
Exercise 1

Follow the “Whetting your appetite” demo from the lecture notes

until you have the radius-luminosity plot for mcxc.

Now try the same thing for the eingalclus; when constructing the

new query, you will have to change the columns to select and the

table name.

Do the plots look similar? Use a plausible cross match

(Pair Match in TOPCAT’s Joins menu) to pair plausible clusters

and plot radius and luminosity from the two catalogues against

each other.

1

Exercise 2

Continuing the last exercise, do the next steps for the mcxc

example from the lecture notes until you can see the suspicious red

objects. Take care that you do not lose track of which table you

have selected at any time and make sure you adapt the table index

in TAP_UPLOAD.t4 to the index of your mcxc table. Can you find

interesting objects? And can you think of ways to reduce the

contamination with odd artefacts?

2

Exercise 3

Follow the instructions in the SCS chapter (use the lecture notes)

to get familiar with SCS and topcat.

1. Try to repeat the exercise using a Gaia catalogue instead of

the HSOY. Caveat: the Gaia catalogue provides colours and

magnitudes. Try to use the metadata of the table to figure

out the names of the columns for brightness, and blue and red

colours. Another good hint to not get lost in the column

metadata is to search for “Gaia lite”.

In case you get stuck, you can also have a peek at:

https://www.g-vo.org/tutorials/pleiades.pdf

2. Try to repeat the steps with the beehive cluster (“Praesepe”)

3

https://www.g-vo.org/tutorials/pleiades.pdf

Exercise 4

Use Aladin’s viewer to study the object X Persei in different

wavelengths. Get familiar how to select a survey and also make use

of the data tree.

Hint: try the XMM survey. Try to guess what kind of object you

are looking at. How could you confirm your hypothesis? (Well, of

course there is Wikipedia, but what if you wanted to keep it in the

VO family?)

4

Exercise 5

Select the (rows of) the 20 brightest stars in the table fk6.part1.

5

Exercise 6

Select the absolute magnitude and the common name for the 20

stars with the greatest visual magnitude in the table fk6.part1 (in

case you don’t remember: The absolute magnitude is

M = 5 + 5 log π +m with the parallax in arcsec π and the

apparent magnitude m (check the units!).

6

Exercise 7

As before, select the absolute magnitude and the common name

for the 20 stars with the greatest visual magnitude, but this time

from the table fk6.fk6join. This will fail for reasons that should tell

you something about the value of Bayesian statistics. Make the

query work.

7

Exercise 8

How many objects in the Fifth Catalogue of Nearby Stars

(cns5.main on the GAVO TAP server) are missing a radial velocity?

8

Exercise 9

Get the averages for the total proper motion from lspm.main in

bins of one mag in Jmag each. Let the output table contain the

number of objects in each bin, too.

9

Exercise 10

Make an all-sky plot of the number of objects and their average

effective temperature in HEALPixes of level 5 of the catalogue

rave.main. Hint: In the server-provided Examples on the GAVO

server, there is an example “Make a HEALPix Map of something”

(in Local UDFs ; if you don’t see it, update your TOPCAT). Start

from there.

Can you understand the structures that you see?

10

Exercise 11

Look at the documentation of the ivo_epoch_prop_pos UDF (refer

back to the UDF slide if necessary). Can you figure out how to

propagate (i.e., apply the proper motions to compute positions in

the future) the CNS5 to the year 2150? The positions in the CNS5

are (somewhat unusally) given for what is in the column epoch.

What’s the RA of Sirius you determine in this way? And why will

this be probably a rather poor guess?

11

Exercise 12

Compare the radial velocities given by the rave.main and

arihip.main catalogues, together with the respective identifiers

(hipno for arihip, raveid for rave). Use the POINT and CIRCLE

functions to perform this positional crossmatch with, say, a couple

of arcsecs.

12

Exercise 13

Sit back for a minute and think whether the JOIN and the EXIST

solution in the Subqueries chapter are actually equivalent. You are

not supposed to see this from staring at the queries – but

comparing the results from the two queries ought to give you a

hint; retrieve a few more objects if your results happen to be

identical.

13

Exercise 14

If you have some data with celestial positions of your own, try

reading it into TOPCAT and try the crossmatch with that. If you

do not have any suitable data, try the ex.vot from the TAP:

Uploads slide.

