
Using the Virtual Observatory

Markus Demleitner Hendrik Heinl Joachim Wambsganß

July 25, 2024

Abstract

This is a course on using the Virtual Observatory (VO), an international research data
infrastructure in Astronomy and Astrophysics. Starting with a brief discussion of some
general concepts, it introduces some of the major client programs like TOPCAT and Aladin,
together with some simple discovery protocols. A first focus topic is the query language
ADQL, which is treated within the equivalent of three lectures. The second major focus
of the course is the premier Python interface to the VO, pyVO, which is used to also more
deeply investigate the topics treated before. The course is complemented by a number of
side tracks, brief discussions of more fundamental or more specialised VO topics.

The course comes with many exercises, most of which also have solutions. We hope it is
suitable for both self-study and as lecture notes in teacher-led situations. In the latter case,
it is designed to work as a semester-long course with two hours of lectures and lab work
each per week.

Participants should have some basic knowledge of astronomy, and for the later parts of
the course basic skills in Python.

Contents

1 Introduction: What is the VO and why should you care? 3

2 Simple Protocols and their clients 7

1

3 TAP and ADQL 11

4 Interlude: HEALPix, MOC, HiPS 30

5 pyVO Basics 34

6 pyVO and TAP 40

7 Higher SAMP Magic 50

8 pyVO and the Registry 54

9 Datalink 57

10 At the Limit: VO-Wide TAP Queries 63

11 Odds and Ends 69
11.1 EPN-TAP . 69
11.2 Custom Parameters to Simple Services . 71
11.3 TAP Uploads: The right way . 73

12 Troubleshooting and FAQ 74
12.1 TOPCAT and Aladin are unreadably small on HiDPI screens? 75
12.2 TOPCAT TAP example stays gray? . 75

A Side Track: Terminology 75

B Side Track: Architecture 76

C Side Track: Standards 77

D Side Track: UCDs 80

E Side Track: Vocabularies 81

F Side Track: VOTable 84

G Side Track: IVOA Identifiers 89

H Solutions for Most of the Exercises 90

2

1 Introduction: What is the VO and why should you care?

The VO is. . .

1. not a website (“platform”),

2. not a bunch of websites,

3. not a program that does all things astronomy.

Instead. . .

The VO is. . .

Standards for finding, accessing, using, and describing data (more on which in a moment)

plus
∼ 50 data centers worldwide adhering to these standards (which includes almost all the major
players like ESO, NASA, ESA, etc)

plus

a few volunteers operating some ± central infrastructure (these are things like searchable Reg-
istry endpoints, our document repository, and the various bodies working on the standards)

plus

authors of client software, libraries, and web pages making these resources available to as-
tronomers and the public (newcomers might want to look at TOPCAT and Aladin on the desk-
top, pyVO and STIL as libraries, or ESA Sky or Aladin lite in the browser).

Numerically. . .

In numbers, the VO is:

1. ∼ 50 data centers in ∼ 20 countries

2. ∼ 3 × 104 data collections

3. hundreds of millions of data sets (spectra, images,. . .)

4. hundreds of billions of table rows

3

How do I use it?

While certain parts of the VO can be consumed from web browsers, you really want client
software that can talk to our APIs. Many astronomy programs can “interoperate” with the
VO and in that sense are such clients. But a minimal VO toolset would usually include:

• TOPCAT – does what you want with tables

• Aladin – interactive sky atlas

• pyVO – marrying the VO and astropy

Hint: All of them can be apt install-ed on modern Debian and derivatives. A notable absence
is clients for spectral analysis. Popular VO-enabled spectral clients include Splat and CASSIS,
which, however, are not Debian-packaged. You will find them from the IVOA Applications
page https://ivoa.net/astronomers/applications.html (but note that it is not complete).

Whetting your appetite: Demo time

Assume you want to look for candidates for gravitationally lensed compact objects. Opera-
tionally, that would be highly redshifted (and hence rather red) pointlike objects around com-
pact clusters of galaxies (which are good candidate for lenses)

Click it yourself: Using the VO in interactive clients You are of course not expected to
understand everything I do here at this point; but the plan is that when the course is over, you
can come up with something like this yourself. Let’s see.
Still, you should try to reproduce this now. This will help you sort out things as the course
goes on. Here are notes on how to do that:
Start TOPCAT; we are looking for a catalogue, hence open VO → TAP .
Our basic data is on clusters of galaxies; so, do a Registry search (in Keywords) for galaxy
cluster.
There is a table from heasarc called mcxc. Double click it, and on the pane opening then find
the table an inspect the metadata.

4

https://www.star.bris.ac.uk/mbt/topcat/
https://aladin.cds.unistra.fr/aladin.gml
https://github.com/astropy/pyvo
https://ivoa.net/astronomers/applications.html

To characterise the data, use a query like:

select

min(radius_500), max(radius_500),

min(lx_500), max(lx_500),

count(*)

from mcxc

Ah, there are just 1743 entries in total – we can easily pull the whole thing; control-click to
select the columns we want and then use the Cols button to insert the selected columns into a
query like this:

select dec, ra, redshift, radius_500, lx_500, name

from mcxc

Get reasonably luminous compact ones by plotting radius vs. luminosity and creating a blob
subset.
Choose the row subset you have just created in the main window.
Change to sdssdr16 on GAVO’s TAP service, click Examples → Upload Join ; choose columns,
widen the radius to 4 arcmin (whatever) and select only very red stuff:

SELECT

name,

db.dec, db.ra, u, z, photoz_z

FROM sdssdr16.main AS db

JOIN TAP_UPLOAD.t4 AS tc

ON 1=CONTAINS(POINT('ICRS', db.ra, db.dec),

CIRCLE('ICRS', tc.ra, tc.dec, 240./3600.))

WHERE u-z>6

Look at a table, do a sky plot, plot u vs. z (or whatever suits you).
To look at things, start Aladin. Back in TOPCAT, in Views → Activation Actions check
Send Sky Coordinates . Then click on objects that look interesting in the plot and inspect them
in the various surveys.
If bored with objects having plain morphologies, perhaps add

and psfmags[5]>petmags[5]+3

or something like that to fetch objects for which the PSF does not quite work.
Now suppose you have better criteria to figure out promising candidates, but you can only
write them in Python (rather than ADQL). Well: we’re talking to APIs, so switching to an
actual programming language is straightforward.
To reproduce, save your candidate table (the subset from mcxc) to candclus.vot.
Then, get glc.py) from the lecture notes PDF. Note how TAP URL and QUERY are directly
copied from our exploratory TOPCAT operation in the TAP part:

5

import pyvo
from astropy import table

def send_position_to(conn, ra, dec, client_name=None):
	"""sends ra, dec as the position to focus to a client (or does a broadcast
	for client None).

	This is only here as long as it's missing in pyvo.samp.
	"""
	message = {
		"samp.mtype": "coord.pointAt.sky",
		"samp.params": {
			"ra": str(ra),
			"dec": str(dec),
		}}
	if client_name is None:
		conn.notify_all(message)
	else:
		client_id = find_client_id(conn, client_name)
		conn.notify(client_id, message)

TAP_URL = "http://dc.zah.uni-heidelberg.de/tap"
QUERY = """
SELECT
name,
db.ra, db.dec, u, z, photoz_z,
	petrads, petmags
 FROM sdssdr16.main AS db
 JOIN TAP_UPLOAD.t3 AS tc
 ON 1=CONTAINS(POINT('ICRS', db.ra, db.dec),
 CIRCLE('ICRS', tc.ra, tc.dec, 240./3600.))
WHERE u-z>6
"""

svc = pyvo.dal.TAPService(TAP_URL)
objs = svc.run_sync(QUERY,
	uploads={"t3": table.Table.read("candclus.vot")}).to_table()

Here's where you put in your own logic. Which isn't very logical here.
def argmax(s):
	return s.index(max(s))

with pyvo.samp.connection() as conn:
	for o in objs:
		pr = o["petrads"]
		if (sum(pr)>40 and min(pr)*6<max(pr)
				and argmax(list(o["petmags"]))==1):
			print(f"Showing a candidate around {o['name']}")
			send_position_to(conn, o["ra"], o["dec"])
			input()

A first taste of VO-enabled Python

import pyvo

from astropy import table

TAP_URL = "http://dc.zah.uni-heidelberg.de/tap"

QUERY = """

SELECT

name, db.ra, db.dec, u, z,

photoz_z, petrads, petmags

FROM sdssdr16.main AS db

JOIN TAP_UPLOAD.t3 AS tc

ON 1=CONTAINS(POINT('ICRS', db.ra, db.dec),

CIRCLE('ICRS', tc.ra, tc.dec, 240./3600.))

