "for dl in matches.iter_datalinks():\n",
 " for row in dl.bysemantics(\"#preview\"):\n",
 " display(Image(url=row[\"access_url\"], width=200,\n",
 " embed=True, format=\"jpeg\"))"
]
 },
 {
 "cell_type": "markdown",
 "id": "committed-wheel",
 "metadata": {},
 "source": [
 "There are similar constraints for the Spectral and Time axes. For instance, to look for resources talking about spectra and the Balmer break, you could say:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "substantial-nightmare",
 "metadata": {},
 "outputs": [],
 "source": [
 "from astropy import units as u\n",
 "registry.search(\n",
 " registry.Freetext(\"spectra\"),\n",
 " registry.Spectral(364*u.nm)).get_summary()"
]
 },
 {
 "cell_type": "markdown",
 "id": "renewable-single",
 "metadata": {},
 "source": [
 "Note that in particular for time and spectral coverage, as of 2023 many data providers in the VO have not updated their resource records to provide such information; hence, you will have to expect missing resources. For spectral coverage, see also the ``Waveband`` constraint, which is older and therefore better supported."
]
 },
 {
 "cell_type": "markdown",
 "id": "continuous-telephone",
 "metadata": {},
 "source": [
 "Behind the scenes, all this just does ADQL queries via TAP. So, whenever the pre-canned queries from the Registry module are not enough (e.g., because you want to do table uploads or need exotic constraints), you can simply switch to using TAP directly. To help you with that, you can use the ``build_regtap_query`` function to get an ADQL query to start with. For instance:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "worth-catch",
 "metadata": {},
 "outputs": [],
 "source": [
 "print(registry.get_RegTAP_query(\n",
 " registry.Spatial((30, 40)),\n",
 " registry.Servicetype('tap'),\n",
 " registry.Datamodel(\"obscore\")))"
]
 },
 {
 "cell_type": "markdown",
 "id": "southwest-highway",
 "metadata": {},
 "source": [
 "This is not overly pretty, but once you have had a look at the RegTAP documentation at https://ivoa.net/documents/RegTAP/, it should start to make sense. By cutting and pasting, you could create a registry query using an uploaded object list, perhaps a bit like this (ignore the next code cells if you've not played with TAP uploads yet and/or feel uncomfortable near to large amounts of ADQL). Anyway, we get a few random positions and then see what Obscore services declare they cover our sample."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "dedicated-snowboard",
 "metadata": {},
 "outputs": [],
 "source": [
 "objects = dal.TAPService(\"http://dc.g-vo.org/tap\").run_sync(\n",
 " \"SELECT source_id, ra, dec FROM gaia.dr3lite TABLESAMPLE(0.00005)\"\n",
 ").to_table()\n",
 "objects"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "musical-council",
 "metadata": {},
 "outputs": [],
 "source": [
 "from pyvo.registry import regtap\n",
 "\n",
 "rt_query = \"\"\"\n",
 "SELECT DISTINCT\n",
 "ivoid, res_title, \n",
 "res_description, access_url FROM\n",
 "rr.resource\n",
 "NATURAL LEFT OUTER JOIN rr.capability\n",
 "NATURAL LEFT OUTER JOIN rr.interface\n",
 "NATURAL LEFT OUTER JOIN rr.res_detail\n",
 "NATURAL LEFT OUTER JOIN rr.stc_spatial\n",
 "JOIN TAP_UPLOAD.t1\n",
 "ON\n",
 " (1 = CONTAINS(MOC(6, POINT(TAP_UPLOAD.t1.ra, TAP_UPLOAD.t1.dec)), coverage))\n",
 "WHERE\n",
 " (detail_xpath = '/capability/dataModel/@ivo-id' AND 1 = ivo_nocasematch(detail_value, 'ivo://ivoa.net/std/obscore%'))\n",
 " AND (standard_id IN ('ivo://ivoa.net/std/tap'))\n",
 "\"\"\"\n",
 "ocrscs = regtap.get_RegTAP_service(\n",
 ").run_sync(rt_query, uploads={\"t1\": objects}).to_table()\n",
 "ocrscs"
]
 },
 {
 "cell_type": "markdown",
 "id": "interim-entry",
 "metadata": {},
 "source": [
 "Note, however, that in particular Obscore services are notoriously bad at properly defining their physical coverage, so this sort of query is probably more appropriate for TAP tables and perhaps image or spectral services."
]
 },
 {
 "cell_type": "markdown",
 "id": "complete-lebanon",
 "metadata": {},
 "source": [
 "Finally, “classic” Registry queries did what's now called “service discovery”, where you are looking for all, say, image services. This, if I am very frank, is still the way you have to do searches by product type (“look for spectra”) – although we are working on rectifying that, because it does not work very well.\n",
 "\n",
 "You can do service discovery in pyvo by constraining the service type. For instance, you will find services returning X-ray images somewhat in this way – and you can probably get away with calling a method called ``get_service()``, because your service objects will usually only have one associated service of a given type (but note that there exceptions to that):"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "cordless-george",
 "metadata": {},
 "outputs": [],
 "source": [
 "total_matches = 0\n",
 "for res in registry.search(\n",
 " keywords=\"rosat\", waveband=\"X-Ray\", servicetype=\"image\"):\n",
 " try:\n",
 " print(f\"Querying {res.short_name}...\")\n",
 " mats = res.get_service().search(pos=(30, 20), size=0.3)\n",
 " print(f\"...yielded {len(mats)}\")\n",
 " total_matches += len(mats)\n",
 " except Exception as msg:\n",
 " print(f\"Service {res.short_name} failed: {msg}\")\n",
 "print(f\"Total found: {total_matches}\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "corresponding-pharmacy",
 "metadata": {},
 "source": [
 "Comments, questions and ideas for improvement are very welcome. Contact:\n",
 "msdemlei@ari.uni-heidelberg.de (PGP key: 0x555FA86CC57AE128)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "welsh-fifth",
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

Exercise 14
Can you figure out the default output limit (i.e., in effect an implied TOP) for the TAP
service at http://dc.g-vo.org/tap? How far can you raise it?
Can you write a program that figures it out for all TAP services out there that talk about
tgas?

Exercise 15
Which IAU constellation is the least massive exoplanet in the exoplanet merged
catalogue in? Try solving this using pyVO’s registry API; hint: to figure out
constellations, having the constellations as ADQL polygons is really handy.

Resolving Ivoids

IVOA identifiers are the primary keys in the VO Registry.
When keeping notes like “which service did I use”, the ivoid (rather than a DOI) still is the
better choice in the VO for the simple reason that all VO resources have an ivoid, but many
have no DOI.
To resolve an ivoid:

svc = pyvo.registry.search(ivoid='ivo://org.gavo.dc/tap')[0]

You can then go on as we did above with access_modes, get_service, etc.

Write Your Own Constraint

registry.search uses constraint classes to build queries.
You can extend the set of constraint classes yourself by inheriting from registry.SubqueriedConstraint.
Say you want to use the experimental UAT extension to RegTAP, i.e., rr.uat_concept:

25

class UATConcept(pyvo.registry.SubqueriedConstraint):

_keyword = "uat"

_subquery_table = "rr.subject_uat"

def __init__(self, uat_id):

self._condition = "uat_concept={uat_id}"

self._fillers = {"uat_id": uat_id}

new-constraint.py

What is going on here?

• We define a class inheriting from the base class SubqueriedConstraint. This is defined in
pyvo/registry/rtcons.py; but the code there is rather dense, so it is probably best to look
at other classes that are SubqueriedConstraint-s further down the source to get a feeling
for how this is supposed to work.

• The first thing we need to define is what table we want to match in; this ends up in the
_subquery_table class variable. Here, we are using an extension on the default RegTAP
server, a table containing UAT keywords for all the services. This is more useful than
what is in the standard rr.res_subject table, as there, you have all kinds of words and
keyword schemes and all that – but the UAT table is non-standard, which may be the
reason why you need to write your own constraint.

• In the constructor, we fill instance attribute _condition, which needs to contain ADQL
suitable for WHERE. However, this is just a template with fields (here: the stuff with
curly braces) to be replaced when the machinery bakes the actual query.

• For each template field, we have to give a key-value pair in the _fillers dictionary. Here,
there is just uat_id. The reason this is done behind the scenes is that we want to make
SQL string literals from python strings, and the logic to do that should not be repeated
in each constraint class but in only one central place.

• The rest of the query generation is done by pyvo.registry. In reality, this is often a bit
more complex, for instance, because you may want to have multiple terms combined
with OR; when you pass multiple constraints, they are combined with AND. See, for
instance, the UCD constraint for how you would go about this.

• The _keyword class variable gives the name of the keyword argument equivalent to passing
in a UATConcept constraint.

Exercise 16
(You will need to have looked at the vocabularies sidetrack for this)
Take new-constraint.py and add support for query expansion: add a keyword argument
expand. If that is true, include the narrower concepts of what was passed in, too.
Hint: You can leave (something like) this to the server with a UDF, or you can do the
query expansion locally; the first way is simpler, the second perhaps more instructive.

6 Datalink

Datalink: Getting Related Artefacts

26

import pyvo

class ForSource(pyvo.registry.SubqueriedConstraint):
 _keyword = "subject"
 _subquery_table = "rr.subject_uat"

 def __init__(self, uat_id):
 self._condition = "uat_concept={uat_id}"
 self._fillers = {"uat_id": uat_id}

if __name__=="__main__":
 print(pyvo.registry.search(
 ForSource("exoplanet-astronomy")).get_summary())

Datalink is a standard for “linking” files to datasets. Think calibration data, previews, extracted
objects, alternative formats, etc.
https://dc.g-vo.org/static/datalinks.shtml is a showcase of various applications of datalink.
You can retrieve the links in a web browser and ought to get a reasonable UI if you have
enabled javascript.
This is really machine-readable data; load any of these links into TOPCAT to inspect it as a
VOTable:

The power of datalink comes from the fixed structure of these rows, which allows machines to
do sensible things with them. The rows (normally) consist of

• a (theoretically globally unique) ID of the dataset the link is for

• a URL for the data linked access_url

• a human-readable description,

• semantics, that is, a machine-readable identification of what this link is. This comes from
a controlled vocabulary, http://www.ivoa.net/rdf/datalink/core. This allows clients to
sensibly group and/or select these links

• a type and length of the content that lets client figure out what to do with the file:
content_type, content_length

• and a few more technical fields.