14

Exercise 15

Follow the example on the “Almost Real World” slide with the

matchme.vot table provided there.

Despite the artificial setting, we have lost one object in the upload

join. Can you find it? And can you guess why we have lost it?

Hint: Have a look at TOPCAT’s Pair Match facility, paying

attention to the Join Type setting.

15

Exercise 16

In the last exercise, we met the star with the Gaia source id

1872046574983497216 and a total proper motion of 5 arcsec/yr.

In the solution I claimed this is a really extreme case. Well: how

extreme is it? Can you estimate how many faster stars there are?

(Please resist the temptation to use the full Gaia catalogue for this

purpose; see also the next exercise).

16

Exercise 17

(This is slightly advanced) In the last exercise, you were asked not

to consult the Gaia source catalogue to get proper motion

statistics, although to a contemporary astronomer that would be

the obvious choice. That is because all-catalogue statistics are

expensive on Gaia.

Can you find a way to still get the fastest stars in gaia.dr3lite

within the time limit of sync queries on that server (i.e., a couple

of seconds)?

Cheap hint: see what columns are indexed.

17

Exercise 18

In async mode, run this on the GAVO server:

SELECT TOP 500 source_id, flux

FROM gdr3spec.spectra

WHERE arr_max(flux)>arr_avg(flux)*5

This is using the experimental array extension to ADQL1. You can

probably guess without reading the blog post that this will select

spectra with something like strong lines.

Run that query in async mode on the GAVO server. In a course

situation, shout out your job’s phases to watch the dequeuing.

Save the job URL, exit TOPCAT, resume it, and load the result

when the job is COMPLETE-d.

1https://blog.g-vo.org/a-proposed-vector-extension-for-adql.html

18

https://blog.g-vo.org/a-proposed-vector-extension-for-adql.html

Exercise 19

Pick a server that piques your interest from TOPCAT’s server

selection. How many tables are there on the server? How many

columns? How many columns with UCDs starting with phot.mag?

19

Exercise 20

In exercise 18, you selected stars with odd spectra. Can you use

Simbad’s TAP service to find what types of star these are?

Hint: you probably need to do two upload joins, first with

gaia.dr3lite (or some other Gaia DR3 table out there), then with

public.basic on Simbad.

20

Exercise 21

Plot the total coverage of the Lockman Hole Radio Survey in the

table emi.main on the GAVO TAP server as a level 8-MOC in

TOPCAT. What is its area? Hint: you will probably need a

subquery.

For aesthetic reasons, also try this at levels 12 and 18.

21

Exercise 22

Get our example basicsiap.py from the notes.

Now find an image service publishing the ROSAT survey and

pointed observations and see if it has an image for the position

given (or try some other service and position you are actually

interested in).

Use WIRR to search the VO Registry for now.

What is coming back from SIAService’s search is a sequence of

SIARecords. Have a quick look at its pyvo documentation and

make your program print the file size and the instrument name

rather than calling cachedataset.

22

http://dc.g-vo.org/WIRR
https://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIARecord.html#pyvo.dal.SIARecord

Exercise 23

Get the globalsiap.py script from the attachment and change it so

it skips 90% of the services discovered randomly (use

random.random()). Also, remove the constraint on the date (we

don’t need that here) and change the position to something you

are interested in or expect to have pretty pictures (M1 or M51 are

always good candiates). Run the thing and see what you find.

23

Exercise 24

Get the pyVO source code and find the source of pyvo.samp. Start

TOPCAT, find the implementation of the connection context

manager, and then open a SAMP connection manually from an

interactive Python prompt. And then again, and a third time.

What do you observe in TOPCAT?

Hint: To get the source code, try:

git clone https://github.com/astropy/pyvo.

Or, on Debian-derviced boxes:

apt source python3-pyvo

24

Exercise 25

Still in samp.py, inspect how send_image_to is implemented. From

reading the code, can you figure out how to only send the image to

Aladin? If you can, try your solution in globalsiapsamp.py by

having Aladin and ds9 (Debian package: saods9) open at the same

time.

Hint: To find out Aladin’s client name, check TOPCAT’s SAMP

status window.

25

Exercise 26

Write a program that prints the number of rows in the table

arihip.main in the TAP service at http://dc.g-vo.org/tap (do

not pull all the rows and use python’s len).

Hint: With ADQL’s AS construct you can control the names of

table columns.