WHERE u-z>6

"""

svc = pyvo.dal.TAPService(TAP_URL)

objs = svc.run_sync(QUERY,

uploads={"t3": table.Table.read("candclus.vot")}).to_table()

The rest of the program does some lame filtering and then broadcasts the positions one by one
via SAMP:

with pyvo.samp.connection() as conn:

for o in objs:

pr = o["petrads"]

if (sum(pr)>40 and min(pr)*6<max(pr)

and argmax(list(o["petmags"]))==1):

print(f"Showing a candidate around {o['name']}")

send_position_to(conn, o["ra"], o["dec"])

input()

By the way, if you open the Cone Search dialog in TOPCAT, you will see it reflects the position
your program has broadcast, too. Which may come in handy one of these days.

Exercise 1
Follow the “Whetting your appetite” demo from the lecture notes until you have the
radius-luminosity plot for mcxc.
Now try the same thing for the eingalclus; when constructing the new query, you will
have to change the columns to select and the table name.
Do the plots look similar? Use a plausible cross match (Pair Match in TOPCAT’s Joins
menu) to pair plausible clusters and plot radius and luminosity from the two catalogues
against each other.

Exercise 2
Continuing the last exercise, do the next steps for the mcxc example from the lecture
notes until you can see the suspicious red objects. Take care that you do not lose track of
which table you have selected at any time and make sure you adapt the table index in
TAP_UPLOAD.t4 to the index of your mcxc table. Can you find interesting objects? And can
you think of ways to reduce the contamination with odd artefacts?

6

2 Simple Protocols and their clients

Simple VO protocols

The basic/simple VO-protocols are

• the Simple Cone Search (SCS) for table data

• the Simple Image Access (SIA) for images

• the Simple Spectral Access (SSA) for spectra

• the Simple Application Messaging Protocol (SAMP) for interoperability between soft-
ware

Neither simple nor a protocol, but crucial and omnipresent:

• the VO Registry

With the exception of SAMP, the simple protocols define “typed” interfaces to give users a
common way to query one collection of a specific kind of data. “Simple” means that it is fairly
easy to write queries, but these are not very elaborate. Also each service just queries its own
data collection; joins between different collections (“cross matches”) are not possible on the
server side.
More elaborate ways for quering data collections will be discussed in the next chapter where
you will learn about TAP/ADQL.
Each of the simple protocols not only defines an interface for parameters, but also the technical
communication protocol used to transmit the query and receive the result. In technical terms:
the query must be an HTTP GET request, and the result must be a VOTable. The good news
is: you do not need to know the details about how that works to use it in your client software.
Hence, the learning curve here is not too steep.
In the following, we are looking into the simple protocols.

Simple Cone Search (SCS)

The SCS provides a data selection on table data based on the parameters of a position (RA,
DEC) and a search radius (SR) in degrees around it.
Clients: Topcat, STILTS, pyVO, curl, the web browser of your liking, and more.
Let’s get straight into an example for how to use SCS. We will take the use case of identifying
members of an open star cluster by their proper motions, and will check this selection by
plotting an colour-magnitude diagram of our cluster candidates.
If our idenfication method by proper motion is accurate, we can should see a narrow main
sequence in the colour-magnitude diagram even if we do not account for the distance of the
objects. Our steps here will be

1. Find a catalogue that provides proper motions and colours

2. Perform a query on that catalogue around a given position

3. Make a selection using a proper motion plot

7

4. Plot an colour-magnitude diagram

Start TOPCAT. We are looking for a specific catalogue provided by the GAVO data center.
Open VO → Cone Search . In the new opening Window under Keywords type hsoy. Note: at
this time, we do not provide an introduction to Data discovery, so we just assume somebody
told you about his catalogue, or you saw it mentioned in a paper (in fact, Vizier is providing
VO-services too.). Then click on Find Services. And yes, these days you would use the Gaia
catalogue for what we are about to do; but since the discovery of HSOY is trivial, it’s ideal for
this example.
Thus we performed a query on the VO Registry. The Registry is where all VO services come
together and register the metadata on their data, like coverages in space, time or wavelength.
For now it is ok if you know that the Registry is the usual VO entry point, and that you can
search for data on VO services using keywords. In that sense, you can think of it as Google of
astronomical data (except for Google’s snooping, which we don’t do).
As a result of our search for HSOY we see three results, one of the GAVO service, and two at
Vizier. At this point we ignore the result for Vizier und select the GAVO service. Just click on
it in the list. You will see that below this list, a few pieces of information about the selected
service are updated.
In the query window below, at Object Name type pleiades and click on resolve. With this we
used the name resolving service Sesame which is hosted by the CDS in Strasbourg. Using this,
TOPCAT can fill out the position in the form.
Now all we need to fill in is the Radius of 1.5 degrees. Click on OK to start the query.
When TOPCAT loads the table in its table plane, this has been a successful SCS query. Easy,
no?
To identify the Pleiades members by their proper motion, we make use of Topcat’s plotting
features: go to Graphics → Plane Plot . On the X-Axis we select pmRA, and on the Y-Axis
we select pmDE. You may notice two regions of overdensity. The bigger one is around (0,0)
and simply shows the more distant stars in our selection (remember: the SCS did not select for
distance). But there is also a smaller population visible, which we now will select as our subset
of pleiades candidates.
Go to Subsets → Draw Blob Subset . This will activate the manual subset tool, which lets you
draw a blob over the subset of data records you are interested in. To draw, simply hold your
left mouse button. When finished, click on the same menu button as before. A small window
will open, which will ask you to name the subset. Give the subset a meaningful name like
“candidates”, so you can easily indentify it later.
Now it’s time to check if our candidates are an accurate sample. For this we look at the colour-
magnitude diagram of our candidates. Luckily the HSOY catalogue provides us with colors
from the 2MASS survey, and also with a magnitude from the Gaia catalogue (of course we
are cheating here, not only because we knew which catalogue to select beforehand, but also
because we were involved in computing and publishing it). Open another plane plot window.
At X-Axis now type Jmag-kmag, and at Y-Axis type phot g mean mag. Eventually we need to
click on Axies and tick Y-flip, because we are plotting magnitudes.
The resulting plot does not look like a main sequence at all, but you may notice, that we are
looking at all objects from the cone selection, so this is no surprise. To only see our candidates
subset, look below the plot and go to Subsets and tick candidates. The subset will now be
highlighted in the plot in a different color, and looks much like a main sequence.
Keep the data in TOPCAT, we will need it later.

8

Exercise 3
Follow the instructions in the SCS chapter (use the lecture notes) to get familiar with
SCS and topcat.

1. Try to repeat the exercise using a Gaia catalogue instead of the HSOY. Caveat: the
Gaia catalogue provides colours and magnitudes. Try to use the metadata of the
table to figure out the names of the columns for brightness, and blue and red
colours. Another good hint to not get lost in the column metadata is to search for
“Gaia lite”.
In case you get stuck, you can also have a peek at:
https://www.g-vo.org/tutorials/pleiades.pdf

2. Try to repeat the steps with the beehive cluster (“Praesepe”)

Simple Image Access (SIA)

SIA services work similar to SCS services but for image access. The resulting VOTables are
lists of metadata on images on a specific service matching the query parameters, thus enabling
users to make decisions on which images to download.
Clients: Aladin, pyVO, curl, the web browser of your liking, and more.
Again, let’s see how SIA Services work with an example: Open Aladin and wait a few seconds
until it builds it data tree on the left side of the window.
What happens here in the background are two queries: the first is for the CDS Service and
hosted images and catalogues on their side. These data collections will be shown in yellow in
the tree. All other services will be shown in blue. Below the tree you can see the query fields,
which we will use in a bit. In the middle you see the view field, and on the right is the stack.
These different fields are actually easy to understand: on the left is remote data discovery, on
the right is local data handling and in the middle is where the science happens.
The middle seems very empty, so let’s fill it with someting: simply click on DSS . Now at
command above the view, type pleiades and press enter. The viewer will now jump to the ac-
cording position, and you can have a look at the pleiades by zooming in and out, or paning the
view around. Note that when zooming Aladin will change the resolution of the images. This
happens thanks to the VO standard HiPS, which we will briefly meet again in the HEALPix
interlude 4.
You may notice that some of the services in the data tree changed colors from green to orange
or vice versa. This is a very helpful feature in Aladin enabled thanks to services publishing
their coverage: Aladin can know whether a service provides data for the current field of view.
Services which do will be shown in green. Here is another VO standard doing its magic in the
background: MOCs, which will also be covered (pun intended) later on.
Let’s see if the GAVO service provides any data in the proximity of the Pleiades. Below the data
tree at select, type HDAP, which is the Heidelberg Digitized Astronomical Plates collections
from Landessternwarte. Click on it once, and in the small window tick in view, and click
Load. After a few seconds you will see a list appear below the view. This list is the VOtable
containing meta data on the images of the LSW collection in the field of view.
Use the mouse to hover over the list and you will see squares pop up in the view: these are
the areas covered by the corresponding image. Search the list until you find an image that is
covering quite a bit of the pleiades, then simple click on that line. It may take some time for
the image to download. Once the download is finished, the view will change to the image.