Datalink in a Cartoon

27

https://dc.g-vo.org/static/datalinks.shtml
http://www.ivoa.net/rdf/datalink/core

2 3 4 5

1ID access url semantics content type

ivo://example/s?1 http://iv.oa/full-image.fits #this image/fits

ivo://example/s?1 http://iv.oa/scaled4.fits #coderived image/fits

ivo://example/s?1 http://iv.oa/foto.jpg #preview-image image/jpeg

ivo://example/s?1 http://iv.oa/wedge.jpg #calibration image/png

ivo://example/s?1 http://iv.oa/preview.jpg #preview image/jpeg

ivo://example/s?1 http://iv.oa/sources.vot 8 #derivation application/x-votable+xml

ivo://example/s?1 #servicedef #access NULL
10 ivo://example/s?2 http://iv.oa/spect.vot #this application/x-votable+xml

ivo://example/s?2 http://iv.oa/spect.fits #this application/fits

ivo://example/s?2 http://iv.oa/spect-preview.vot #preview-plot image/png

ivo://example/s?2 http://iv.oa/split-order/dl #progenitor 13 app/vot?content=datalink

6

7

11 12

9

14semantics content type

#this application/x-votable+xml

#derivation app/vot;content=datalink

#access NULL

15 16 17

Here is what you can see on this cartoon if you zoom in sufficiently far:
The first seven rows in correspond to a scanned plate. There is a placeholder for the original
dataset with semantics #this, i.e., the “main” dataset. A rebinned version (the figure shows
a larger area) is declared as #coderived from the main dataset. The semantics here could be
a bit more precise to indicate this link is just the resampled #this. If there were a clear idea
what a machine would do differently if it knew that, one can define a refined term using IVOA
processes (look for “IVOA VEP” if interested).
The original plate was part of an early survey which has been published in book form. A JPEG
photo of the book page corresponding to the plate is declared as #preview-image in row three.
Datalink is ideal for declaring files from a dataset’s provenance chain. In row four, we include
a PNG grey wedge from the scan with #calibration semantics.
In the other direction, you can also declare derived data products, such as the sources.vot in
row five, supposed to be a table of extracted sources from the image; the corresponding se-
mantics is #derivation, and again there may be cases when some more refined term for extracted
sources would be beneficial and should be defined.
Row six has a thumbnail of the image, declared as a #preview.
The next row defines a cutout service. Datalink allows a straightforward declaration of the
parameters for server-side data manipulation services within the VOTables that return datalink
metadata. If you decipher the XML, you will see that this is sufficient not only to operate the
service but also produce attractive UIs by declaring units, UCDs, and ranges of the pertinent
parameters.
The remaining three rows correspond to a spectrum (a single datalink document can contain
links for more than one dataset, but in practice that is rare).
The semantics #this in row eight should already be familiar; it corresponds to a spectrum
here.
The preview in spectrum case is a plot, which is reflected in the different semantics. A client
consulting the datalink vocabulary will figure out that #preview-plot actually is-a #preview.

28

The last datalink shows recursive datalink: its file has the media type

application/x-votable+xml;content=datalink

that designates datalink documents (and can be used in protocols like ObsTAP, too). In this
case, the datalink is for a #progenitor in the provenance chain, which here is a file with un-
merged Echelle orders.

Datalink in PyVO

In pyVO, datalink is (primarily) exposed in search results.
On datalink-enabled services, you can iterate over iter_datalinks(), which iterates over DatalinkResults
instances.
On these, you can pull links using bysemantics:

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")

matches = svc.search(SkyCoord.from_name("EI Eri"), 0.001)

for links in matches.iter_datalinks():

for link in links.bysemantics("#preview"):

print(link["access_url"])

Or just iterate over links to see all links available.
Yes, this is a bit deeply nested in the way of iteration, but that is the price of flexible proto-
cols. The links come as dictionary-like objects with keys matching the column labels from the
datalink specification. The labels are those written in typewriter in the enumeration of the
datalink fields above.

Exercise 17
Write a function get available semantics(dl) -> set returning a set of the
semantics available for a given datalink.
Try your program on the SSA example from the lecture.

Use Case: Overview With Previews

Let’s say you want to spot bad or weird spectra without actually retrieving or plotting the
spectra themselves.
Just download the previews and merge them into one image:

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")

matches = svc.search(SkyCoord.from_name("EI Eri"), 0.001)

previews = []

for dl in matches.iter_datalinks():

prev_url = next(dl.bysemantics("#preview"))["access_url"]

im = Image.open(io.BytesIO(requests.get(prev_url).content))

previews.append(im)

datalink-previews.py

The perhaps slightly alarming next(...) construct is just “pick off the first item from an itera-
tor”; we can do that here because we only want one preview per dataset (and actually, there is
only one). This is a convenient construct when dealing with the nested iteration in datalink in
many cases when you (think you) know there is only one link with a certain semantics.
The full source has some code merging all the previews into one raster image using the excel-
lent python imaging library PIL.

29

import io
import requests
import pyvo
from astropy.coordinates import SkyCoord
from PIL import Image, ImageDraw

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")
matches = svc.search(
 SkyCoord.from_name("EI Eri"),
 radius=0.001,
 maxrec=30,
 format="votable")

previews = []
for dl in matches.iter_datalinks():
 rec = next(dl.bysemantics("#preview"))
 im = Image.open(
 io.BytesIO(
 requests.get(rec["access_url"]).content))
 previews.append((rec["ID"], im))

xsz, ysz = previews[0][1].size

we jam together the previews to save space, but we need to make white
transparent to do that.
montage = Image.new("L",
 (xsz, ysz*len(previews)),
 color=240)

for index, (id, preview) in enumerate(previews):
 frame = preview.convert('L')
 ctx = ImageDraw.Draw(frame)
 ctx.text((0, 0), id.split("?")[-1], fill=0)
 montage.paste(frame, (0, index*ysz))
montage.save("previews.png")

Datalink: Remote Processing on Datalink Documents

Datalink also lets you declare processing services. The SODA standard defines a special set of
parameters applicable to astronomical images (CIRCLE, POLYGON, TIME, BAND,. . .).
Save a lot of time by only downloading cutouts of the object you are interested in:

roi = SkyCoord.from_name('Mira')

for rec in svc.run_sync(

"SELECT access_url, access_format FROM ivoa.obscore"

" WHERE obs_collection='HDAP'"

"AND 1=CONTAINS(CIRCLE('ICRS', {}, {}, 0.05),"

"s_region)".format(roi.ra.deg, roi.dec.deg)):

processed = rec.processed(

circle=(roi.ra.deg, roi.dec.deg, 0.05))

datalink-soda.py

This example retrieved datasets that come as datalinks directly. This is why we included
access_format in the obscore query: This way, pyVO knows when it is dealing with a datalink
document, and it will add the iter_datalinks and processed methods when the service offers the
necessary facilities.
It is more common to deliver “normal” files and offer datalink on the side. In this case, things
get somewhat more complicated at the moment because with the current API you can either
see the actual records or the datalinks.

Datalink: Remote Processing on Non-Datalink Documents

Use case: Hα maps of Sd galaxies from CALIFA.
CALIFA is a collection of spectral cubes (i.e., an array of small-band images) of galaxies; there is
a datalink-enabled TAP table (califadr3.cubes) listing the cubes on the TAP service http://dc.g-
vo.org/tap. We can extract Hα maps by doing spectral cutouts, supported via SODA’s BAND
parameter (which takes vacuum wavelengths in meters).
Use TOPCAT to inspect the tables belonging to califadr3; in particular note the objects table
that you can join with cubes via the califaid column. The cubes come in three different setups.
To avoid duplicate data, we will only look at COMB data.
Hα is at 656.25 nm (vaccuum) in the lab. For the low redshifts we are talking about here,
λlab = (1 + z)λ0 is just fine to compute where the galaxy’s Hα is at the spectrograph.
Doing the cutouts by calling processed on the link for the data itself (#this):

matches = svc.run_sync(

"SELECT califaid, obs_publisher_did, mime, em_min, em_max, redshift"

" FROM califadr3.cubes"

" JOIN califadr3.objects USING (califaid)"

" WHERE setup=’COMB’ AND hubtyp=’S d’")

for dl in matches.iter_datalinks():

lobs = ???

map = next(dl.bysemantics("#this")).processed(band=(lobs, lobs))

Trouble: How do I find the redshift (i.e., lobs) for my dl?
The (current) answer is: Use ID in the dl rows to match against obs_publisher_did in matches.
How do you know it’s that column? Well, for obscore and obscore-like tables, it will almost
always be that.

30

import math, io
from PIL import Image
import pyvo
from astropy.coordinates import SkyCoord
from astropy.io import fits

svc = pyvo.dal.tap.TAPService("http://dc.g-vo.org/tap")
roi = SkyCoord.from_name('Mira')

cutouts = []
for rec in svc.run_sync(
 "SELECT access_url, access_format FROM ivoa.obscore"
 " WHERE obs_collection='HDAP'"
 "AND 1=CONTAINS(CIRCLE('ICRS', {}, {}, 0.05),"
 "s_region)".format(roi.ra.deg, roi.dec.deg)
):
 processed = rec.processed(
 circle=(roi.ra.deg, roi.dec.deg, 0.05))

 pixels = fits.open(io.BytesIO(processed.read()))[0].data

 cutouts.append(
 Image.fromarray(((pixels/float(pixels.max()))*255).astype('uint8'))
)

 per_line = int(math.ceil(math.sqrt(len(cutouts))))
 dest_size, stamp_size = 1600, 1600//per_line

 montage = Image.new("L", (dest_size, dest_size))

 for index, img in enumerate(cutouts):
 montage.paste(
 img.resize((stamp_size, stamp_size)),
 (index//per_line*stamp_size, index%per_line*stamp_size)
)

 montage.save("cutouts.jpg")

If you have to dig yourself, things get messy because pyVO does not expose that information
properly yet. Meanwhile, you can trudge on by inspecting the VOTable. You first get the
service definition for the cutout service, most of the time the first service there is (in VOTable,
that corresponds to a RESOURCE). In there, look at the PARAMs of the GROUP in there, and
you will find a PARAM named ID. Whatever is in its ref attribute is what you are looking for:

>>> svc = next(matches.iter_adhocservices())

>>> print(list(svc.groups[0].iter_fields_and_params()))

[<PARAM ID="ID" arraysize="*" datatype="char" name="ID"

ref="obs_publisher_did" ucd="meta.id;meta.main" value=""/>]

Yes. There should be a better and more robust API for this; in pyVO 1.6, there you will probably
have an original_row attribute on what you get back from iter_datalinks.

Datalink: Simultaneous Links and Metadata

matches = svc.run_sync(

"SELECT califaid, obs_publisher_did, mime, em_min, em_max, redshift"

" FROM califadr3.cubes"

" JOIN califadr3.objects USING (califaid)"

" WHERE setup=’COMB’ AND hubtyp=’S d’")

result_rows = matches.to_table()

result_rows.add_index("obs_publisher_did")

for dl in matches.iter_datalinks():

rec = result_rows.loc["obs_publisher_did", dl["ID"][0]]

califaid = rec["califaid"]

lobs = l0*(1+rec["redshift"])

processed = next(dl.bysemantics("#this")

).processed(band=(lobs, lobs))

soda-with-rows.py

The novelty here is that we are making a proper astropy table of the results now in order to be
able to create an index on it. That’s a technial term for “make it so we can fetch rows quickly
by using values from this column”. With the add_index call, we can use .loc attribute on the
table to quickly pick out rows by obs_publisher_did. This is how we can find the table row for a
datalink.