26

Exercise 27

The following program should print URIs and titles for images in

some collection for whatever names are in OBJECTS:

import pyvo

OBJECTS = ["IC 4756", "NGC 3377"]

QUERY = """select accref, imagetitle

from maidanak.reduced

where object={object}"""

svc = pyvo.dal.TAPService("https://dc.g-vo.org/tap")

for object in OBJECTS:

print(svc.run_sync(QUERY.format(**locals())).to_table())

What really happens: An error message. Can you figure out where

it comes from and how to fix things?

27

Exercise 28

Use TOPCAT’s TAP data browser to locate services and table

names for TGAS and RAVE. Also figure out where the positions

and some usable magnitude are, plus the proper motions from

TGAS and the radial velocities from RAVE.

Re-write fetch3.py to query the retrieve all stars between 8 and 8.2

mags from each table. Also, send the results to Aladin (which is

known as Aladin (capitalised) on the SAMP bus). See if you can

get a nice plot of rv, pmra, and pmdec.

Hint: Check Aladin’s Catalog/Create filter for fancy plotting

options.

28

Exercise 29

Go through the source code of fetch3-cluster.py. You will see we

have put in two workarounds for where the data providers messed

up. Can you see in each case what might have gone wrong? Have

the service operators fixed their software or do things still fail when

you remove a workaround? In a course setting, coordinate with

your neighbours and split up the work so each only looks at one

workaround.

29

Exercise 30

Run fetch3-cluster.py and select a couple of objects. Keep the

resulting file (selected positions.vot) – we will want to reuse

it later.

30

Exercise 31

You can use URLs in a query’s upload argument. To try this out,

review the TGAS and RAVE exercise 28. Let the initial RAVE

query be asynchronous. On the resulting job, call wait as above.

Once it is done, upload what is job’s result uri attribute into

the TGAS server with a normal positional upload join.

31

Exercise 32

Can you change get_spectra.py such that only spectra of resolving

power 10000 or greater are retrieved?

Hint: Use TOPCAT or the tables property of your TAPService

to inspect the metadata of the ivoa.obscore table to figure out

which column to query against. Just in case: It is almost always

better to filter on the remote side rather than the local side. And

chuck the “almost” if the constraint can be expressed as a single

condition in a WHERE clause.

32

Exercise 33

The action of the SAMP handler is in the make_response_table

method; have a brief look at it to appreciate what is going on.

Then, replace what is there with something that does a SIAP

search on the service at

http://dc.g-vo.org/lswscans/res/positions/siap/siap.xml and

returns the corresponding table for sending to Aladin (hint:

remember the to_table method of DAL results).

33

Exercise 34

Listening to the SAMP message coord.pointAt.sky, implement an

“odometer” computing and printing after each step the distance

travelled by the pointer.

To do this, you will need to keep the SAMP connection, the last

position and the distance travelled so far as state; take the

vicinitysearcher, remove the code keeping the state and behaviour

used for its function, and insert our new logic.

Hints: Look at SkyCoord in Astropy and the mtypes page; when

re-using SAMP bindings, make sure you handle messages, not calls.

34

Exercise 35

Can you figure out the default output limit (i.e., in effect an

implied TOP) for the TAP service at http://dc.g-vo.org/tap? How

far can you raise it?

Can you write a program that figures it out for all TAP services

out there that talk about tgas?

35

Exercise 36

Which IAU constellation is the least massive exoplanet in the

exoplanet merged catalogue in? Try solving this using pyVO’s

registry API; hint: to figure out constellations, having the

constellations as ADQL polygons is really handy.

36

Exercise 37

(You will need to have looked at the vocabularies sidetrack for this)

Take new-constraint.py and add support for query expansion: add

a keyword argument expand. If that is true, include the narrower

concepts of what was passed in, too.

Hint: You can leave (something like) this to the server with a

UDF, or you can do the query expansion locally; the first way is

simpler, the second perhaps more instructive.

37

Exercise 38

Write a function get available semantics(dl) -> set

returning a set of the semantics available for a given datalink.

Try your program on the SSA example from the lecture.

38

Exercise 39

Get the soda-with-rows.py script for doing cutouts on CALIFA DR3

and make a false colour image for IC 1151 by taking the slices

from the COMB cube (see the setup column) at 400 nm as blue,

at 550 nm as green, and at 700 nm as red. Do not download the

whole cube, use SODA to just retrieve exactly what you need.