9

https://www.g-vo.org/tutorials/pleiades.pdf

Aladin has a neat feature which we will now use: the multiview, which you find directly below
the view. Select the view with four windows, which we will fill with different surveys. Just
click on an empty window, and then in the survey selector click on the surveyes DSS, 2MASS,
and PANSTARRS. You should now see something like the figure below.

Exercise 4
Use Aladin’s viewer to study the object X Persei in different wavelengths. Get familiar
how to select a survey and also make use of the data tree.
Hint: try the XMM survey. Try to guess what kind of object you are looking at. How
could you confirm your hypothesis? (Well, of course there is Wikipedia, but what if you
wanted to keep it in the VO family?)

Simple Spectral Access Protocol (SSA)

SSA works very similar to SIA. The result of a SSA query is a VOTable with spectra matching
the query parameters. Users can then select which spectra to actually download.
Clients: SPLAT-VO, CASSIS, curl, the web browser of your liking, and more.

Simple Application Messaging Protocol (SAMP)

SAMP is a bit of the magic in the VO. It is designed so that VO clients can interopate and
communicate whith each other. Thus users really can select client software of their choice and
make them interact with their own scripts.

10

Clients: almost all of them. It’s fun. In the pyVO part of this course you will learn how to write
your own SAMP clients.
In order to work, SAMP needs a running SAMP hub, to which each client connects and iden-
tifies which messages it will accept. The hub then organises the communication between the
different clients. At the core of this interoperability of course is the VOTable standard.
Using SAMP is really simple. At this point we return to the main window of TOPCAT and
tick the table with the Pleiades candidates. In the right window under Row Subset we select
our defined subset candidates. Then we go to Interop → Send Table to → Aladin . Then we
switch to the Aladin window and now can see a new data plane in the stack, and also the data
points are plotted on the images in our four view windows.

HTTP and clients of your choice

The Hyper Text Transfer Protocol HTTP is the transport protocol of choice in the VO. It is open,
robust, and well tested on 108 of servers and 1010 client devices with thousands of packages
speaking it (often called web browsers).
The elegance of using a HTTP request really lies in the easy way to write such requests. For
instance, for SCS, it is always

http://<server>/<local-path>?<base-query>,

where <base-query> must contain RA, DEC and SR. Try it in your favourite browser:
http://dc.zah.uni-heidelberg.de/ppmxl/q/cone/scs.xml?RA=56.601&DEC=24.114&SR=1.5
Of course you are not limited to a web browser. For an easy start can use curl:

curl -o pleiades.vot

'http://dc.zah.uni-heidelberg.de/ppmxl/q/cone/scs.xml?RA=56.601&DEC=24.114&SR=1.5'

Before you start writing your own simple VO clients, though, we strongly suggest to look out
what is out there already.
Later in this course you will learn how to use these protocols in Python using the pyVO library,
which also helps you handling the resulting VOTable. Many VO clients are published as Free
software, so you can easily reuse code written in your prefered language. If in doubt, contact
us or other people from within the VO community. In general people are happy (and proud)
if you use their code, and maybe you even can contribute to it!
Of course there is a bit more to say about the simple protocols, and there are even more pa-
rameters you can use for a query. We skip this here, because they are mainly interesting for
people writing the clients and libraries. As long as you are a user, you would probably use
them through menus or function calls (“APIs”).

3 TAP and ADQL

A First Query

To follow the examples, start TOPCAT and select TAP in the VO menu.
At Keywords, type gavo. Wait until the results are filtered and select the entry GAVO DC TAP.
Then click Use Service.

11

http://dc.zah.uni-heidelberg.de/ppmxl/q/cone/scs.xml?RA=56.601&DEC=24.114&SR=1.5

You already made use of the VOs Google-like service: the Registry. A rough introduction of the
registry how you can use it for data discovery will be explained in chapter “Data Discovery”.
In the query pane, enter:

SELECT TOP 1 1+1 AS result FROM ivoa.obscore

and then click “Ok”. This should give you a table with a single 2 in it. If that hasn’t worked
complain.
Note that in the top part of the dialog there is metadata on the tables exposed by the service (in
particular, the names of the tables and the descriptions, units, etc., of the columns). Use that
when you construct queries later.
There are other TAP clients than TOPCAT – after all, we’re talking about a standard protocol.
Another TAP client widely used is Aladin.
You can also use TAPHandle, which runs entirely in your browser.
For running a TAP client in scripts there is STILTS or PyVO
More TAP clients can be found on the IVOA applications page.
You can also use TAP from Python. A lot more on this later. If you are curious now, see an

ipython notebook explaining the basics.

Why SQL?

The SELECT statement is written in ADQL, a dialect of SQL (“sequel”). Such queries make up
quite a bit of the science within the VO.
SQL has been chosen as a base because

• Solid theory behind it (relational algebra)

• Lots of high-quality engines available

• Not Turing-complete, i.e., automated reasoning on “programs” is not very hard

Relational Algebra

At the basis of relational data bases is the relational algebra, an algebra on sets of tuples (“re-
lations”) plus six operators:

• unary select – select tuples matching to some condition

• unary project – make a set of sub-tuples of all tuples (i.e., have less columns)

• unary rename – change the name of a relation (this is a rather technical operation)

• binary cartesian product – the usual cartesian product, except that the tuples are concate-
nated rather than just put into a pair; this, of course, is not usually actually computed
but rather used as a formal step.

• binary union – simple union of sets. This is only defined for “compatible” relations; the
technical points don’t matter here

• binary set difference as for union; you could have used intersection and complementing
as well, but complementing is harder to specify in the context of relational algebra

12

{
 "cells": [
 {
 "cell_type": "markdown",
 "id": "compatible-thickness",
 "metadata": {},
 "source": [
 "This notebook briefly introduces you into doing TAP/ADQL queries interactively using the pyVO package (on Debian-derived systems, do ``apt install python3-pyvo``; otherwise, see http://pypi.org/project/pyvo).\n",
 "\n",
 "Note that for this sort of interactive use, most people prefer TOPCAT (Debian: topcat; otherwise http://www.star.bris.ac.uk/~mbt/topcat)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "inner-highway",
 "metadata": {},
 "outputs": [],
 "source": [
 "import pyvo\n",
 "# Also, shut up a few overzealous warnings\n",
 "import warnings\n",
 "warnings.filterwarnings('ignore', module=\"astropy.io.votable.*\")\n",
 "warnings.filterwarnings('ignore', module=\"pyvo.utils.xml.elements\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "intensive-performance",
 "metadata": {},
 "source": [
 "You typcially first have to discover a TAP service, perhaps based on names (blind discovery, finding tables by topic or coverage, is left as an exercise to the reader; see https://pyvo.readthedocs.io/en/latest/registry for inspration)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "demonstrated-groove",
 "metadata": {},
 "outputs": [],
 "source": [
 "svcs = pyvo.registry.search(servicetype=\"tap\", keywords=\"rave\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "floral-translator",
 "metadata": {},
 "source": [
 "You can now browse the various services matching your constraints."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "dynamic-solomon",
 "metadata": {},
 "outputs": [],
 "source": [
 "svcs.to_table().show_in_notebook()"
]
 },
 {
 "cell_type": "markdown",
 "id": "assigned-activation",
 "metadata": {},
 "source": [
 "Pick one of them by index of short name:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "tested-button",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc = svcs[\"GAVO DC TAP\"].get_service()"
]
 },
 {
 "cell_type": "markdown",
 "id": "convertible-training",
 "metadata": {},
 "source": [
 "Equivalently, if you have the TAP access URL right away, you can directly construct a TAP service like this:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "prompt-camera",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc = pyvo.dal.TAPService(\"http://dc.g-vo.org/tap\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "executive-button",
 "metadata": {},
 "source": [
 "Once you have such a service, you can see what tables are on it:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "adaptive-balloon",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc.tables.describe()"
]
 },
 {
 "cell_type": "markdown",
 "id": "expensive-skirt",
 "metadata": {},
 "source": [
 "...and then inspect the columns of each table:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "desperate-peninsula",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc.tables[\"rave.main\"].columns[:10]"
]
 },
 {
 "cell_type": "markdown",
 "id": "greatest-nature",
 "metadata": {},
 "source": [
 "Based on this, you can now run your queries:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "included-trading",
 "metadata": {},
 "outputs": [],
 "source": [
 "res = svc.run_sync(\"SELECT TOP 5 raveid, raj2000, dej2000, rv FROM rave.main\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "junior-purple",
 "metadata": {},
 "source": [
 "The results's to_table method returns a normal astropy table:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "decimal-soldier",
 "metadata": {},
 "outputs": [],
 "source": [
 "res.to_table().show_in_notebook()"
]
 },
 {
 "cell_type": "markdown",
 "id": "stylish-virgin",
 "metadata": {},
 "source": [
 "For longer-running jobs, you can also run async jobs:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "educational-light",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc.run_async(\"SELECT TOP 5 raveid, raj2000, dej2000, rv FROM rave.main\"\n",
 ").to_table().show_in_notebook()"
]
 },
 {
 "cell_type": "markdown",
 "id": "precious-rotation",
 "metadata": {},
 "source": [
 "Finally, the examples you see in TOPCAT are also available in pyVO, although for browsing you will probably want to go to the service's examples endpoint:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "affiliated-particle",
 "metadata": {},
 "outputs": [],
 "source": [
 "import webbrowser, pprint\n",
 "webbrowser.open(svc.baseurl+\"/examples\")\n",
 "pprint.pprint(svc.examples[:3])"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "dynamic-spice",
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.9.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