Exercise 18
Get the soda-with-rows.py script for doing cutouts on CALIFA DR3 and make a false
colour image for IC 1151 by taking the slices from the COMB cube (see the setup
column) at 400 nm as blue, at 550 nm as green, and at 700 nm as red. Do not download
the whole cube, use SODA to just retrieve exactly what you need.
Hint: If you have no better way to combine single-channel pixels to an RGB image in
Python, use the excellent Python Image Library PIL (in its modern incarnation of
pillow). This is still not entirely trivial, so here is how to get three arrays red, green, and
blue, made up of three frames into a colour jpeg using plain PIL and numpy:

def _normalize_for_image(pixels):

pixels = numpy.flipud(pixels)

pixMax, pixMin = numpy.max(pixels), numpy.min(pixels)

pixels = (pixels-pixMin)/(pixMax-pixMin)*255

return numpy.asarray(pixels, numpy.uint8)

31

import pyvo

l0 = 6.5625e-7
svc = pyvo.dal.tap.TAPService("http://dc.g-vo.org/tap")

matches = svc.run_sync(
 "SELECT califaid, obs_publisher_did, mime, em_min, em_max, redshift"
 " FROM califadr3.cubes"
 " JOIN califadr3.objects USING (califaid)"
 " WHERE setup='COMB' AND hubtyp='S d'")
result_rows = matches.to_table()
result_rows.add_index("obs_publisher_did")

for dl in matches.iter_datalinks():
 rec = result_rows.loc["obs_publisher_did", dl["ID"][0]]
 califaid = rec["califaid"]
 lobs = l0*(1+rec["redshift"])
 if not rec["em_min"]<=lobs<=rec["em_max"]:
 continue

 processed = next(dl.bysemantics("#this")
).processed(band=(lobs, lobs))
 with open(str(califaid)+".fits", "wb") as f:
 f.write(processed.read())

pixels = numpy.array([

normalize_for_image(red),

normalize_for_image(green),

normalize_for_image(blue)]).transpose(1,2,0)

Image.fromarray(pixels, mode="RGB"

).save("IC1151.jpeg", format="jpeg")

I have not tried looking for a less pedestrian way to do this; if you have one, please
write in.

7 At the Limit: VO-Wide TAP Queries

VO-Wide TAP Queries

People often say: “I want everything in the VO on object X”.
This is far too hard. There are many reasons why this is hard, beginning with what “every-
thing” is – for instance, you would not normally want every frame containing the object ever
taken.
What is marginally possible: “Give me all measurements of a certain sort of UCD in a certain
vicinity.” Actually, the constraints can be a lot more general than just a cone search, as long as
you can formulate it with UCDs.
However, this is surprisingly involved, mostly for stupid reasons. Follow me along for proper
motions (pos.pm).
Note: This is probably not something realistic for research within the next few years. But it is
a nice exercise in how far you can take pyVO and TAP.

A RegTAP Query for Tables and TAP Services

For “where can I find data with UCD X?”, there is pyvo.registry.UCD.
But we need to know which table has a column with our UCD.
PyVO can’t do that yet; hence, use a direct RegTAP query:

SELECT DISTINCT access_url, table_name

FROM rr.interface

NATURAL JOIN rr.capability

NATURAL JOIN rr.res_table

NATURAL JOIN rr.table_column

NATURAL JOIN rr.stc_spatial

WHERE

standard_id LIKE 'ivo://ivoa.net/std/tap%'

AND ucd LIKE 'pos.pm%'

AND 1=INTERSECTS(POINT({RA}, {DEC}, {SR}), coverage)

AND (table_type!='output' OR table_type IS NULL)

How do you come up with a query like this? Well: you can start from what pyVO does;
pyvo.registry has the get_RegTAP_query function that will return what pyVO would generate for
a given set of constraints. For instance:

import pyvo

print(

pyvo.registry.get_RegTAP_query(

pyvo.registry.UCD('pos.pm%')))

32

outputs this horror:

SELECT

ivoid, res_type, short_name, res_title, content_level, res_description,

reference_url, creator_seq, created, updated, rights, content_type,

source_format, source_value, region_of_regard, waveband,

ivo_string_agg(COALESCE(access_url, ''), ':::py VO sep:::') AS access_urls,

ivo_string_agg(COALESCE(standard_id, ''), ':::py VO sep:::') AS standard_ids,

ivo_string_agg(COALESCE(intf_type, ''), ':::py VO sep:::') AS intf_types,

ivo_string_agg(COALESCE(intf_role, ''), ':::py VO sep:::') AS intf_roles,

ivo_string_agg(COALESCE(cap_description, ''), ':::py VO sep:::') AS cap_descriptions

FROM

rr.resource

NATURAL LEFT OUTER JOIN rr.capability

NATURAL LEFT OUTER JOIN rr.interface

NATURAL LEFT OUTER JOIN rr.alt_identifier

NATURAL LEFT OUTER JOIN rr.table_column

WHERE

(ucd LIKE 'pos.pm%')

GROUP BY

ivoid, res_type, short_name, res_title, content_level, res_description,

reference_url, creator_seq, created, updated, rights, content_type,

source_format, source_value, region_of_regard, waveband

This is massively uglified by pyVO’s need to be generic and to, in a single query, pull all kinds
of information on the services available. In tailored RegTAP queries you rarely need that kind
of thing. Still, you could take this query and strip it down until it does what you want, in
particular as regards what tables to hit in the first place.
Alternatively, RegTAP is written such that to build a query, you only have to look for what table
a piece of data you want to retrieve or constrain is in and then NATURAL JOIN with the table.
The canonical source to find this kind of information is the RegTAP standard, Demleitner and
Harrison et al. (2019), in particular its Figure 2; also skim over the example queries in section 10
if you need to hand-write RegTAP queries.
In this case, to be able to query TAP services, we need the access url (in rr.interface) of the
service and the table name (in rr.res table) for a table containing a column with a UCD (in
rr.table column). To be able to say “I want a TAP service”, we need to constrain the standard
identifier (in rr.capabilty). Finally, we want to throw out tables that do not have data for our
region of interest, and hence we also need to constrain the spatial coverage (in rr.stc spatial).
That consideration almost results in the hand-tailored query shown above already.
Two details are in there on top: the DISTINCT after the SELECT is so we do not get one pair of
access url and table name for every column in the tables that have matching UCDs; in general,
there will be more than one of them, and we still only want to query the table once.
And then there is the odd

AND (table_type!='output' OR table_type IS NULL)

This is another instance of where something seemed like a good idea to the standards designers
– in this case: Use the same elements to declare output tables and queriable tables – makes for
something that is hard to understand in later use. What this means is: Ignore tables that are
declared in the registry but that one probably cannot query.

33

Running the RegTAP Query

Running RegTAP queries just means picking a suitable TAP service and calling run_sync:

reg_svc = pyvo.registry.regtap.get_RegTAP_service()

result = reg_svc.run_sync(regtap_query)

svcs = {}

for row in result.to_table():

svcs.setdefault(row["access_url"], []).append(row["table_name"])

return svcs.items()

There is no magic behind get_RegTAP_service – it is constructing a normal TAPService, just con-
figured with an access URL known to lead to a RegTAP service. By the way, you can change
that URL if you want to use a different registry service; use choose_RegTAP_service from within
pyVO, or set the IVOA_REGISTRY environment variable to your preferred RegTAP service’s access
URL.
Note how we are grouping the tables belonging to a service in this code. This is exactly a
GROUP BY operation in the database sense. So:

Exercise 19
In multitap.py, have a look at get_services_and_tables; in there, we are doing a grouping
operation on the client (i.e., our) side. Can you move to to the server side using GROUP
BY and the ivo_string_agg UDF?

Query Generation I: Defining the Schema

We want to build queries that let us fill a table defined like this:

col-name, UCD, Unit, type-to-cast-to

RESULT_SCHEMA = [

('cat_id', "meta.id;meta.main", None, "CHAR(*)"),

('ra', "pos.eq.ra;meta.main", "deg", None),

('dec', "pos.eq.dec;meta.main","deg", None),

('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),

('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

You may recognise our technique of writing “inhomogeneous” records in tuples from our
fetch3 example. In this case, we give names, the UCDs from which to fill the columns, the
target unit, and a type the column should have; this is important in the case of cat_id, the ob-
ject identifier within the catalogue, which sometimes is an integer and sometimes is a string.
We have to unify this if rows from different tables are supposed to end up in one result table.
All other columns will be real-valued if they are somehow sane, and hence we do not need to
cast.
We now need to write code that can create database queries from these specifications and table
metadata.

34

Query Generation II: From Clause And a Template

Given a TAP service svc, a table_name, our result schema, and the region of interest in RA, DEC,
and SR, make a query to produce rows for our result schema:

db_table, select_clause = svc.tables[table_name], []

for dest_name, ucd, unit, type in RESULT_SCHEMA:

select_clause.append("{} AS {}".format(

fieldname_with_ucd(ucd, db_table),

dest_name))

select_clause.append(f"'{table}' AS table_name")

select_clause.append(f"'{svc.baseurl}' AS svc_url")

return ("SELECT {select_serialised} FROM {srctable}"

" WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"

" CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(

select_serialiased=", ".join(select_clause),

srctable=table_name,...)

In this snippet, we first incrementally build a select clause by looking for the UCDs we are
interested in in the remote table definition (that we retrieve using svc.tables[table_name]) and
make “their-name AS our-name” particles. We add two constant fields for the table name and
the service access URL; this is so we can later still see where everything came from.
We have to define the function fieldname_with_ucd ourselves, because astropy tables (which
is what is in svc.tables) do not have the convenient fieldname_with_ucd method that pyVO
DALResults have. Perhaps this should change? Anyway: the implementation is trivial, ex-
cept that we lowercase both the incoming UCD and the UCDs we get from the service. Curse
case-insenstitive items.
These particles are then joined into the selclause in the ADQL template.

Query Generation III: Delimited Identifier Workaround

Regrettably, the code immediately fails.

$ python3 multitap-broken1.py

[...]

pyvo.dal.exceptions.DALQueryError:

Incorrect ADQL query:

Encountered "/". Was expecting one of: <EOF> "." "," ";" "AS"

"WHERE" "GROUP" "HAVING" "ORDER" "\""

<REGULAR_IDENTIFIER_CANDIDATE> "NATURAL" "INNER" "LEFT"

"RIGHT" "FULL" "JOIN"

multitap-broken1.py

The problem: Vizier uses delimited identifiers but has them unquoted in the registry. Workaround:

def perhaps_quote(table_name):

parts = table_name.split(".")

for index, part in enumerate(parts):

if not re.match("[A-Za-z0-9][A-Za-z0-9_]*$", part):

parts[index] = '"{}"'.format(part.replace('"', '""'))

return ".".join(parts)

35

import pyvo

RA, DEC, SR = 12, 13, 0.1

RESULT_SCHEMA = [
 ('cat_id', "meta.id;meta.main", None, "CHAR(*)"),
 ('ra', "pos.eq.ra;meta.main", "deg", None),
 ('dec', "pos.eq.dec;meta.main", "deg", None),
 ('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),
 ('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

def fieldname_with_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 We need this function here because astropy tables do not have
 something like the DALResults.fieldname_with_ucd method.
 """
 ucd = ucd.lower()

 for col in table.columns:
 if col.ucd and col.ucd.lower()==ucd:
 return col.name
 raise KeyError(ucd)

svc = pyvo.dal.TAPService("http://tapvizier.cds.unistra.fr/TAPVizieR/tap")
table_name = "I/256/veronc81"

db_table, select_clause = svc.tables[table_name], []
for dest_name, ucd, unit, type in RESULT_SCHEMA:
 select_clause.append("{} AS {}".format(
 fieldname_with_ucd(ucd, db_table),
 dest_name))
select_clause.append(f"'{table_name}' AS table_name")
select_clause.append(f"'{svc.baseurl}' AS svc_url")

query = ("SELECT {selclause} FROM {srctable}"
 " WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"
 " CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(
 selclause=", ".join(select_clause),
 srctable=table_name,
 racol=fieldname_with_ucd("pos.eq.ra;meta.main", db_table),
 deccol=fieldname_with_ucd("pos.eq.dec;meta.main", db_table),
 ra=RA, dec=DEC, sr=SR)
print(query)
svc.run_sync(query)

This is a long-standing problem on VizieR’s side; the standard has been clear on this for a long
time (“when delimited identifiers are used as table names on the relational side, the quotes
must be part of name’s value, and the capitalisation used in the DDL must be preserved”), and
actually, a function like perhaps_quote cannot even really work (e.g, in “USNO-B-1.0”, is the dot
part of a name or a schema separator?). So – this is another illustration of where sometimes
one has to live with imperfections and just cope as well as possible.

