
Global Dataset Discovery in the Virtual Observatory

Markus Demleitner

PUNCHLunch 2025-02-17

Talk Outline

• The problem from 30’000 ft

• pyVO and a simple API

• The role of the VO Registry

• Dupes, inadequate services, logging: Problems close up

• API considerations

• Demo?

• Only the first steps

Reminder: The Virtual Observatory

The VO is

• A set of standards you can read at http://ivoa.net/documents.

• ∼ 50 data centres implementing these standards and offering services to query data col-
lections

• a bit of quasi-central infrastructure (in particular the Registry)

• an ecosystem of client software maintained by all kinds of parties

In sum: There is no centrally controlled platform, and the development model is characterised
by compromises, consensus, and goodwill. Just like the Internet when it was still fun.

Glossary

Here are a few VO concepts you need at least passing familiarity with to understand what’s
going on here:

• The Registry – Metadata (Dublin Core, service, table, phyiscal coverage metadata); that’s
∼ 30′000 records right now

1

http://ivoa.net/documents

• RegTAP – a schema of ∼ 20 relational tables making the Registry queriable

• TAP – the table access protocol makes remote tables SQL-queriable

• Obscore – a TAP-publishable schema for observational products

• SIAP – Simple Image Access Protocol; version 1, ca. 2006, was an early parameter-based
protocol for astronomical image service; version 2 (2015) is a parameter-based version of
Obscore

• pyVO – a python library wrapping up many VO protocols so they’re easy to use from
within Python.

The Desired API

In this distributed system, we want people to be able to globally search for datasets (for now:
images) constrained only by space, time and spectrum (“blind discovery”):

images, log = discover.images_globally(

space=(132, 14, 0.1),

time=time.Time(58794.9, format="mjd"),

spectrum=600*u.eV,

inclusive=False)

Sounds easy? Well, let’s try.

images is a list of obscore-like metadata, and log has information on which services yielded how
much (or how they failed or were skipped).

If True, inclusive makes the function ask services without coverage information and return
SIAP1 images that have no usable information on time and spectrum.

A Two-Step Process

In the VO, global dataset discovery has two steps:

1. Locate services that could have relevant datasets (from among the 30’000 in the Registry.

2. Send appropriate queries to each service discovered.

Extra trouble: In the VO, images can be published through any combination of:

• SIAPv1 – the old “simple” (i.e., atomic HTTP parameters) protocol for searching images

• SIAPv2 – a newer “simple” protocol for searching images

• Obscore – standard metadata tables queried via TAP

2

Challenge: Too Many Services

How many candidate services are there for images? Try:

import pyvo

print("#sia", len(pyvo.registry.search(servicetype="sia")))

print("#sia2", len(pyvo.registry.search(servicetype="sia2")))

print("#obscore", len(pyvo.registry.search(datamodel="obscore")))

This yields:

sia 320
sia2 141

obscore 43

(Note that obscore services generally publish multiple data collections, which is why there are
fewer of them)

Even if each service returned within a second, a sequential all-VO scan thus is more than five
minutes. And that if is a strong if.

By the way, against when I last gave a talk like this last September, there were 32% more SIA1,
33% more SIA2, and 13% more Obscore services.

The Registry to the Rescue

An increasing number of VO resources define their coverage in space, time, and spectrum in
the Registry. Using this, we can skip services that do not cover the user’s region of interest.

However – and this is an ADQL query against RegTAP tables, executable, for instance, on the
TAP service at http://dc.g-vo.org/tap):

SELECT COUNT(*) FROM

rr.stc_spatial

NATURAL JOIN rr.capability

WHERE standard_id LIKE 'ivo://ivoa.net/std/sia%'

At the moment, only 84 SIAP1/2 services declare their spatial coverage (29 for spectral, 43 for
temporal).

Part of the reason for that relatively meagre takeup is that the standard defining how to de-
clare coverage is relatively recent (VODataService 1.2 from 2021-11-02). Another part is that
basically, only Aladin has done something interesting with coverage so far, and then only with
spatial coverage. I do hope that as people do more global discovery, service operators have a
stronger incentive to define coverage.

The Obscore Problem

Obscore services are currently discovered as TAP services with the obscore data model.

Hence, the coverage – if given at all – is generally not useful: there can be a lot else in the TAP
service.

This is un-recoverable. We need to fix Obscore registration.

Beyond “Obscore tables need to get resource records of their own”, this is VO nerd stuff. If you
are a VO nerd, see the TableReg note and comment: https://ivoa.net/documents/TableReg.

3

https://ivoa.net/documents/TableReg

Dupes, Dupes, Dupes

Another big issue: Blindly querying everything will return many datasets multiple times.

First reason for that: Services having both SIAP1 and SIAP2 interfaces. How many are there?

SELECT COUNT(*) FROM

rr.capability AS a

JOIN rr.capability AS b

USING (ivoid)

WHERE

a.standard_id='ivo://ivoa.net/std/sia'

AND b.standard_id='ivo://ivoa.net/std/sia#query-2.0'

That’s 24 at the moment; in the service selection, one can filter these out by preferring SIAP2.
But. . .