http://aladin.u-strasbg.fr/
http://saada.u-strasbg.fr/taphandle/
http://www.star.bris.ac.uk/~mbt/stilts/
http://pyvo.readthedocs.io/en/latest/index.html
http://www.ivoa.net/astronomers/applications.html

Good News: You don’t need to know any of this. But it’s reassuring to know that there is a
solid theory behind all of this.

SELECT for real

ADQL defines only one statement, the SELECT statement, which lets you write down expres-
sions of relational algebra. Roughly, it looks like this:
SELECT [TOP setLimit] selectList FROM fromClause
[WHERE conditions] [GROUP BY columns] [ORDER BY columns]
In reality, there are yet a few more things you can write, but what’s shown covers most things
you’ll want to do. The real magic is in selectList, fromClause (in particular), and conditions.

TOP

setLimit: an integer giving how many rows you want returned.

SELECT TOP 5 * FROM rave.main

SELECT TOP 10 * FROM rave.main

SELECT: ORDER BY

ORDER BY takes columns: a list of column names (or expressions), and you can add ASC (the
default) or DESC (descending order):

SELECT TOP 5 *

FROM rave.main

ORDER BY rv

SELECT TOP 5 *

FROM rave.main

ORDER BY rv DESC

SELECT TOP 5 *

FROM rave.main

ORDER BY fiber number, rv

Note that SELECT * (pulling all columns) is usually wasteful and you should do better from the
next slide on.
Also note that ordering is outside of the relational model.
That sometimes matters because it may mess up query planning (a rearrangement of relational
expressions done by the database engine to make them run faster); also, of course ordering has
to look at everything in a table, which is a sure way to make things slow. So: if you use ORDER,
make sure it is actually necessary and that you do it at the latest possible moment (i.e., when
the result set hopefully already is small).
On the other hand, looking at extreme values is a good way to find odd, presumably bad cases.
I severely doubt that RVs of 1000 km/s actually correspond to any physical reality for the sort
of object RAVE looked at.

Exercise 5
Select the (rows of) the 20 brightest stars in the table fk6.part1.

13

SELECT: what?

The select list has column names or expressions involving columns.
SQL expressions are not very different from those of other programming languages.

SELECT TOP 10

POWER(10, phot_g_mean_mag) AS rel_flux,

SQRT(POWER(ra_error, 2)+POWER(dec_error, 2)) AS errTot

FROM gaia.dr3lite

The value literals are as usual:

• Only decimal integers are supported (no hex or such)

• Floating point values are written like 4.5e-8

• Strings use single quotes (’abc’). Double quotes mean something completely different
for ADQL (they are “delimited identifiers”, which we will briefly revisit below).

The usual arithmetic, comparison, and logical operators work as expected:

• +, −, *, /; as in C, there is no power operator in ADQL. Use the POWER function instead.

• = (not ==), <, >, <=, >=

• AND, OR, NOT

• String concatenation is done using the || operator. Strings also support LIKE that sup-
ports patterns. % is “zero or more arbitrary characters”, “exactly one arbitrary charac-
ter” (like * and ? in shell patterns).

Here is a list of ADQL functions:

• Trigonometric functions, arguments/results in rad: ACOS, ASIN, ATAN, ATAN2, COS, SIN,
TAN; atan2(y, x) returns the inverse tangent in the right quadrant and thus avoids the
degeneracy of atan(y/x).

• Exponentiation and logarithms: EXP, LOG (natural logarithm), LOG10

• Truncating and rounding: FLOOR(x) (largest integer smaller than x), CEILING(x) (small-
est integer larger than x), ROUND(x) (commercial rounding to the next integer), ROUND(x,
n) (like the one-argument round, but round to n decimal places), TRUNCATE(x), TRUNCATE(x,n)
(like ROUND, but discard unwanted digits).

• Angle conversion: DEGREES(rads), RADIANS(degs) (turn radians to degrees and vice
versa)

• Random numbers: RAND() (return a random number between 0 and 1), RAND(seed) (as
without arguments, but seed the the random number generator with an integer)

• Operator-like functions: MOD(x,y) (the remainder of x/y, i.e., x%y in C), POWER(x,y)

• SQRT(x) (shortcut for POWER(x, 0.5))

• Misc: ABS(x) (absolute value), PI()

14

Note that all names in SQL (column names, table names, reserved words, etc) are case-insensitive
(i.e., VAR and var denote the same thing). You can force case-sensitivity (and use SQL reserved
words as identifiers) by putting the identifiers in double quotes. These are the delimited iden-
tifiers mentioned above, and they are a constant source of trouble. Only use double quotes
if the data providers force you to because they chose flamboyant names (VizieR, regrettably,
did). If you publish data yourself, just use C identifiers for your column names; the full rules
for how delimited identifiers interact with normal ones are difficult and confusing.
Also note how I used AS to rename a column. You can use the names assigned in this way in,
e.g., ORDER BY:

SELECT TOP 10

gaia_edr3_id,

SQRT(POWER(pmra, 2)+POWER(pmra, 2)) AS pmTot

FROM cns5.main

ORDER BY pmTot

Don’t do that on large catalogues without a very good reason – even with the TOP 10, the
database will have to compute pmTots for all items in the table and then sort by that, which
will take a long time with, for instance, Gaia DR3’s 1.8 billion rows.
To select all columns, use *

SELECT TOP 10 * FROM rave.main

In general, try to only select the columns you actually need; there is no point retrieving a hun-
dered columns when five would do, and carrying all these superfluous columns around has a
very real cost in terms of ease-of-use and resources (in particular when it comes to uploads).
TOPCAT makes picking the columns really easy: Control-click the columns you want in the
Columns tab, and then use the “Cols” button above the the query input to insert their names.
Use COUNT(*) to figure out how many items there are.

SELECT count(*) AS numEntries FROM rave.main

COUNT is what’s called an aggregate function in SQL: A function taking a set of values and re-
turning a single value. The other aggregate functions in ADQL are (all these take an expression
as argument; count is special with its asterisk):

• MAX, MIN

• SUM

• AVG (arithmetic mean)

Note that on most services, COUNT(*) is an expensive operation. If you just want to get an es-
timate of how many rows a table has, on many services a peek into the Table pane in TOPCAT
when you have selected a table will tell you.

Exercise 6
Select the absolute magnitude and the common name for the 20 stars with the greatest
visual magnitude in the table fk6.part1 (in case you don’t remember: The absolute
magnitude is M = 5 + 5 log π + m with the parallax in arcsec π and the apparent
magnitude m (check the units!).

15

SELECT: WHERE clause

Behind the WHERE is a logical expression; these are similar to other languages as well, with
boolean operators AND, OR, and NOT. To find bright stars (apparently) moving quickly towards
or from us:

SELECT raveid FROM rave.main

WHERE

jmag<10

AND ABS(rv)>100

Exercise 7
As before, select the absolute magnitude and the common name for the 20 stars with the
greatest visual magnitude, but this time from the table fk6.fk6join. This will fail for
reasons that should tell you something about the value of Bayesian statistics. Make the
query work.