Running Queries I: Feature Detection

On a service like VizieR with our pos.pm criterion, we will have to query a lot of tables and
stack the results on the client side.
Don’t take my word for “a lot of tables”; on VizieR, at the time of writing, the ADQL query

SELECT COUNT(*)

FROM (

SELECT DISTINCT table_name FROM tap_schema.columns

WHERE ucd LIKE 'pos.pm;%') AS q

returns a whopping 2003; in reality, due to our positional constraint, we would be firing off a
lot fewer queries, but it would still be nice if we only had to run one.
Can we take a union of the results on the server side?
Perhaps. We need the ADQL UNION operator for that. Regrettably, it is optional.
Interactively, you will find information on supported features in the ADQL tab of modern TOP-
CATs. From within pyVO, there is a complex hierarchy of objects below a TAPService instance.
Unless you really want to read Demleitner and Dowler et al. (2012), take the following blindly
as a recipe.
Does a service support union?

knows_union = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

The get_feature method takes two arguments: An ivoid identifying the sort of feature you are
querying, and a key into the feature listing. To figure out these two strings, I am afraid you
will need to consult the ADQL standard (Mantelet and Morris et al., 2023).
Incidentally, as of mid-2024, VizieR’s ADQL engine does not yet support UNION, which is the
main reason we have put it a sanity break in multitap.py

if len(tables)>30:

sys.stderr.write(" (cropping to 30 tables for handleability)\n")

tables = tables[:30]

(but then we probably would have anyway, because even a union over 300 tables is a bit too
much for an educational example).

36

Running Queries II: Adapting to Server Capabilities

Since UNION is optional, we have to have two code paths now, one for services with UNION,
one for ones without. It will not get much simpler than that:

svc = pyvo.dal.TAPService(access_url)

knows_union = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

queries = [get_query(svc, table_name)) for table_name in tables]

result_rows = []

def feed_rows(astropy_table):

for row in astropy_table:

result_rows.append(dict(zip(row.colnames, row.as_void())))

if knows_union:

feed_rows(svc.run_sync(

" UNION ".join(queries)).to_table())

else:

for query in queries:

feed_rows(svc.run_sync(query).to_table())

This is seriously ugly code; to smuggle shared code into the two legs of the knows_union selec-
tion, we first take out the generation of the queries from where they run, and then create a local
function encapsulating the logic of processing result rows (this is called a closure in this case,
because the function encloses the result_rows list from the parent block).
And we have two rather different pieces of code on the two sides of the selection. They will
age and break differently, and all this is painful.
Take it from me: Optional features suck. In almost everything. If you ever write software or a
standard, try to avoid them as much as you can.

Exercise 20
Can you find out the strings you need to pass to get_feature find find out whether a
service supports the nifty IN_UNIT function?

Query Generation IV: Casting

Even this ends with an obscure error. Try multitap-broken2.py
multitap-broken2.py

pyvo.dal.exceptions.DALQueryError: Field query: UNION types integer

and text cannot be matched LINE 1: ...S(12), RADIANS(13)), RADIANS(0.1))))

UNION SELECT localid AS...

The reason? Idenifier columns are sometimes integers and sometimes texts.
The solution? Cast them all to string.
But: CAST is optional. Oh no!
We could probably get away with just blindly casting, because as long as a service does not
support UNION, we can do the casting locally in Python, while services with UNION will
probably support CAST, too. But that’s just guessing, and this is more about education rather
than economy of work.

37

import re
import sys

from astropy import table
import pyvo

For lazyness, we define our search criterion globally:
RA, DEC, SR = 12, 13, 0.1

the data items you're interested in, expressed through UCDs
that's pairs of (ucd, name, unit); implied is src, src_table
RESULT_SCHEMA = [
 ('cat_id', "meta.id;meta.main", None, "CHAR(*)"),
 ('ra', "pos.eq.ra;meta.main", "deg", None),
 ('dec', "pos.eq.dec;meta.main", "deg", None),
 ('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),
 ('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

def get_services_and_tables():
 """returns a sequence of (service, [table-names]) pairs for a
 hardwired RegTAP query.

 regtap_query must (at least) have access_url and table_name in
 the select clause.
 """
 regtap_query = f"""
 SELECT DISTINCT access_url, table_name
 FROM rr.interface
 NATURAL JOIN rr.capability
 NATURAL JOIN rr.res_table
 NATURAL JOIN rr.table_column
 NATURAL JOIN rr.stc_spatial
 WHERE
 standard_id LIKE 'ivo://ivoa.net/std/tap%'
 AND ucd LIKE 'pos.pm%'
 AND 1=CONTAINS(CIRCLE({RA}, {DEC}, {SR}), coverage)
 AND (table_type!='output' OR table_type IS NULL)
 AND access_url='http://dc.zah.uni-heidelberg.de/tap'
 """

 reg_svc = pyvo.registry.regtap.get_RegTAP_service()
 result = reg_svc.run_sync(regtap_query)

 svcs = {}
 for row in result.to_table():
 svcs.setdefault(row["access_url"], []).append(row["table_name"])
 return svcs.items()

def fieldname_with_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 We need this function here because astropy tables do not have
 something like the DALResults.fieldname_with_ucd method.
 """
 ucd = ucd.lower()

 for col in table.columns:
 if col.ucd and col.ucd.lower()==ucd:
 return col.name
 raise KeyError(ucd)

def perhaps_quote(table_name):
 """adds double quotes around table_name if it's not a plain SQL
 identifier.

 This is a workaround for broken services that do not pre-quote in
 VODataService tableset.
 """
 parts = table_name.split(".")
 for index, part in enumerate(parts):
 if not re.match("[A-Za-z0-9][A-Za-z0-9_]*$", part):
 parts[index] = '"{}"'.format(part.replace('"', '""'))
 return ".".join(parts)

def get_query(svc, table_name):
 """returns a query producing RESULT_SCHEMA for table in svc.

 svc is a pyvo.dal.TAPService, table a name from its schema.
 """
 db_table = svc.tables[table_name]
 select_clause = []
 for dest_name, ucd, unit, type in RESULT_SCHEMA:
 select_clause.append("{} AS {}".format(
 perhaps_quote(fieldname_with_ucd(ucd, db_table)),
 dest_name))

 select_clause.append(f"'{table_name}' AS table_name")
 select_clause.append(f"'{svc.baseurl}' AS svc_url")

 return ("SELECT {selclause} FROM {srctable}"
 " WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"
 " CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(
 selclause=", ".join(select_clause),
 srctable=perhaps_quote(table_name),
 racol=fieldname_with_ucd("pos.eq.ra;meta.main", db_table),
 deccol=fieldname_with_ucd("pos.eq.dec;meta.main", db_table),
 ra=RA,
 dec=DEC,
 sr=SR)

def get_rows_for_svc(access_url, tables):
 """returns rows in RESULT_SCHEMA for tables in the service at access_url.
 """
 svc = pyvo.dal.TAPService(access_url)
 sys.stderr.write(f">>>>> {access_url} ({len(tables)})\n")

 knows_union = svc.get_tap_capability().get_adql().get_feature(
 "ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

 if len(tables)>30:
 sys.stderr.write(" (cropping to 30 tables for handleability)\n")
 tables = tables[:30]

 queries = []
 for table_name in tables:
 try:
 queries.append(get_query(svc, table_name))
 except KeyError as msg:
 sys.stderr.write(f" Skipping {table_name} ({msg} missing)\n")

 result_rows = []
 def feed_rows(astropy_table):
 for row in astropy_table:
 # TODO: Fix units here
 result_rows.append(dict(zip(row.colnames, row.as_void())))

 if knows_union:
 sys.stderr.write("> querying all\n")
 feed_rows(svc.run_sync(
 " UNION ".join(queries)).to_table())

 else:
 sys.stderr.write(f"> querying {table_name}\n")
 # Server has no union, we need to query individual tables
 for query in queries:
 print(query)
 feed_rows(svc.run_sync(query).to_table())

 return result_rows

def make_result_table(recs):
 """returns an astropy table for RESULT_SCHEMA plus src, src_table.
 """
 res = table.Table()
 res.add_column(table.Column(name='src',
 description="Source service",
 data=[r["svc_url"] for r in recs]))
 res.add_column(table.Column(name='src_table',
 description="Source table",
 data=[r["table_name"] for r in recs]))

 for name, ucd, unit, adqltype in RESULT_SCHEMA:
 res.add_column(table.Column(name=name,
 data=[r[name] for r in recs],
 meta={"ucd": ucd})),

 return res

def main():
 recs = []
 svcs_and_tables = get_services_and_tables()
 for svc_url, tables in svcs_and_tables:
 try:
 recs.extend(get_rows_for_svc(svc_url, tables))
 except Exception as msg:
 import traceback; traceback.print_exc()
 sys.stderr.write(f"{svc_url} broken (skipped): {msg}\n")

 res_table = make_result_table(recs)
 res_table.write("all-pms.vot", format="votable", overwrite=True)
 with pyvo.samp.connection() as conn:
 pyvo.samp.send_table_to(conn, res_table,
 name="all-pms", client_name="topcat")

if __name__=="__main__":
 main()

Query Generation V: Still Casting

knows_cast = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-type", "CAST")

for dest_name, ucd, unit, type in RESULT_SCHEMA:

if type and knows_cast:

select_clause.append("CAST({} AS {}) AS {}".format(

perhaps_quote(fieldname_with_ucd(ucd, db_table)),

type,

dest_name))

else:

Don't cast and hope for the best

select_clause.append("{} AS {}".format(

perhaps_quote(fieldname_with_ucd(ucd, db_table)),

dest_name))

The fallback is of course error-prone: If a table schema would need a CAST but the service
cannot do it, we may fail that service. Sometimes best effort is all one can do.

Bringing it all together

After all this preparation, the actual program is trivial except for our usual error handling:
multitap.py

recs = []

svcs_and_tables = get_services_and_tables()

for svc_url, tables in svcs_and_tables:

try:

recs.extend(get_rows_for_svc(svc_url, tables))

except Exception as msg:

import traceback; traceback.print_exc()

sys.stderr.write(f"{svc_url} broken (skipped): {msg}\n")

res_table = make_result_table(recs)

res_table.write("all-pms.vot", format="votable", overwrite=True)

with pyvo.samp.connection() as conn:

pyvo.samp.send_table_to(conn, res_table,

name="all-pms", client_name="topcat")

Exercise 21
There is one glaring hole in our multitap script: Units. Try to improve on this: If the
service supports IN_UNIT, use it in about the way we have been using CAST.
If you actually need something like this, you can of course also compute the conversion
factors locally (using astropy.units) and bake them into the queries. Feel free to try that,
too.