39

Exercise 40

In multitap.py, have a look at get_services_and_tables; in there, we

are doing a grouping operation on the client (i.e., our) side. Can

you move to to the server side using GROUP BY and the

ivo_string_agg UDF?

40

Exercise 41

Can you find out the strings you need to pass to get_feature find

find out whether a service supports the nifty IN_UNIT function?

41

Exercise 42

There is one glaring hole in our multitap script: Units. Try to

improve on this: If the service supports IN_UNIT, use it in about the

way we have been using CAST.

If you actually need something like this, you can of course also

compute the conversion factors locally (using astropy.units) and

bake them into the queries. Feel free to try that, too.

42

Exercise 43

Get the epnquery.py and change it to only discover spectra (that’s

dataproduct type sp in EPN-TAP). then send the first two spectra

your program finds to TOPCAT (or SPLAT, or CASSIS, if you

have one of them).

43

Exercise 44

The SSAP service at http://dc.g-vo.org/theossa/q/ssa/ssap.xml?

houses theoretical spectra mostly of hot, compact stars.

See if you can retrieve three spectra for stars with log_g between

4.5 and 5.5, an effective temperature between 7× 104 and 105

Kelvin, and a Nitrogen mass fraction larger than 0.015 dex (write

+Inf for “no upper limit”).

Send the spectra retrieved to splat.

Hints: Use viewparams.py, start from siapextra.py, remember

dal.ssa.SSAService, and pass in FORMAT='VOTable' to avoid

retrieving spectra in both FITS and VOTable.

44

http://dc.g-vo.org/theossa/q/ssa/ssap.xml?

Exercise 45

Add full Gaia records from ivo://esavo/gaia/tap’s DR3 gaia_source

to some records from the hdgaia.main table on GAVO’s data

centre. This does not need any slicing; still, only upload what you

actually need for matching; for that, the smart-tap-upload.py

example should be helpful.

Hint: for our simple table.join to work (which needs the same

name in both tables), it is probably smart to rename source_id3 in

hdgaia at the ADQL level.

45

Exercise 46

Assume you are about to publish a table containing a column that

gives the angular size of an object you observed. What would be a

good UCD to assign to that column?

46

Exercise 47

Assume you are about to publish a table containing a column where

you subtracted magnitudes (or the same object, of course) in the

SDSS u and r bands. Can you come up with a good UCD for that?

47

Exercise 48

The constraint

1=gavo_vocmatch('product-type',

'spatially-resolved-dataset', dataproduct_type)

that we have put in on the vocabularies in ADQL slide claims to

match spatially-resolved-dataset and all narrower concepts. Can

you give an equivalent expression of the form

dataproduct_type IN ('...',)

based on the product-type vocabulary? And why is that less

desirable than using the UDF?

48

Exercise 49

Get the VOTable at http://dc.g-vo.org/arihip/q/cone/scs.xml?

RA=333&DEC=43&SR=2&RESPONSEFORMAT=votabletd and

add to the value of the publisher INFO a (alas, hypothetical)

(note to self: they were on holiday in May 2024), using a text

editor. If you have xmlstarlet, try re-formatting it first.

Ensure that the edit actually happened using TOPCAT. There,

edit the note, too (doubleclick) and then see if you can see the

change in the text editor.

49

http://dc.g-vo.org/arihip/q/cone/scs.xml?RA=333&DEC=43&SR=2&RESPONSEFORMAT=votabletd
http://dc.g-vo.org/arihip/q/cone/scs.xml?RA=333&DEC=43&SR=2&RESPONSEFORMAT=votabletd

Exercise 50

Again in our VOTable, use a text editor to add an INFO element

with a name of (yourname)-note, a value of (today’s date):

learned how to add INFO elements the hard way, and a

content of private processing note. Load your modified table

into TOPCAT to ensure you have not damaged the file and the

information is there.

50

Exercise 51

Still in our VOTable, set the vrad field for the object with the

Hipparcos number 109481 to the value −16.268137 (which is what

Gaia DR3 gives for this object).

Again, try it once with TOPCAT and once with a text editor. For

the latter, you will need the table to be in TABLEDATA format. At

your option, use the RESPONSEFORMAT parameter or just save

the table as TABLEDATA from TOPCAT.

51