Missing Data: NULLs

SQL has an explicit concept of missing data: The magic value NULL. It has some interesting
properties:

SELECT count(*) FROM tap_schema.tables WHERE NULL=NULL

returns 0. So does

SELECT count(*) FROM tap_schema.tables WHERE NULL!=NULL

All comparisons with NULLs are false, which turns out to be the least horrible thing in the
presence of NULLs.
To select rows for which a given piece of data is or is not NULL use the special construct
IS (NOT) NULL.
Explicit NULL values are an important feature, because it is extemely common that tables in
astronomy contain unknown values. Just think of protometry near the detection limit: An
object that is detectable in one band might be too faint in another.
In the FORTRAN age, people put in sentinel values like -9999 in such cases, but that is a dan-
gerous practice: if you forget about checking for them, these might enter actual calculations.
Consider an average: it will be possibly dramatically wrong, but when you notice that, it may
very well be far too late.
A related concept is the NaN (not a number) from IEEE floating point numbers. In VOTables,
somewhat regrettably, there is no difference between NULLs and NaNs; libraries will turn
NaNs into NULLs where possible (in Python, using masked arrays or Python’s own NULL
value, None).
There are semantic differences, though, which you will notice as long as you do ADQL queries,
where NULL and NaN are different (although data providers should generally avoid ingesting
NaNs). As an example, when you take the average of a column, a NaN in just a single row will
make the entire average NaN. Against that, rows that have NULLs will simply be ignored for
computing the average. But as for NULL, NaN ̸= NaN holds.

Exercise 8
How many objects in the Fifth Catalogue of Nearby Stars (cns5.main on the GAVO TAP
server) are missing a radial velocity?

16

SELECT: Grouping

For histogram-like functionality, you can compute factor sets, i.e., subsets that have identical
values for one or more columns, and you can compute aggregate functions for them.

SELECT

COUNT(*) AS n,

ROUND(mv) AS bin,

AVG(color) AS colav

FROM dmubin.main

GROUP BY bin

ORDER BY bin

Note how the aggregate functions interact with grouping (they compute values for each group).
Also note the renaming using AS. You can do that for columns (so your expressions are more
compact) as well as for tables (this becomes handy with joins).
To just figure out the domain of columns, there is a shortcut: DISTINCT.

Exercise 9
Get the averages for the total proper motion from lspm.main in bins of one mag in Jmag
each. Let the output table contain the number of objects in each bin, too.

SELECT: Grouping by HEALPix

If you want to characterise some property over the sky, HEALPixes are your friend.
These are mathematical miracles: a tesselation of the sky with pixels of equal area. No more
headaches at the poles! ADQL as such does not know about these, but a widely implemented
extension function does: ivo_healpix_index.
While for large catalogues, such queries will have long runtimes, because they will always
scan the whole table, you can try it for smallish catalogues even in a course situation.
To find out more about HEALPix, see corresponding interlude 4.
A common operation is trying some statistical qualification over the entire sky or a significant
part of it. Since healpixes have equal areas and are well-beheaved at the poles and across the
stitching line of a spherical coordinate system, they are particularly well suited for work like
this. An introduction to this with sample queries is given on a poster by Mark Taylor. Not all
services support the necessary functions (in TOPCAT, you can check in the “service” tab).

SELECT ivo_healpix_index(5, raj2000, dej2000) AS bin,

COUNT(*) AS n,

AVG(rv) AS meanrv,

MAX(rv)-avg(rv) AS updev,

AVG(rv)-min(rv) AS lowdev

FROM rave.main

WHERE e_rv<20

GROUP BY bin

HAVING COUNT(*)>5

Plot this in TOPCAT using the sky plot, see Layers / Add Healpix Control .
Use bin as HEALPix index, set the healpix level to 5, and the select what you want to see
plotted. As annotation for healpix columns improves, plotting these things should involve
less manual work.

17

http://www.star.bris.ac.uk/~mbt/papers/adassXXVI-P1-31-poster.pdf

Exercise 10
Make an all-sky plot of the number of objects and their average effective temperature in
HEALPixes of level 5 of the catalogue rave.main. Hint: In the server-provided
Examples on the GAVO server, there is an example “Make a HEALPix Map of
something” (in Local UDFs ; if you don’t see it, update your TOPCAT). Start from there.
Can you understand the structures that you see?

ADQL User Defined Functions

ivo_healpix_index is an example of an ADQL extension mechanism: Operators can add UDFs.
The purpose of this is to not overload ADQL with features that may only be relevant for a
limited selection of services or even impossible with certain kinds of backends. In the exam-
ple, to implement the HEALPix index computation, the database engine has to know about
HEALPixes in the first place, which generally requires rather elaborate extensions. These may
be entirely irrelevant for services that do not have have data in spherical coordinates.
See TOPCAT’s ADQL TAP for the UDFs available on a service:

In older TOPCAT’s you will find a less elaborate listing of these functions in the Service tab.
UDFs prefixed with ivo_ play a special role: These are guaranteed to have a common syntax
and semantics across services – if they are available, that is. Read more about them in the
(occasionally updated) Catalogue of User Defined Functions (Campillo and Demleitner, 2023).

SELECT: JOIN USING

The brainiest point in ADQL is the FROM clause. So far, we had a single table. Things get
interesting when you add more tables: JOIN.

SELECT TOP 10 lat, long, flux

FROM lightmeter.measurements

JOIN lightmeter.stations

USING (stationid)

Check the tables in the Table Metadata shown by TOPCAT: flux is from measurements, lat and
long from stations; both tables have a stationid column.

18

JOINing is Selecting from the Cartesian Product

JOIN is a combination of cartesian product and a select.

measurements JOIN stations USING (stationid)

yields the cartesian product of the measurement and stations tables but only retains the rows
in which the stationid columns in both tables agree.
Note that while the stationid column we’re joining on is in both tables but only occurs once in
the joined table.
To understand the way joins work, consider the following simplified example, where we have
two sets, A and B. Like database tables, they consist of tuples, and we will join them on the
second column of A and the first column of B.
So, we first compute the cartesian product (which has six elements in this case). We will,
however, only retain the rows in the result that have identical elements in the join column
(highlighted here in red). That yields the rows marked in green – well, except that only one
copy of the joined column is retained in a database; anything else would be a pointless waste
of resources.

A = {(a, 1), (b, 2), (b, 3)}
B = {(1, u), (2, v)}
A × B =

(a, 1, 1, u)

(a, 1, 2, v)

(b, 2, 1, u)

(b, 2, 2, v)

(b, 3, 1, u)

(b, 3, 2, v)

SELECT: JOIN ON

If your join criteria are more complex than simple equality, you can join ON.

SELECT dateobs as lswdate, t min as appdate

FROM lsw.plates AS a

LEFT OUTER JOIN applause.main AS b

ON (dateobs BETWEEN t min AND t max)

WHERE dateobs BETWEEN 36050 and 36100

This particular query compares two archives of scanned plates, lsw.plates (from the K”onigstuhl
observatories) and applause.main (from various other German observatories) and sees if lsw.plate’s
observation date (dateobs) is within the exposure time of the other’s (which is between t min
and t max).
The LEFT OUTER JOIN makes it so that every match on the lsw.plates side is retained. Where
there is a simultaneous observation in Applause, the second column will have its MJD. Where
there is no match, that second column will be NULL.
Of course, I have picked a WHERE clause for didactic reasons. If you drop it, you will get a
large table with only very few matches in between (and you may need to go async; see below).

19

Flavours of JOIN

There are various kinds of joins, depending on what elements of the cartesian product are
being retained in the presence of missing data (NULL).
First note that in a normal join, rows from either table that have no “match” in the other table
get dropped. Since that’s not always what you want, there are join variants that let you keep
certain rows. In short (you’ll probably have to read up on this):

• t1 INNER JOIN t2 (INNER is the default and is usually omitted): Keep all elements in the
cartesian product that satisfy the join condition.

• t1 LEFT OUTER JOIN t2: as INNER, but in addition for all rows of t1 that would vanish in
the result (i.e., that have no match in t2) add a result row consisting of the row in t1 with
NULL values where the row from t2 would be.

• t1 RIGHT OUTER JOIN t2: as LEFT OUTER, but this time all rows from t2 are retained.

• t1 FULL OUTER JOIN t2: as LEFT OUTER and RIGHT OUTER performed in sequence.

Geometries

The main extension of ADQL wrt SQL is addition of geometric functions. Unfortunately, these
were not particularly well designed, but if you don’t expect too much, they’ll do their job.