8 Odds and Ends

8.1 EPN-TAP

EPN-TAP 1

EPN-TAP is like obscore, just for solar system data. That is: there is a pre-defined schema that
you can query on many services in a uniform way. normal VO TAP plus a pre-defined table
structure; the tables are always called epn core. Columns of note include:

38

import re
import sys

from astropy import table
import pyvo

For lazyness, we define our search criterion globally:
RA, DEC, SR = 12, 13, 0.25

the data items you're interested in, expressed through UCDs
that's pairs of (ucd, name, unit); implied is src, src_table
RESULT_SCHEMA = [
 ('cat_id', "meta.id;meta.main", None, "CHAR(*)"),
 ('ra', "pos.eq.ra;meta.main", "deg", None),
 ('dec', "pos.eq.dec;meta.main", "deg", None),
 ('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),
 ('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

def get_services_and_tables():
 """returns a sequence of (service, [table-names]) pairs for a
 hardwired RegTAP query.

 regtap_query must (at least) have access_url and table_name in
 the select clause.
 """
 regtap_query = f"""
 SELECT DISTINCT access_url, table_name
 FROM rr.interface
 NATURAL JOIN rr.capability
 NATURAL JOIN rr.res_table
 NATURAL JOIN rr.table_column
 NATURAL JOIN rr.stc_spatial
 WHERE
 standard_id LIKE 'ivo://ivoa.net/std/tap%'
 AND ucd LIKE 'pos.pm%'
 AND 1=INTERSECTS(CIRCLE({RA}, {DEC}, {SR}), coverage)
 AND (table_type!='output' OR table_type IS NULL)
 """

 reg_svc = pyvo.registry.regtap.get_RegTAP_service()
 result = reg_svc.run_sync(regtap_query)

 svcs = {}
 for row in result.to_table():
 svcs.setdefault(row["access_url"], []).append(row["table_name"])
 return svcs.items()

def fieldname_with_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 We need this function here because astropy tables do not have
 something like the DALResults.fieldname_with_ucd method.
 """
 ucd = ucd.lower()

 for col in table.columns:
 if col.ucd and col.ucd.lower()==ucd:
 return col.name
 raise KeyError(ucd)

def perhaps_quote(table_name):
 """adds double quotes around table_name if it's not a plain SQL
 identifier.

 This is a workaround for broken services that do not pre-quote in
 VODataService tableset.
 """
 parts = table_name.split(".")
 for index, part in enumerate(parts):
 if not re.match("[A-Za-z0-9][A-Za-z0-9_]*$", part):
 parts[index] = '"{}"'.format(part.replace('"', '""'))
 return ".".join(parts)

def get_query(svc, table_name):
 """returns a query producing RESULT_SCHEMA for table in svc.

 svc is a pyvo.dal.TAPService, table a name from its schema.
 """
 knows_cast = svc.get_tap_capability().get_adql().get_feature(
 "ivo://ivoa.net/std/TAPRegExt#features-adql-type", "CAST")
 db_table = svc.tables[table_name]
 select_clause = []
 for dest_name, ucd, unit, type in RESULT_SCHEMA:
 if type and knows_cast:
 select_clause.append("CAST({} AS {}) AS {}".format(
 perhaps_quote(fieldname_with_ucd(ucd, db_table)),
 type,
 dest_name))

 else:
 # Don't cast and hope for the best
 select_clause.append("{} AS {}".format(
 perhaps_quote(fieldname_with_ucd(ucd, db_table)),
 dest_name))

 select_clause.append(f"'{table_name}' AS table_name")
 select_clause.append(f"'{svc.baseurl}' AS svc_url")

 # There's a TOP 10 in the following because we want a wide code
 # in order to get results from sparse catalogues but we don't
 # want to be swamped by deep surveys. Of course, you want to
 # remove that in science use.
 return ("SELECT TOP 10 {selclause} FROM {srctable}"
 " WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"
 " CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(
 selclause=", ".join(select_clause),
 srctable=perhaps_quote(table_name),
 racol=fieldname_with_ucd("pos.eq.ra;meta.main", db_table),
 deccol=fieldname_with_ucd("pos.eq.dec;meta.main", db_table),
 ra=RA,
 dec=DEC,
 sr=SR)

def get_rows_for_svc(access_url, tables):
 """returns rows in RESULT_SCHEMA for tables in the service at access_url.
 """
 svc = pyvo.dal.TAPService(access_url)
 sys.stderr.write(f">>>>> {access_url} ({len(tables)})\n")

 knows_union = svc.get_tap_capability().get_adql().get_feature(
 "ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

 if len(tables)>30:
 sys.stderr.write(" (cropping to 30 tables for handleability)\n")
 tables = tables[:30]

 queries = []
 for table_name in tables:
 try:
 queries.append(get_query(svc, table_name))
 except KeyError as msg:
 sys.stderr.write(f" Skipping {table_name} ({msg} missing)\n")

 result_rows = []
 def feed_rows(astropy_table):
 for row in astropy_table:
 # TODO: Fix units here
 result_rows.append(dict(zip(row.colnames, row.as_void())))

 if knows_union:
 sys.stderr.write("> querying all\n")
 feed_rows(svc.run_sync(
 " UNION ".join(queries)).to_table())

 else:
 sys.stderr.write(f"> querying {table_name}\n")
 # Server has no union, we need to query individual tables
 for query in queries:
 feed_rows(svc.run_sync(query).to_table())

 return result_rows

def make_result_table(recs):
 """returns an astropy table for RESULT_SCHEMA plus src, src_table.
 """
 res = table.Table()
 res.add_column(table.Column(name='src',
 description="Source service",
 data=[r["svc_url"] for r in recs]))
 res.add_column(table.Column(name='src_table',
 description="Source table",
 data=[r["table_name"] for r in recs]))

 for name, ucd, unit, adqltype in RESULT_SCHEMA:
 res.add_column(table.Column(name=name,
 data=[r[name] for r in recs],
 meta={"ucd": ucd})),

 return res

def main():
 recs = []
 svcs_and_tables = get_services_and_tables()
 for svc_url, tables in svcs_and_tables:
 try:
 recs.extend(get_rows_for_svc(svc_url, tables))
 except Exception as msg:
 import traceback; traceback.print_exc()
 sys.stderr.write(f"{svc_url} broken (skipped): {msg}\n")

 res_table = make_result_table(recs)
 res_table.write("all-pms.vot", format="votable", overwrite=True)
 with pyvo.samp.connection() as conn:
 pyvo.samp.send_table_to(conn, res_table,
 name="all-pms", client_name="topcat")

if __name__=="__main__":
 main()

• granule_uid – an identifier for the dataset (“granule” is a word for something like a dataset
in solar system sciences).

• target_name – what was observed? Regrettably, there are no strict rules for what is called
what, so it requires a certain amount of domain feeling to guess how to constrain this.

• time_min, time_max – when was it observed? Most values in EPN-TAP come as pairs of min
and max.

• c<n>_min, c<n>_max – where is it? Compared to core astronomy, solar system science is
plagued by a plethora of coordinate systems. Hence, there is no RA and Dec, but rather
three generic coordinate intervals. What they actually mean is given by spatial frame type

(which could be something like “cylindrical”; in the solar system, you have a lot more
than just the spherical coordinats that are fine for most of core astronomy) and some
identifier for how to interpret these numbers spatial coordinate description (which
would correspond to thing like ICRS or Galactic on the sky). You will need to constrain
at least the latter if you expect any sensible result to come out of spatial constraints.

• dataproduct_type – the sort of observation. This is like the eponymous column in Obscore,
except that these are hashlists of 2-letter codes at this point, defined in the standard itself
(Erard and Cecconi et al., 2022) rather than in the product-type vocabulary.

• instrument_host_name – the probe or laboratory that produced the data. Again, at this point
it is not certain what strings would match a given probe; here, however, there is hope that
soon-ish a vocabulary will be produced.

• instrument_name – the instrument that produced the data. Again, you have to bascially
guess what the instrument is called, and the column may contain a hashlist.

EPN-TAP 2: Hashlists

Many EPN-TAP fields are “hash lists”: they are actually multivalued, and to still keep every-
thing in one table, multiple values are concatenated by hashes (#), as in an instrument name
like

Visible Infrared Thermal Imaging Spectrometer#VIRTIS
To match such columns, use the ivo_hashlist_has(hashlist, item) UDF.

EPN-TAP 3: Global Discovery

Global EPN-TAP discovery means: query all epncore tables. To find these, you have to:

• look for resources containing epncore tables at all and then

• find the tables implementing epncore in them.

To make things even more complicated, essentially all EPN-TAP tables appear twice: Once in
a record dedicated to them (with author, title, description for the table itself), once in the TAP
service that hosts them. We only want to match the first kind, which for technical reasons is
done in pyVO by only accepting a resource record if it has an access mode tap#aux.
In code:

39

def iter_epncore_tables(*args, **kwargs):

for resrec in pyvo.registry.search(datamodel="epntap", *args, **kwargs):

if not 'tap#aux' in resrec.access_modes():

continue

for tab in resrec.get_tables().values():

utype = tab.utype or ""

if (utype=='ivo://vopdc.obspm/std/epncore#schema-2.0'

or utype.startswith('ivo://ivoa.net/std/epntap#table-2.')):

yield resrec, tab

epnquery.py

This will only work on pyVO later than 1.5, because in 1.5 the table utype was not exposed. In
case you wonder what the yield statement does: it makes the function a generator. This means
that you can iterate over its result without having to create a sequence in between.
The inner loop examines the tables published by the resource; tables conforming to EPN-TAP
are identified by a utype, which is some characteristic string saying about as much as “some-
thing to do with data models”. In this case, there are still two substantially different utypes
around in the VO, one created during the development of the standard (the one with the
vopdc.obspm authority), one for the final IVOA standard. Hence, we need to match against
both for the time being. The ivoa.net identifier will also change as future (minor, i.e., com-
patible) versions of EPN-TAP come around, which is why we do a prefix match. This second
constraint is what will be enough in a future when all the legacy services will be updated.
The entire extra function is necessary here because we are not only discovering full resources
here (the normal “unit of discovery” in the VO Registry) but have to discover tables on top. I
expect pyVO will grow a function that will isolate you from these technicalities in the future;
it may be worth perusing the current documentation when you need to do something like this
in practice.
Doing something with our results is a bit more complex here than in the, say, obscore case,
because EPN-TAP lets people put almost any kind of data into such tables, and what your
access_url points to – spectra, profiles of elemental abundances, odd magnetospheric data,
or nothing at all – is impossible to tell before at least inspecting the dataproduct_type column
(and even then your average non-solar-system astronomer may be stumped. . .). Hence, in our
example we restrict ourselves to simply send any non-empty result to TOPCAT.
In mid-2024, the program will also fail with a syntax error when it hits the VizieR EPN-TAP
service, because the do not properly quote their table name; with a bit of luck, this problem
will be gone by the time you read this.

Exercise 22
Get the epnquery.py and change it to only discover spectra (that’s dataproduct type sp
in EPN-TAP). then send the first two spectra your program finds to TOPCAT (or SPLAT,
or CASSIS, if you have one of them).

8.2 Custom Parameters to Simple Services

Custom Parameters: Discovery

SIAP only has very few standard parameters (e.g., no time constraints), and even SSAP’s rich
parameter set is insufficient for, e.g., theoretical spectra.
SIAP and SSAP services can define custom parameters. Discover them using a FORMAT=METADATA
URL parameter.