Dupes from Obscore

At the GAVO data centre, all of its 20 SIA services are also reflected in its Obscore table (and
a sitewide SIAP2 service, too). It would be a bad waste of resources to fire off the 20 extra
requests.

Not to mention we would have lots of dupes.

To enable fast global queries, SIAP(2) and SSAP records must include isServedBy relationships
to Obscore, TAP, and sitewide SIAP2 services. Yes, it is a bit silly if a service record has an
isServedBy relationship. But until convinced otherwise, I’ll claim it’s not grossly inadequate
and does the job with minimal extra effort. This does not happen a lot as yet, though.

Running the Queries

SIAP2 and Obscore are easy: Just translate the constraints to queries and collect the rows you
get back (slightly normalised).

SIAP1 is more difficult: no (generally usable) constraints on time and spectrum, so you need
to filter locally if possible. Also: result rows need to be mapped to the Obscore DM.

Main problem, though: Dealing with hanging or dead services, timeouts, hanging reverse
proxies. . .

Inclusive: Services

By default, discover will only consider resources that give coverage. A welcome side effect of
that is that well-maintained resources will receive preferential treatment.

To consider services without declared coverage, pass inclusive=True.

At this point, this will dramatically increase runtime and the amount of brokenness you will
see.

4

Inclusive: Datasets

In particular for SIA1, inclusive has a second effect: It will also return datasets that do not
declare temporal or spectral coverage.

For SIA2, the decision whether to return datasets with unknown coverage is left to the service.

For Obscore, we could add clauses like OR time_min IS NULL for inclusive searches – but we don’t
at this point. This is generally the right thing to do; if people give a spectral constraint, they
will probably not be interested in datasets for which the publishers found themselves unable
to give a spectral coverage.

How to log

Reminder:

images, log = images_globally(...)

How machine-readable should log be?

It’s an artefact of provenance at the very least: you need to know which services happened to
be down when your discovery ran.

It is also potentially a debugging aid.

But if you log everything, it will be extremely painful to see anything in the log. Feedback on
what I am doing right now is most welcome.

More API: Custom Service Lists

Perhaps you want to query a custom subset of services?

Well: Pass a services parameter, perhaps like this:

datasets, log = discover.images_globally(

space=(274.6880, -13.7920, 1),

services=registry.search(registry.Datamodel("obscore")))

This example will run the query against all obscore services regardless of what their coverage
says. The discover function will, however, still do service elision on the service list you pass
in, i.e., evaluate isServedBy relationships.

More API: Watching live

When you have something like a UI, or you want to break out of discovery, you want to get
notifications of what is going on.

Define a callback(discoverer, msg) that is called each time something happens; you can muck
around in the Discoverer instance in the first argument:

def say(discoverer, s):

print(s)

datasets, log = discover.images_globally(

time=(time.Time('1995-01-01'), time.Time('1995-12-31')),

watcher=say)

5

OMG Testing

Writing unit tests for code of this kind is a nightmare: We basically need to mock a major part
of the VO.

What did not work: Record requests and responses on the http level to build the mock envi-
ronment. PyVO and Python produce different requests in different versions.

What I do: Some small tests with remote data. Yuck.

Demo Time: API

def say(disco, msg):

print(process_time(), msg)

images, logs = discover.images_globally(

space=(134, 11, 0.1),

spectrum=600*u.eV,

time=(time.Time('1990-01-01'), time.Time('1999-12-31')),

watcher=say)

print("============ Result ===========")

print(logs)

for res in images:

print(res.access_estsize, res.access_url)

Demo Time: A Simple GUI

Find the source code of the Tkinter-based program on github: https://github.com/ivoa/
tkdiscover

6

from time import process_time
from pyvo import discover
from astropy import time
from astropy import units as u

def say(disco, msg):
 print(process_time(), msg)

images, logs = discover.images_globally(
 space=(134, 11, 0.1),
 spectrum=600*u.eV,
 time=(time.Time('1990-01-01'), time.Time('1999-12-31')),
 watcher=say)

print("============ Result ===========")
print(logs)
for res in images:
	print(res.access_estsize, res.access_url)

https://github.com/ivoa/tkdiscover
https://github.com/ivoa/tkdiscover

For the demo, I first ran with the default parameters, yielding two ROSAT images; then, I
changed λ to 400 nm, which does not change much (because too few services give their spec-
tral coverage). Checking “inclusive” changes the picture; have a look at the progress log in
the lower right corner. Let the global query run for a while and then broadcast the result to
TOPCAT. Also check out the discovery log in the global table metadata (under Views → Table
Parameters.

Future Directions

Once the basics are there, here’s some extensions I could see:

• Registry work with data providers to make this faster and more reliable

• Allow RoI geometries (polygons, perhaps even MOCs), intervals for scalars

• Enable object lists for upload (but: that will only work for Obscore)

• Optionally, automatic cutouts to the RoI using SODA?

• Non-remote testing by mocking and recording on the XService level?

Conclusion

Everything is hard (at least at first) in a global, distributed system.

But, as the internet itself shows, global, distributed systems are great, so with a bit of luck it is
effort well spent.

See also my blog post on this: https://blog.g-vo.org/global-dataset-discovery-in-pyvo.html.

7

https://blog.g-vo.org/global-dataset-discovery-in-pyvo.html