SELECT TOP 500 rv, e rv, p.radial velocity,

p.ra, p.dec, p.pmra, p.pmdec

FROM gaia.dr3lite AS p

JOIN rave.main AS rave

ON 1=CONTAINS(

POINT(p.ra, p.dec),

CIRCLE(rave.raj2000, rave.dej2000, 1.5/3600.))

For historical reasons some geometrical functions accept an optional string value as the first
argument e.g.
POINT(’ICRS’,p.raj2000,p.dej2000)

As of ADQL 2.1 this option is marked as deprecated. Many services still only support ADQL
2.0 and hence require this argument.
There are more geometry functions defined in ADQL:
AREA, BOX, CENTROID, CIRCLE, CONTAINS, COORD1, COORD2, COORDSYS, DISTANCE, INTERSECTS,

POINT, POLYGON

Exercise 11
Look at the documentation of the ivo_epoch_prop_pos UDF (refer back to the UDF slide if
necessary). Can you figure out how to propagate (i.e., apply the proper motions to
compute positions in the future) the CNS5 to the year 2150? The positions in the CNS5
are (somewhat unusally) given for what is in the column epoch.
What’s the RA of Sirius you determine in this way? And why will this be probably a
rather poor guess?

20

Exercise 12
Compare the radial velocities given by the rave.main and arihip.main catalogues,
together with the respective identifiers (hipno for arihip, raveid for rave). Use the
POINT and CIRCLE functions to perform this positional crossmatch with, say, a couple
of arcsecs.

DISTANCE

ADQL has a DISTANCE function to compute the spherical distance between two points:

DISTANCE(lon1, lat1, lon2, lat2)

You can also use distance with the POINT geometry, like this:
DISTANCE(POINT (lon1, lat1), POINT (lon2, lat2))

– but this probably only makes sense if you have native POINT-s in a table.
The DISTANCE function can be used to make cone selections and is the prefered way to perform
crossmatches on sky positions in ADQL 2.1.

SELECT TOP 1000

raj2000, dej2000, parallax

FROM arihip.main

WHERE

DISTANCE(raj2000, dej2000,

189.2, 62.21) < 10

Note that there are still many TAP services out there that do not support DISTANCE or become
very slow when you use it. You can always fall back to the CONTAINS/CIRCLE pattern
introduced above in such cases.

Subqueries

One of the more powerful features of SQL is that you can have subqueries instead of tables
within FROM. Just put them in parentheses and give them a name using AS. This is particu-
larly convenient when you first want to try some query on a subset of a big table:

SELECT COUNT(*) AS n, ROUND((u-z)*2) AS bin

FROM (

SELECT TOP 4000 * FROM sdssdr16.main) AS q

GROUP BY bin ORDER BY bin

Another use of subqueries is in the connection with EXISTS, which is an operator on queries
that’s true when a query result is not empty.
Beware – people coming from other languages have a tendency to use EXISTS when they
should be using JOIN (which typically is easier to optimise for the database engine). On the
other hand, EXISTS frequently is the simpler and more robust solution.
As an example, to get arihip stars that happen to be in RAVE DR5, you could write both

21

SELECT TOP 10 *

FROM arihip.main AS a

WHERE

EXISTS (

SELECT 1

FROM rave.main AS r

WHERE DISTANCE(

r.raj2000, r.dej2000,

a.raj2000, a.dej2000) < 1/3600.)

or

SELECT TOP 10 a.*

FROM arihip.main AS a

JOIN rave.main AS r

ON DISTANCE(

a.raj2000, a.dej2000,

r.raj2000, r.dej2000) < 1/3600.

(but see the exercise 13 before making a pattern out of this).

Exercise 13
Sit back for a minute and think whether the JOIN and the EXIST solution in the
Subqueries chapter are actually equivalent. You are not supposed to see this from staring
at the queries – but comparing the results from the two queries ought to give you a hint;
retrieve a few more objects if your results happen to be identical.

Common table expressions

WITH lets you name a subquery result for later use in your main query.
This usually makes for more readable queries – the top-level operation is easily findable at the
end of the query, and if you are curious what the individual contributions are, you can go back
to the proper with clause. Consider this example where we are downloading low-resolution
spectra exclusively for objects for which we have rave data:

WITH withrvs AS (SELECT TOP 200

ra, dec, source_id,

a.radial velocity, b.rv as raverv

FROM gaia.dr3lite AS a

JOIN rave.main AS b

ON (

DISTANCE(a.ra, a.dec,

b.raj2000, b.dej2000) < 1/3600.))

SELECT *

FROM gdr3spec.spectra

JOIN withrvs

USING (source id)

This particular example also illustrates a technique WITH is being used for as well: planner barriers in
case of catastrophic query plans.
Each ADQL query will be translated in a sequence of steps the database will process in order to perform
the whole query. This query plan may switch the order of steps which were defined in the scripts
to enhance the performance. The query planner bases this plan on estimates of table sizes and the
“selectivities” of predicates (basically: how often they will be true). If they get these estimates wrong,

22

the query plans can be wrong, too, sometimes catastrophically so. In these cases, forcing the planner
using CTEs may save the day.

In our example, we crossmatch Gaia and Rave and pull radial velocities from both. Then we want to
add BP/RP spectra (which here come in arrays) with a simple join on the Gaia source id; since at least in
2022, the backend database gets the estimate of the selectivity of the distance condition grossly wrong,
without the CTE the database would first match the 200 million rows of of the Gaia spectra to the Gaia
catalogue before turning to the half a million rave rows, turning a reasonably fast query into a matter
of hours.

TAP: Uploads

TAP lets you upload your own tables into the server for the duration of the query.
Note that not all servers already support uploads. If one doesn’t, politely ask the operators for
it.
Example: Add proper motions to an object catalogue giving positions reasonably close to ICRS;
grab some table, falling back to the attached ex.vot, load it into TOPCAT, go to the TAP
window and there say:

SELECT mine.*, refcat.pmra, refcat.pmde FROM

gaia.dr3lite AS refcat

JOIN tap upload.t1 AS mine

ON DISTANCE (

refcat.ra, refcat.dec,

mine.raj2000, mine.dej2000) < 0.001

You must replace the 1 in tap upload.t1 with the index of the table you want to match.
You may also need to adjust the column names of RA and Dec for your table, and the match
radius.
Always take into account that positions in you upload table use the same coordinate system as
the remote table, and also pay attention to the epoch.

Exercise 14
If you have some data with celestial positions of your own, try reading it into TOPCAT
and try the crossmatch with that. If you do not have any suitable data, try the ex.vot
from the TAP: Uploads slide.

Almost real world

Just so you get an idea how SQL expressions can evolve to span several pages:
Suppose you have a catalogue giving alpha, delta, and an epoch of observation sufficiently
far away from the Gaia epoch. To match it, you have to bring the reference catalogue on our
side to the epoch of your observation. For larger reference catalogues, that would be quite an
expensive endeavour. Thus, it’s usually better to just transform a smaller selection of candidate
stars.
To do this, you decide how far one of your stars can have moved (in the example below 0.1
degrees, the inner crossmatch), and you generate a crossmatch there. From that crossmatch,
you select the rows for which the transformed coordinates match to the precision you want.
To play this through, load matchme.vot from the HTML or PDF attachment into TOPCAT. The
rough crossmatch with Gaia is standard fare:

23

 Query successful Right ascension (J2000) Declination (J2000) H selected default magnitude J selected default magnitude K selected default magnitude QHSXCsKb8WNASgpzgdfb9UF1jVBBgKn8QXIcrEB0lvDqGDcuQEoKYXwb2lFBVlHsQWGyLUFTEm9A
dJbyckMTe0BKCrf+CK77QXVHrkF/si1BdbItQHSWnVwxWT5ASgpLPD50sEFlmZpBbnrhQWIcrEB0
ln7sOXmeQEoKbH6uW8hBQ9LyQU+hy0E/521AdJa7yxzJZEBKCn1e0G/vQWybpkGCp/BBcD1xQHSW
t/FzdUNASgqcAiml7EFj3ztBgRiTQWKTdUB0lrx+az/qQEoKyN4qwyJBTT99QU+FH0FKuFJAdJat
/4Irv0BKCrNfPX05QVOVgUFaYk5BUhBiQHSW132VVxVASgq6Ymb9ZUF+RaJBglP4QXo5WEB0lspI
+W4WQEoLMJx//edBgHjVQYKRaEF2m6ZAdJbZ0Syt3kBKC1ZcLSeAQX1gQkGEtkZBhPGqQHSW74i5
d4VASgu+wkgOjUFjT99BaPXDQWIUe0B0lsxxkupTQEoLpV0cOslBcCj2QXCfvkFrysFAdJcqaw2V
FEBKCnJ9y926QXNHrkF5rhRBcedtQHSXK+vhZQpASgrIPsiSq0FeGJNBYx64QV5FokB0l0+KTB69
QEoKnZ00WM1Bd64UQYBiTkF32yNAdJdhFEy+H0BKCu3+dbxFQX8OVkGD0OVBffvnQHSXR1cMVlBA
Sgq/XXiBG0FisCFBaR64QWZaHUB0lxvddmg8QEoK8f3evZBBaNkXQW5iTkFko9dAdJc4H5aePUBK
Cu3c580DQXDItEF541RBc2BCQHSXFnqVyFRASgs9IPK+z0FpAgxBbp++QWXztkB0l0vwmVqvQEoL
VFx4pttBY6n8QWkvG0FhysFAdJdnA6+36UBKC7D/EOy3QWrZF0F164VBZ753QHSXa7iADq5ASgvP
gNwzckF47ZFBhAo9QXPrhUB0l4mnfl6rQEoMBmPHT7VBee+eQYPdL0F2wINAdJcPnB+F10BKC7Mg
U1yeQVS0OUFpCj1BUwYlQHSXB3FDOTtASgvAXVLBbkFflYFBf6HLQV564UB0lw5Lh73PQEoLz/6w
dKdBVR64QWpeNUFSl41AdJczru6VdEBKC5Mcp9ZzQXJFokF7tkZBcsi0QHSXKMJhOQBASgv/3nIQ
v0FBdLxBTMScQT5eNUB0lwLBsQ/YQEoL9R77bcpBc41QQXk/fUFvFodAdJZm3vx6OkBKCxuCPIXC
QWXnbUFrlYFBY9LyQHSWagqVhThASguKwY+B6UF2UexBfcKPQW+JN0B0loTxoZhsQEoLuv2Xb/RB
ekWiQYI5WEF2FHtAdJZsoUi6hEBKC7YkE9t/QVvS8kFecrBBWS8bQHSWiH2ys0ZASgwHHFPznUF+
FHtBgq4UQXTMzUB0lrBGhEjPQEoL655JK8NBeLxqQYI/fUF4euFAdJa7b+Lm60BKDCLdepn6QWL9
9EFm4UhBYS8bQHSWt47ihnJASgyfHxSYPUF51wpBgkm6QXD520B0llaQmu1XQEoNOcDr7fpBfFod
QYJwpEFyTdNAdJaV4X40uUBKDPykKu0UQX3XCkGEeuFBgVP4QHSWgarFOwhASg0r3Cbc5EGAnbJB
hRaHQYebpkB0lmce8wpOQEoNUKArhBJBczMzQXu+d0FyKPZAdJcMy8BdU0BKDH8jzI3jQWv3z0F1
64VBZrxqQHSXC/sVtXRASgywY+B6KUF3dLxBf+uFQXg5WEB0ltfhMrVfQEoMwX668QJBeBR7QYC0
OUF2i0RAdJbnlXA/LUBKDPiDM/yHQXZR7EGB989BdKPXQHSXC3solUpASg07IT4+KUFJ87ZBTi0O
QUel40B0l1eD3/PxQEoNMN+b3GpBelodQYEtDkF1gQZAdJc3b212JUBKDVPepGWlQXmZmkF/WBBB
co9cQHSXJnL7oB9ASg2hf0Eov0F8PXFBgzlYQYa6XkB0lwYR/ViGQEoNdWQwK0FBfhysQYKl40F1
++dAdJcwrUb1iEBKDei8FpwkQW45WEF2sCFBbsCDQHSWyylenhtASg3PX05EMUF87ZFBgsaoQYW6
XkB0luq+8Gs4QEoN1B+nZTRBdbItQX2VgUFzEm9AdJbZ1FH8TEBKDhGhEjPfQWw9cUFwUexBaaXj
QHSW46CDmKZASg4pnYg7o0Ftsi1BddsjQWjAg0B0ltXmvGIbQEoOPbwjMV1Bfu2RQYJDlkFui0RA
dJcfw7T2FkBKDoLgGbCrQWwUe0F1KwJBZ9cKQHSW8T8HfMxASg5NXYDkl0FMrAhBV3jVQUnO2UB0
lw1/DtPYQEoPDsMRYihBeeNUQYN0vEFjAgxAdJcWsA/9pEBKDyDh99c9QU0zM0FXaHNBST99QHSX
2bsniNtASgwYm9g4O0F1peNBgel5QXMm6UB0mAP07KaHQEoMhwEQoThBYPXDQWQYk0Ff87ZAdJf+
+/QBxUBKDTr/sE7oQXybpkGEP31BdqPXQHSXsmWt2cJASgy4e9zwMEFmHKxBcIcrQWTZF0B0l5lO
Gj9GQEoNAt4A0bdBTi0OQVWdskFMi0RAdJd9Dx9XtEBKDRR/EwWWQTQQYkE+7ZFBMedtQHSX2D+R
5kdASg2JHiFTN0F9DlZBhisCQXfS8kB0l6naWX1KQEoN3X7Lt/pBa753QXaPXEFpWBBAdJgrGipN
sUBKDLhisny/QX0/fUGD755BfpN1QHSYYREnb7FASg09IPK+z0FMo9dBWSbpQUhumEB0mDhjvuw5
QEoNQj2SMcZBcmJOQXzItEFwo9dAdJg5iVjZtkBKDYUeuFHsQXBumEF0crBBa+dtQHSYbxqfvndA
Sg1JQLux8kFkLQ5BaUvHQWOyLUB0mHVWjoIOQEoNuv2Xb/RBcXzuQXSDEkFo4UhAdJiLWI42j0BK
DcJ+lTFVQVuhy0FkWh1BWkGJQHSYgrtmcvxASg3I4lyBCkFqQYlBgBysQWyPXEB0mGmce8wpQEoO
Eh7mdRRBgNcKQYSNUEF/3ztAdJh+pfhMrUBKDjABT4tZQX1wpEGBtkZBfU/fQHSYGUnogV5ASg2Y
fGMn7kF+gxJBhHzuQXP3z0B0mAJeE7GOQEoN3+MqBmRBcQIMQXpJukFtDlZAdJgcTrVvuUBKDoP9
UCJXQQkvG0EZsi1BAqPXQHSYY77sOXpASg7N4Z/CqUF8+dtBgvGqQXfvnkB0mE065oXbQEoO8r7O
3UhBXwo9QWYUe0FdZFpAdJhg62fCh0BKDvze40/GQXfztkGDMzNBdYk3QHSYaa5PM0RASg8A3kxR
EUFznbJBfTMzQW/ztkB0l3AtWdVeQEoNm6GxlhBBeBiTQYCPXEFwIMVAdJeJw84gikBKDbihnJ1a
QSwYk0E1ztlBKt0vQHSXiI1tO21ASg5W3jMmnkF1DlZBezMzQXV41UB0l7Q9ic5KQEoOTj/+85FB
ZjU/QXDU/kFiCDFAdJfBYFJQL0BKDlNDc/MXQUuyLUFWyLRBSIcrQHSXv/WDpTxASg6kfs/puEF2
sCFBfw5WQXCLREB0l4oZydWiQEoOrsByS3dBbOVgQXDZF0Fq0OVAdJe1oxpL3EBKDzviLl3hQW6f
vkF4hytBbffPQHSXIc3l0YFASg8EHMUypUFyCDFBdjlYQXI9cUB0l1E5QxetQEoPTH80k4ZBf5ma
QYOn8EGBBBlAdJeMEzO5a0BKD04iosI3QXxWBEGDQYlBcTtkQHSXokJKJ2tASg9SwW3z+UF5aHNB
hCbpQXWl40B0l5ld1MdtQEoPg9/z8P5BfOVgQYNumEF2CDFAdJdyNXHR1EBKD2X9itq6QXGp/EF5
jVBBban8QHSXbPldTpBASg/Roh6jWUF6VgRBeOFIQXReNUB0l4DJU5uJQEoP9R77bcpBW7ItQWIY
k0FaNT9AdJfUJv5xi0BKDx0EHMUzQWMOVkFogxJBYfO2QHSXzjrAxi5ASg9K/VRUFUF4o9dBgLhS