40

import pyvo

def iter_epncore_tables(*args, **kwargs):
 for resrec in pyvo.registry.search(datamodel="epntap", *args, **kwargs):
 if not 'tap#aux' in resrec.access_modes():
 continue

 for tab in resrec.get_tables().values():
 utype = tab.utype or ""
 if (utype=='ivo://vopdc.obspm/std/epncore#schema-2.0'
 or utype.startswith('ivo://ivoa.net/std/epntap#table-2.')):
 yield resrec, tab

def global_query():
 for resrec, tab in iter_epncore_tables():
 svc = resrec.get_service("tap", lax=True)
 print(f"{resrec.ivoid}, {tab.name}")
 res = svc.run_sync(
 f"SELECT TOP 30 * FROM {tab.name}"
 " WHERE 1=ivo_hashlist_has(instrument_host_name, 'Juno')")
 if res:
 yield resrec.short_name, res.to_table()

if __name__=="__main__":
 with pyvo.samp.connection() as conn:
 for short_name, table in global_query():
 pyvo.samp.send_table_to(
 conn, table, name=short_name, client_name="topcat")

The input parameters are given as VOTable params in the root VOTable RESOURCE, where
their names are prefixed with INPUT:. You can figure out names, units, descriptions, and, if
the service operators do a good job, even hints as to what you should pass in when you want
to get data back.
pyVO does not yet have some API that would properly hide this (not terribly pretty) imple-
mentation detail. Worse, it is not totally trivial to get these PARAMs with astronomer-level
pyVO.
To make amends, this course comes with a script viewparams.py that has a function and a UI
to retrieve metadata. To see how an example works, try

python viewparams.py "http://dc.g-vo.org/bgds/q/sia/siap.xml?"

viewparams.py

Custom Parameters: Usage

Pass custom parameters as keyword arguments to search:

svc.search((107, -10), (0.05, 0.05),

dateObs="57050/58050",

bandpassId="SDSS i'")

siapextra.py

Custom Parameters: Syntax Trouble

We often have to pass intervals. You need some syntax to write upper/lower limits.
Old-style VO services (most of them) have intervals declared as char[*] or double) and expect
min/max.
Others have two simple float parameters with _MIN and _MAX.
New-style (SIAv2, datalink...) services have interval xtypes and type double[2]. These inter-
vals are written with a blank.
We are sorry about this, but not all standards work out well on the first attempt. In defence
of the early standards authors that came up with the wretched slash syntax: There was prior
un-art for this from the geospatial community.

41

"""
A program to dump the extra parameters accepted by SIAP and SSAP services.

It takes an access URL as its parameter; example:
http://dc.g-vo.org/bgds/q/sia/siap.xml?
"""

import requests
PyVO convenience functions don't let us access the RESOURCE that we
need here.
from astropy.io.votable import parse as vot_parse

def get_parameter_description(access_url):
	"""returns tuples of name, unit, ucd, type, description, values for
	the (custom) parameters of the service at access_url.
	"""
	if not "?" in access_url:
		# is a standards violation, but it's a cheap mitigation:
		access_url = access_url+'?'

	vot = vot_parse(
		requests.get(
			access_url, {"REQUEST": "doQuery", "FORMAT": "Metadata"}, stream=True
).raw.read)
	for param in vot.resources[0].params:
		if param.name.lower().startswith("input:"):
			type_desc = param.datatype
			if param.arraysize:
				type_desc = "{}[{}]".format(type_desc, param.arraysize)
			yield (
				param.name[6:],
				param.unit or "",
				param.ucd or "",
				type_desc,
				param.description,
				param.values)

def print_parameter_description(access_url):
	for param_desc in get_parameter_description(access_url):
		print("\n{0} [{1}] {3} -- {2}\n{4}".format(*param_desc))
		values = param_desc[5]
		if values.min and values.max:
			print("{} .. {}".format(values.min, values.max))
		if values.options:
			print("|".join(o[1] for o in values.options))

def parse_command_line():
	import argparse
	parser = argparse.ArgumentParser(
		description="Print a VO service's custom parameters")
	parser.add_argument("access_url", type=str,
		help="The service's access URL")
	return parser.parse_args()

if __name__=="__main__":
	print_parameter_description(
		parse_command_line().access_url)

"""
Use extra (non-protocol) parameters in SIAP. To see what a service supports,
look at ACCESS_URL?FORMAT=METADATA (the INPUT: PARAMs); in the pyvo
course, there's viewparams.py.

This example: Use the custom dateObs parameter to fetch a few
SODA cutouts from a survey of the galactic plane.
"""

from pyvo.dal import sia

ACCESS_URL = "http://dc.g-vo.org/bgds/q/sia/siap.xml?"

svc = sia.SIAService(ACCESS_URL)

for index, match in enumerate(svc.search((107, -10), (0.1, 0.1),
 dateObs="57050/57150",
 bandpassId="SDSS i'").iter_datalinks()):
 with open(f"cutout-{index:03d}.fits", "wb") as f:
 f.write(
 match.get_first_proc()
 .processed(circle=(107, -10, 0.1)).read())

Exercise 23
The SSAP service at http://dc.g-vo.org/theossa/q/ssa/ssap.xml? houses theoretical
spectra mostly of hot, compact stars (think central stars of planetary nebula or perhaps
young white dwarfs).
See if you can retrieve three spectra for stars with log_g between 4.5 and 5.5, an effective
temperature between 7 × 104 and 105 Kelvin, and a Nitrogen mass fraction larger than
0.015 dex (write +Inf for “no upper limit”).
Send the spectra retrieved to splat.
Hints: Use viewparams.py, start from siapextra.py, remember dal.ssa.SSAService, and
pass in FORMAT='VOTable' to avoid retrieving spectra in both FITS and VOTable.
Use pyvo.samp.send_spectrum_to; this needs a URI of the spectrum, which you will find
using the getdataurl method or what you get back from search. Note that current splat-s
will not start a SAMP hub themselves, so you will need to start, for instance, TOPCAT
first. Feel free to try another spectral client if you want.
You cannot directly use send_spectrum_to to send the spectra to TOPCAT, because
TOPCAT does not subscribe to spectra. You could, however, make an astropy table out
of the spectrum using its URL and then send_table_to as before.

8.3 TAP Uploads: The right way

Efficient Uploads: The Problem

TAP uploads are powerful, but they do have limits. In general, you cannot upload billion-row
tables and expecte services to go along.
To make things fast and save the server’s resources, you should only upload enough to select
the relevant data. So, avoid:

first_result = svc1.run_sync(...).to_table()

second_result = svc2.run_sync(

"SELECT * FROM local.t JOIN TAP_UPLOAD.up as b USING (foo, bar)",

uploads={"up": first_result})

– this will upload all of first_result and download it right again; transferring data you already
have, ingesting it into the remote database in between is just a waste of resources.

Efficient Uploads: The Pattern

Instead, if you want to join on first result’s columns foo and bar, make a new local table con-
taining just those plus a unique local identifier (add a record number if no such identifier
exists), somewhat like this:

first_result = svc1.run_sync(...).to_table()

remote_match = svc2.run_sync(

"SELECT * FROM local.t JOIN TAP_UPLOAD.up as b USING (foo, bar)",

uploads={"up": table.Table([

first_result["main_id"],

first_result["foo"],

first_result["bar"])})

full_result = table.join(

first_result,

remote_match.to_table(),

keys="main_id")

42

http://dc.g-vo.org/theossa/q/ssa/ssap.xml?

Efficient Uploads: Slicing

If you still run into resource limits, you process your data in batches. Use case: retrieve quality
measures for Gaia DR3 data by matching on Gaia’s source_id.

def iter_slices(total_length, batch_size):

limits = list(range(0, total_length, batch_size))+[batch_size]

for lower, upper in zip(limits[:-1], limits[1:]):

if lower < upper:

yield slice(lower, upper)

def remote_match(svc, source_table, remote_table, batch_size, match_column):

matched_records = []

match_on = source_table[match_column]

only match the match_column (for a positional crossmatch, use

an id column (create one if necessary) and the positions).

for slice in iter_slices(len(source_table), batch_size):

result = svc.run_sync(

f"""SELECT a.* FROM

{remote_table} AS a JOIN

TAP_UPLOAD.mine AS b

USING ({match_column})"""),

uploads={"mine": table.Table([match_on[slice]])})

matched_records.append(result.to_table())

joined_match = table.vstack(matched_records)

return table.join(source_table, joined_match, keys=match_column)

smart-tap-upload.py

This example is only somewhat contrived: For instance, in the result, you can compare the
plain ruwe – which says how much you may trust Gaia’s solution – with fidelity_v2 – which
says something similar, but may be a bit more meaningful, as it takes into account a source’s
environment –, and you can then look for systematics on, say, magnitudes or parallaxes.
Do not be alarmed by the MergeConflictWarnings; these are because the metadata of the
source_id column different between the two TAP services participating (ESAC and GAVO) here.

Exercise 24
Add full Gaia records from ivo://esavo/gaia/tap’s DR3 gaia_source to some records
from the hdgaia.main table on GAVO’s data centre. This does not need any slicing; still,
only upload what you actually need for matching; for that, the smart-tap-upload.py
example should be helpful.
Hint: for our simple table.join to work (which needs the same name in both tables), it is
probably smart to rename source_id3 in hdgaia at the ADQL level.

9 Solutions for Most of the Exercises

Solution for Exercise 1 I found an access URL by typing ROSAT survey pointed into a
freetext constraint in WIRR and adding a Service Type constraint of Image Access. This, at the
moment, only leaves one service, the SIA link of which I pasted into the program.
The resulting code is:

43

#!/usr/bin/env python
"""
A little and artificial example to show how to properly and efficiently
do cross-server upload joins.

get_basic_data is of course a silly function.

remote_match, on the other hand, probably is a good starting point for a
more general functionality.

In real life, you'd have a much larger batch_size (1e7 ought to be possible
depending on several details), and you probably need to use run_async
rather than run_sync, but that's about it.

This assumes there's enough RAM for the full match; if that assumption is
not true, you either need to get a computer manufactured in this millenium
or re-think your problem.
"""

from astropy import table
import pyvo

def iter_slices(total_length, batch_size):
 """iterates over slices of up to batch_size filling 0 to total_length.
 """
 limits = list(range(0, total_length, batch_size))+[batch_size]
 for lower, upper in zip(limits[:-1], limits[1:]):
 if lower < upper:
 yield slice(lower, upper)

def remote_match(svc, source_table, remote_table, batch_size, match_column):
 """adds records from remote_table on svc to source_table.
 """
 matched_records = []
 match_on = source_table[match_column]

 # only match the match_column (for a positional crossmatch, use
 # an id column (create one if necessary) and the positions).
 for slice in iter_slices(len(source_table), batch_size):
 result = svc.run_sync(f"""SELECT a.* FROM
 {remote_table} AS a JOIN
 TAP_UPLOAD.mine AS b
 USING ({match_column})""",
 # the next line is where most of the magic is.
 uploads={"mine": table.Table([match_on[slice]])})
 matched_records.append(result.to_table())

 joined_match = table.vstack(matched_records)
 del matched_records

 # now fiddle back what we've pulled from the server into the source_table.
 return table.join(source_table, joined_match, keys=match_column)

def get_basic_data(svc):
 """returns some test data from svc.

 Here, that's a some subset of upstream Gaia data.
 """
 result = svc.run_sync("""
 SELECT TOP 400
 source_id, ra, dec, ra_error, dec_error, ruwe, parallax,
 phot_g_mean_mag
 FROM gaiadr3.gaia_source
 WHERE
 source_id BETWEEN 4657847914607935488 AND 4657988652096290815
 """)
 return result.to_table()

def main():
 my_gaia_part = get_basic_data(
 pyvo.dal.TAPService("https://gea.esac.esa.int/tap-server/tap"))
 with_remote_data = remote_match(
 pyvo.dal.TAPService("http://dc.g-vo.org/tap"),
 source_table=my_gaia_part,
 remote_table="gedr3spur.main",
 batch_size=100,
 match_column="source_id")

 with open("matched_stuff.vot", "wb") as f:
 with_remote_data.write(output=f, format="votable")

if __name__ == "__main__":
 main()

import pyvo

ACCESS_URL = "http://dc.zah.uni-heidelberg.de/rosat/q/im/siap.xml?"

svc = pyvo.sia.SIAService(ACCESS_URL)

images = svc.search((340.1,3.36), size=(0.1, 0.1))

image=images[0]

print(image.filesize, image.instr)

If you got an exception like

IndexError: index 0 is out of bounds for axis 0 with size 0

– this is an artefact of how we blindly fetch the first result. What this really means: there was
no match in the service. Depending on what part of the ROSAT results is published, it is totally
conceivable that they did not cover our location.

Solution for Exercise 2 To obtain the position of M51, I am using the SkyCoord snippet from
the pyVO documentation; the rest mainly is cleanup and a standard random hack:

import random

import sys

from astropy import coordinates

from astropy.time import Time

from pyvo.dal import sia

from pyvo import registry

POS = coordinates.SkyCoord.from_name('M51')

def search_one_resource(res_rec):

print("\nNow querying ", res_rec.res_title)

svc = res_rec.get_service("sia", lax=True)

images = svc.search(POS, size=0.5)

for match in images:

print(f"{match.title} Get? ", end=" ")

if input().strip().lower().startswith("y"):

match.cachedataset()

def main():

for res_rec in registry.search(servicetype="image"):

if random.random()<0.9:

continue

try:

search_one_service(res_rec)

except KeyboardInterrupt:

if input("\nQuit? ").strip().lower().startswith("y"):

sys.exit()

except:

import traceback

traceback.print_exc()

if __name__ == "__main__":

main()

If you are somewhat downtrodden by how much breakage you see and how weird some of the
images that you find look like: Relax, it’s science. There is actually a lot of art and knowledge
between the raw images and the pretty pictures you see in the newspaper.

44

Solution for Exercise 3 The source code in question is in pyvo/samp.py (at the time of writing;
it might be moved at some point).
The connection manager is right at the bottom of the file, and you see there that code like this
should connect you to the SAMP hub:

client = SAMPIntegratedClient(name="test", description="VO course problem solution")

client.connect()

At least in the astropy versions current while this was written, when the client object just
vanishes, it will not tell the hub the client is dead, and hence zombie clients will aggregate,
for instance in TOPCAT’s SAMP client line. Even if astropy were to get a bit smarter here,
objects are in a precarious state when the automatic garbage collection strikes. Doing explicit
connection management therefore is highly preferable in any case. In particular if it is as simple
as just using a context manager.
Incidentally, on Debian-derived systems an attractive alternative to feeding github behavioural
data would be to say apt-get source python3-pyvo.

Solution for Exercise 4 You will find that send_image_to calls send_product_to, just filling in the
latter’s mtype argument. More on the MTypes later; consider them a function name.
Now, send_product_to basically fills a dictionary like this:

message = {

"samp.mtype": mtype,

"samp.params": {

"url": url,

"name": name,

},

}

This is basically like a function call with keyword arguments. That really is almost all the
magic; knowing this may come in useful if you want to send out more tailored SAMP messages
later.
To send the image to Aladin only, you can guess that you will want to use the client_name

argument (don’t worry about the implementation in that case). In TOPCAT’s SAMP status,
you can find that Aladin’s client name is a capitalised “Aladin”, so in sum, you would say:

pyvo.samp.send_image_to(

conn,

match.acref,

name=match.suggest_dataset_basename(),

client_name="Aladin")

Solution for Exercise 5

import pyvo

svc = pyvo.dal.TAPService("http://dc.g-vo.org/tap")

result = svc.run_sync("SELECT count(*) as ct FROM arihip.main")

print(result[0]["ct"])

45

Solution for Exercise 6 The error message will have looked a bit like this:

Field query: Could not parse your query: Expected end of text, found ’4’ (at char
64), (line:3, col:17)

This is admittedly not terribly helpful, but it is surprisingly hard to get parsers – programs that
turn sequences of characters into some structured representations – to spit out helpful error
messages. When you do not understand what some error means, first look at the position the
machine gave up at. In this case, this means showing the query that was actually executed; a
good print is perfectly fine in these cases, but my advice is to drop into the debugger, which
you can do with a line like this:

import pdb; pdb.set_trace()

You are then dropped into something you can interact with (try help at the prompt), e.g., by
evaluating python expressions:

-> print(QUERY.format(**locals()))

(Pdb) QUERY.format(**locals())

"select accref, imagetitle\nfrom maidanak.reduced\nwhere object=IC 4756"

(Pdb) cont

If you are fluent in ADQL, you will notice that at the error position reported by the server,
there is a naked number. And that is because of our extremely simple-minded templating: A
“good” templating engine should have turned the python string into an ADQL string literal.
But as I said, if you control both sides, it is fine to just adjust the template to:

QUERY = """select accref, imagetitle

from maidanak.reduced

where object='{object}'"""

Solution for Exercise 7 An adapted version of fetch3 would look like this:

import pyvo

QUERIES = [

("tgas", "http://dc.zah.uni-heidelberg.de/tap",

"""SELECT ra, dec, pmra, pmdec

FROM tgas.main

WHERE phot_g_mean_mag BETWEEN 8 AND 8.2"""),

("rave", "http://dc.zah.uni-heidelberg.de/tap",

"""SELECT raj2000, dej2000, rv, hmag

FROM rave.main

WHERE hmag BETWEEN 8 AND 8.2"""),]

def main():

with pyvo.samp.connection() as conn:

for short_name, access_url, query in QUERIES:

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(query.format(**locals()), maxrec=90000)

pyvo.samp.send_table_to(

conn,

result.to_table(),

client_name="Aladin",

name=short_name)

if __name__=="__main__":

main()

46

As hinted, the secret of attractive plots in Aladin are filters. For TGAS, you can use the pre-
defined “Draw proper motions of stars” filter and perhaps improve it a bit in the “Advanced
Mode”, e.g., by multiplying the two columns with 10.
For the radial velocity, perhaps a rainbow (blue and redshift) is appropriate? With a bit of
experimentation I have come up with

{ draw rainbow(${rv}, -100, 100) fillcircle(300)}

Solution for Exercise 8 The two workarounds are:

• work_around_vizast_bug – this used to be necessary because VizieR used to put arraysize="1"
into column declarations of their scalars, which made astropy make arrays from them.
This has long been fixed.

• work_around_sdss_ucd_bug – this used to be necessary because the UCDs on the SDSS table
were wrong and non-specific at the same time. If you drop the workaround, perhaps
by writing return ucd at the top of the function, you will see that the optical part of our
SEDs will be gone; the UCDs are still too unspecific for our purpose. Once you have
understood what happens in the workaround, you can also use TOPCAT’s table browser
to ascertain that the UCDs are still only phot.mag;em.opt.

Solution for Exercise 10 Here is how to write this:

import pyvo

QUERIES = {

"tgas": ("http://dc.zah.uni-heidelberg.de/tap",

"""SELECT *

FROM

tgas.main AS tg

JOIN TAP_UPLOAD.rave AS mine

ON DISTANCE(tg.ra, tg.dec, mine.raj2000, mine.dej2000)<1/3600.

"""),

"rave": ("http://dc.zah.uni-heidelberg.de/tap",

"""SELECT raj2000, dej2000, rv, hmag

FROM rave.main

WHERE hmag BETWEEN 8 AND 8.1"""),}

def main():

svc_url, query = QUERIES["rave"]

rave_svc = pyvo.dal.TAPService(svc_url)

job = rave_svc.submit_job(query, maxrec=90000)

try:

job.run()

job.wait()

job.raise_if_error()

svc_url, query = QUERIES["tgas"]

tgas_svc = pyvo.dal.TAPService(svc_url)

result = tgas_svc.run_sync(query,

uploads={

"rave": job.result_uri})

finally:

job.delete()

with pyvo.samp.connection() as conn:

47

pyvo.samp.send_table_to(

conn, result.to_table(), client_name="topcat", name="rave+tgas")

if __name__=="__main__":

main()

Note how this is much more logical than the first version with the individual photometric
cuts, since there is just one constraint on the magnitudes now (the one on the H-band in rave)
– when you send the resulting table to Aladin, you will see more matches in TGAS than you
had when you were comparing the two catalogue cuts manually.
And no, I would not normally have kept queries and access URLs in a dictionary in a situa-
tion like this; the two queries are different roles, and representing them next to each other is
misleading rather than helpful. I wrote it like this in order to keep the program structure as
parallel to the original rave-tgas solution as possible.
If you inlined the queries, you actually showed better taste.
By the way, you could take this even further and make the tgas query async as well. You could
then send a raw table.load.votable message to TOPCAT with the result URL as the table URL.
That way, pyVO would not touch the data at all. That is a small win here, but it might be a
useful technique in more demanding circumstances.
To do that, your send query would look like this:

svc = pyvo.dal.TAPService("http://dc.zah.uni-heidelberg.de/tap")

job2 = svc.submit_job("""

SELECT *

FROM tgas.main AS db

JOIN TAP_UPLOAD.t1 AS tc

ON DISTANCE(db.ra, db.dec, tc.raj2000, tc.dej2000) < 5./3600.

""",

uploads={"t1": job.result_uri})

job2.run()

job2.wait()

message = {

"samp.mtype": "table.load.votable",

"samp.params": {

"url": job2.result_uri,

"name": "tgas+rave-from-server",

},

}

client_id = samp.find_client_id(conn, "topcat")

conn.call_and_wait(client_id, message, "10")

The main complication over the code above is that we send_table_to cannot deal with remote
URIs and we have to essentially copy its implementation. But this is still relatively compact, I
would say.

Solution for Exercise 11 Just add a AND em_res_power>10000 to the query in the program.
And it is totally conceivable that you will not find anything for the objects you chose. Spectra
of this sort are expensive to get and have only been obtained for relatively few stars

48

Solution for Exercise 12 You would probably replace the service creation in the constructor’s
class with

self.sia_service = pyvo.dal.SIAService(

"http://dc.g-vo.org/lswscans/res/positions/siap/siap.xml")

With that, make_response_table would be as simple as:

ra = self.cur_table[self.ra_name][table_index]

dec = self.cur_table[self.dec_name][table_index]

return self.sia_service.search(pos=(ra, dec), size=0.05).to_table()

Solution for Exercise 13

import pyvo

from astropy.coordinates import SkyCoord

from astropy import units as u

import vohelper

class Odometer:

def __init__(self, conn):

self.conn = conn

self.total_travelled = 0*u.deg

self.last_position = None

conn.bind_receive_message("coord.pointAt.sky", self.record_movement)

@vohelper.show_exception

def record_movement(self, privkey, sender_id, msg_id, mtype, params, extra):

new_coord = SkyCoord(

float(params["ra"])*u.deg,

float(params["dec"])*u.deg)

if self.last_position is not None:

self.total_travelled += new_coord.separation(self.last_position)

self.last_position = new_coord

print(self.total_travelled)

def main():

with pyvo.samp.connection(addr="localhost") as conn:

odometer = Odometer(conn)

input()

print("Total travelled", odometer.total_travelled)

if __name__=="__main__":

main()

Solution for Exercise 14 To answer this, you could of course read the documentation and
figure out what’s the name of the respective properties of the TAPService object. In fact, you
should set aside an hour or two to at least browse the documentation of pyVO if you use it
regularly (as you should with any other library that you regularly use). However, in this case
discovery with command line completion in (i)python is legal; for instance,

49

In [3]: svc = pyvo.dal.tap.TAPService("http://dc.g-vo.org/tap")

In [4]: svc.<tab>

svc.availability svc.create_query svc.run_async svc.tables

svc.available svc.describe svc.run_sync svc.up_since

svc.baseurl svc.hardlimit svc.search svc.upload_methods

svc.capabilities svc.maxrec svc.submit_job

It is a reasonable guess that maxrec and hardlimit are what you are looking for in this case.
A program doing what is asked for in the exercise would look somewhat like this:

from pyvo import registry

for res_rec in registry.search(keywords="tgas", servicetype="tap"):

svc = res_rec.get_service("tap")

print(svc.baseurl, svc.maxrec, svc.hardlimit)

Solution for Exercise 15

>>> from pyvo import registry

>>> rscs = registry.search(keywords="exoplanet merged catalogue")

>>> rscs.get_summary()

(we got it, short name ExoMerCat)

>>> svc = rscs["ExoMerCat"].get_service("tap")

>>> list(svc.tables.keys())

['exomercat.exomercat', ...

>>> svc.tables["exomercat.exomercat"].columns

[... <BaseParam name="ra_off"/>, <BaseParam name="dec_off"/>, <BaseParam

name="mass"/>...]

>>> res = svc.run_sync("select top 1 ra_off, dec_off from exomercat.exomercat order by mass asc")

>>> res[0]

(277.6981916666667, -10.991083333333332)

>>> cres = registry.search("constellation polygons")

>>> cres.get_summary()

<Table length=1>

index short_name ... interfaces

int32 str9 ... str24

----- ---------- ... ------------------------

0 cstl cone ... conesearch, tap#aux, web

>>> csvc = cres[0].get_service("tap")

>>> csvc.tables["cstl.geo"].columns

[..., <BaseParam name="name"/>, <BaseParam name="p"/>, <BaseParam name="ra"/>, ...]

>>> csvc.run_sync("select name from cstl.geo as db join tap_upload.pt as mine"

... " on 1=contains(point(mine.ra_off, mine.dec_off), p)",

... uploads={"pt": res.to_table()}).to_table()

<Table length=1>

name

object

Scutum

So: with sufficient instrumentation and a clear horizon, you could see its host star from here
(as in: Heidelberg). Scutum is just a bit south of the celestial equator, visible between Atair
and Antares in summer nights.
Note that, of course, this is exactly not the nice blind (i.e., without prior knowledge of concrete
resources) discovery we would like to have in the VO. But bear with us: It’s much easier to
write problems assuming prior knowledge.

50

Solution for Exercise 16 For server-side-expansion, change the condition to use the gavo_vocmatch

UDF mentioned in the side track, like this:

def __init__(self, uat_id, expand=False):

if expand:

self._condition = "1=gavo_vocmatch('uat', {uat_id}, uat_concept)"

else:

self._condition = "{uat_id} = uat_concept"

self._fillers = {"uat_id": uat_id}

If you try it, you will notice that you get back massively more services.
When doing things locally, there is a complication because the naive templating engine cannot
cope with sets. If it could, you would be done with just pulling the vocabulary (in a class
attribute so we don’t parse the vocabulary each time we are called) and then using a different
operator:

class ForSource(pyvo.registry.SubqueriedConstraint):

_keyword = "subject"

_subquery_table = "rr.subject_uat"

uat_voc = pyvo.utils.vocabularies.get_vocabulary("uat")

def __init__(self, uat_id, expand=False):

if expand:

uat_ids = {uat_id} | set(self.uat_voc["terms"][uat_id]["narrower"])

else:

uat_ids = {uat_id}

self._condition = "uat_concept in ({uat_ids})".

self._fillers = {"uat_ids": uat_ids}

As things are, this will lead to an error, because the templating engine has no idea what to do
with your set. Hence, you will have to manually do your formatting. But note that this sort of
hack will make you vulnerable to SQL injection, so never create SQL like this when processing
untrusted content:

uat_ids = {uat_id} | set(self.uat_voc["terms"][uat_id]["narrower"])

self._condition = "uat_concept in ({})".format(

", ".join(f"'{id}'" for id in uat_ids))

Solution for Exercise 17

def get_available_semantics(dl):

res = set()

for link in dl:

res.add(link["semantics"])

return res

Solution for Exercise 18 The first hurdle to the solution regrettably is: how will that service
spell the identifier “IC 1151”? Using TOPCAT’s or pyVO’s table browsers, you will find the
target_name column, and using something plausible like

select target_name from califadr3.cubes where target_name like '%1151%'

51

you will find they have skipped the blank (oh, for interoperable object designations!), and
hence you will have to match IC1151.
For the matter with the setup, you can guess that it’s what the setup column says and you
would end up constraining setup to COMB (which in this case says that you are using a clever
combination of the results of a higher and a lower resultion setup).
With these preparations, you can do the SODA calls; because, at the time for writing, pyVO
does not pick up the processing service sitting on the dataset (rather than result set) level, we
need to do the extra complication handled in the get_cutout_frame function given in the problem
statement.
Taking everything together:

import io

import pyvo

import numpy

from astropy import units as u

from astropy.io import fits

from PIL import Image

def _normalize_for_image(pixels):

pixels = numpy.flipud(pixels)

pixMax, pixMin = numpy.max(pixels), numpy.min(pixels)

pixels = (pixels-pixMin)/(pixMax-pixMin)*255

return numpy.asarray(pixels, numpy.uint8)

def get_cutout_frame(datalink, wavelength):

proc = datalink.get_first_proc()

fits_stream = proc.processed(band=(wavelength, wavelength))

return fits.open(io.BytesIO(fits_stream.read()))[0].data[0]

svc = pyvo.dal.TAPService("http://dc.g-vo.org/tap")

res = svc.run_sync(

"""SELECT * FROM califadr3.cubes

WHERE target_name='IC1151' AND setup='COMB'""")

datalink = next(res.iter_datalinks())

pixels = numpy.array([

_normalize_for_image(get_cutout_frame(datalink, 700*u.nm)),

_normalize_for_image(get_cutout_frame(datalink, 550*u.nm)),

_normalize_for_image(get_cutout_frame(datalink, 400*u.nm))])

pixels = pixels.transpose(1,2,0)

Image.fromarray(pixels, mode="RGB"

).save("IC1151.jpeg", format="jpeg")

if you cannot get enough: It is not hard to extend this so for each band, a few spectral frames
are averaged rather than just exactly one frame (which we pick out here with our relatively
stupid .data[0].

Solution for Exercise 23

import pyvo

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/theossa/q/ssa/ssap.xml?")

with pyvo.samp.connection() as conn:

for ct, result in enumerate(

52

svc.search(pos=None, diameter=None, t_eff="70000/100000",

log_g="4.5/5.5", w_N="0.015/+Inf",

FORMAT="VOTable")):

pyvo.samp.send_spectrum_to(conn, result.getdataurl(), client_name="splat")

if ct==2:

break

Solution for Exercise 24

import pyvo

from astropy import table

gavo_svc = pyvo.dal.TAPService("http://dc.g-vo.org/tap")

hd_subset = gavo_svc.run_sync("SELECT TOP 500 mv_meas, spectral,"

" source_id3 as source_id FROM hdgaia.main").to_table()

esac_svc = pyvo.dal.TAPService("https://gea.esac.esa.int/tap-server/tap")

gaia_meta = esac_svc.run_sync(

"""SELECT *

FROM gaiadr3.gaia_source as g

JOIN tap_upload.mine as m

USING (source_id)""",

uploads={"mine": table.Table(

[hd_subset["source_id"]])})

full_result = table.join(

hd_subset,

gaia_meta.to_table(),

keys="source_id")

with pyvo.samp.connection() as conn:

pyvo.samp.send_table_to(conn, full_result, client_name="topcat")

References

Demleitner, M., Dowler, P., Plante, R., Rixon, G. and Taylor, M. (2012), ‘TAPRegExt: a
VOResource Schema Extension for Describing TAP Services Version 1.0’, IVOA Recom-
mendation 27 August 2012, arXiv:1402.4742. doi:10.5479/ADS/bib/2012ivoa.spec.0827D,
https://ui.adsabs.harvard.edu/abs/2012ivoa.spec.0827D.

Demleitner, M., Harrison, P., Molinaro, M., Greene, G., Dower, T. and Perdikeas, M. (2019),
‘IVOA Registry Relational Schema Version 1.1’, IVOA Recommendation 11 October 2019.
doi:10.5479/ADS/bib/2019ivoa.spec.1011D, https://ui.adsabs.harvard.edu/abs/2019ivoa.
spec.1011D.

Erard, S., Cecconi, B., Le Sidaner, P., Demleitner, M. and Taylor, M. (2022), ‘EPN-TAP: Publish-
ing Solar System Data to the Virtual Observatory Version 2.0’, IVOA Recommendation 22
August 2022. https://ui.adsabs.harvard.edu/abs/2022ivoa.spec.0822E.

Mantelet, G., Morris, D., Demleitner, M., Dowler, P., Lusted, J., Nieto-Santisteban, M. A.,
Ohishi, M., O’Mullane, W., Ortiz, I., Osuna, P., Shirasaki, Y. and Szalay, A. (2023), ‘As-
tronomical Data Query Language Version 2.1’, IVOA Recommendation 15 December 2023.
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215M.

This document’s DOI is 10.21938/08rzo4ylRPmnS8iXYPO:rg.

53

https://doi.org/10.5479/ADS/bib/2012ivoa.spec.0827D
https://ui.adsabs.harvard.edu/abs/2012ivoa.spec.0827D
https://doi.org/10.5479/ADS/bib/2019ivoa.spec.1011D
https://ui.adsabs.harvard.edu/abs/2019ivoa.spec.1011D
https://ui.adsabs.harvard.edu/abs/2019ivoa.spec.1011D
https://ui.adsabs.harvard.edu/abs/2022ivoa.spec.0822E
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215M
http://doi.org/10.21938/08rzo4ylRPmnS8iXYPO:rg

	1 Introduction
	2 pyVO Basics
	3 pyVO and TAP
	4 Higher SAMP Magic
	5 pyVO and the Registry
	6 Datalink
	7 At the Limit: VO-Wide TAP Queries
	8 Odds and Ends
	8.1 EPN-TAP
	8.2 Custom Parameters to Simple Services
	8.3 TAP Uploads: The right way

	9 Solutions for Most of the Exercises