QXFT+EB0mAsEq2BrQEoQAJ9iMHdBeZFoQYX1w0F8n75AdJfjNIK+jEBKD8rAgxJvQX+RaEGC/fRB
guNUQHSXsifQKKJASg/solUp/kFLP31BW7peQUXjVEB0l6EFnqVyQEoQQL/jsD5BfXS8QYP99EF2
CDFAdJfWo3rD60BKEFdC3PRiQVqn8EFjWBBBWPGqQHSYHbZezD5AShCs4ku6E0FQfvpBVkWiQU8a
oEB0l/Vx0dR0QEoQ2NvOyFBBV9cKQV60OUFWDEpAdJfsU7CBPUBKENrj5sTGQWrlYEF0Wh1Ba9sj
QHSUJS3solVASgie/Yao/EF0an9Bf8KPQXTpeUB0lDBeokzHQEoJmyPdVNpBZjEnQXFDlkFmm6ZA
dJRfzjFQ20BKCRbB42S/QWiDEkFwKPZBZS8bQHSUdh3JPqNASglX3g1m8UFym6ZBejU/QW8Wh0B0
lGP1ct5EQEoJaoMrmQtBRxqgQVPvnkFDvndAdJSZvDP4VUBKCY1gpjMFQUXbI0FSLQ5BQ1wpQHSU
hoEjgQ9ASgmbgCOmzkFocrBBbpumQWdcKUB0lFZdOZb7QEoJ8n/kvK5BakGJQXbhSEFom6ZAdJRr
sByS3kBKCch9srNGQXP3z0F9N0xBdgAAQHSUe54GD+RASgojQiRnvkFpxqhBdkWiQWXfO0B0lBXq
7iAEQEoJu4PPLPlBaVgQQW+hy0Fm+dtAdJQJSzgMt0BKCgjhUBGQQXPGqEGEVgRBcnbJQHST+hPC
VKRASgoHxBmf5EE2zM1BRYk3QTLEnEB0k+lN1yNoQEoKSoOx0MhBVyLRQWSXjUFTcKRAdJQZA6dU
bUBKCmZeAuqWQXCj10F5521BcDU/QHSUQx33YcxASgpg/keZHEFz2yNBfj1xQXQtDkB0lF3B55Z9
QEoKTmGM4tJBfbItQYPQ5UF1S8dAdJRr7O3UhEBKCo0ALiMpQUlDlkFL3ztBSHKwQHSUKoAGSp1A
SgsGX5WRzUFjHrhBbtDlQWAUe0B0lEYfnwG4QEoK6T4cm0FBeLQ5QYDQ5UFzYEJAdJS2g3974UBK
CdcjZ+QVQX5aHUGFO2RBdVwpQHSUuLvTgEVASgpGe+VTrEE7JulBSP30QTbxqkB0lKN2ki2VQEoK
UUO/cnFBdpN1QX8KPUFv64VAdJTXnhbW3EBKClq8DjioQVKDEkFfQ5ZBTvGqQHSU/9Hc1wZASgqD
wpe/pUE9WBBBQoMSQTyn8EB0lQ7+1jRVQEoKymALApNBfmZmQYQ9cUGGJulAdJTGNJe3QUBKCxh+
fAbiQWfCj0FtEm9BZYUfQHSU8an7521ASguHHmzSkUF93ztBgwYlQXX750B0lHFrEcbSQEoLAqNI
bwVBaT99QWy4UkFkXjVAdJSQw9JSSEBKCwL/jsD5QWtHrkFxfO5BZ8KPQHSUazmfXf9ASgt3IMjN
ZEFvhR9BebpeQW7Ag0B0lIvxpcoqQEoLaaCtihFBHR64QSZFokEbT99AdJSAood+5UBKC668QI2P
QXdgQkGES8dBcKfwQHSUieVcD8tASgupfhMrVkFx1wpBeFHsQXIYk0B0lMGu9vjwQEoLiF0xM39B
YSLRQW141UFhR65AdJTm+0w8GUBKC/Q8fV7QQXF87kF92yNBa6XjQHSUuzY287JASgu3vx6OYUE+
QYlBP4k3QT5FokB0lLCvX9R8QEoMAMDwH7hBTyLRQVtsi0FMan9AdJTXHzYmLUBKDEfDDTBqQW33
z0F6n75Bb9LyQHST4fjjrAxASgrqfOD8L0FttkZBdmJOQW+2RkB0k/vphWo4QEoKrT6SDAdBet0v
QX5++kF0QYlAdJQHObAk9kBKCsAeaKDTQWxqf0FwBBlBaMzNQHST+MAFPi1ASgtaQmu1W0F1gQZB
g52yQXEWh0B0lBGvwEyMQEoK7HyVfNRBcR64QX3jVEF4Wh1AdJQmYSg5BEBKC56+nIhhQXjU/kF8
OVhBb9cKQHST/BnBciZASgu74BV+7UFYdslBX9cKQVkzM0B0lAh0Qsf8QEoLzp5eJHlBfPGqQYSs
CEF85WBAdJQx6v7m+0BKC/igkC3gQXszM0GDDEpBdm6YQHSTt9MK1G9ASgu8AaNuL0FZgQZBYGJO
QVk/fUB0k8gB91EFQEoLsANoak1Bbn76QXcrAkFtmZpAdJPVOsT37EBKC9GAkLQYQVvnbUFh64VB
W/vnQHSTlXiiqQ1ASgvovBacJEF7ul5BgjlYQXNYEEB0k7Dbah6CQEoL+717IDJBf6XjQYSfvkF0
7ZFAdJO9v0h/zEBKDDx9XtBwQYBYEEGEEGJBez99QHSTzzVc2R9ASgw/3WWhRUF0AABBgA5WQXDx
qkB0k/KQq7ROQEoMMZxaPjpBbxqgQXgQYkFvBiVAdJPekHlfZ0BKDEC/47A+QWqwIUFyZmZBZhys
QHST+10DEFZASgxlQMx46kF+KPZBhP30QXnCj0B0k9Z8rqdIQEoM1b7j1f5BcszNQXblYEFogxJA
dJPtfXwsoUBKDO8CgbqAQXqTdUGB7ZFBcmJOQHST9If8uSRASg0e4kNWl0FgtDlBaFYEQWA5WEB0
lF2eQMhHQEoLpV0cOslBYRaHQW52yUFdgQZAdJRo9LYf4kBKC+8f3evZQXRN00GCnbJBg2hzQHSU
YCU5dW1ASgwZn+Q2dkFzoctBdu2RQW5FokB0lEb961LKQEoL8b70nPVBWeuFQWUi0UFVpeNAdJRQ
iA2AG0BKDBJiAlOXQXKXjUF4ZmZBb9cKQHSUYvalDWtASgxJXhfjTEE1MzNBN4EGQTSLREB0lI+F
DfFaQEoMz3yqdYpBZiDFQW7U/kFldLxAdJQwnYxtYUBKDL0jC53DQXA5WEF4hytBa0/fQHSUSAH3
UQVASgzronrpq0E1lYFBOUvHQTQtDkB0lF5Pdl/ZQEoM274BV+9BPbZGQUKXjUE81P5AdJQwW3z+
WEBKDRZ+x4Y8QX5mZkGBcKRBdEGJQHSUTjBEa2pASg2ig00m+kF8n75BgrItQXl41UB0lD0mMOwx
QEoNyd4FA3VBfdsjQYIYk0F6zM1AdJSLORkmQkBKDX8fms/6QXTlYEF/XClBdocrQHSUdj9XLeRA
Sg3rQgLZz0F8gxJBhHKwQWxumEB0lIoH9m6HQEoN3fyf+S9BUxJvQV33z0FQKPZAdJR5Ec81XUBK
DiFj/dZaQXeRaEF+IMVBcul5QHSVK2jO9nNASgtWQwK0D0F0j1xBgTtkQXeyLUB0lSuGKyfMQEoM
CEHt4RpBXdcKQWSPXEFdaHNAdJVvMKTjekBKC/xc3VCpQXibpkGBDlZBcggxQHSVUSElE7ZASgwt
nPE870FzhR9Be++eQXEaoEB0lV13dKukQEoMbkOqebxBh5FoQYPMzUF/nbJAdJVyCFsYVUBKDGDc
uanaQXOFH0F5jVBBcS8bQHSU8DfWMCNASgxAfMfRu0F7hR9BgGhzQXPfO0B0lRG+bmU4QEoMwV0t
AcFBOp++QUjdL0E3cKQ=

http://docs.g-vo.org/adql/html/matchme.vot

SELECT

alpha, delta, epoch,

source id, ra, dec, pmra, pmdec

FROM tap upload.t1

JOIN gaia.dr3lite

ON distance(alpha, delta, ra, dec)<0.1

That is returning some 10000 pairs, almost all of which are wrong (there are certainly fewer
than 55 true matches, as there are just 54 rows in matchme). We will thus have to filter more
strictly constraining the positions. For that, we have to apply proper motions.
There is nothing in ADQL’s core that can do that. For the small distances we are talking about
here, you could write something like

ra+pmra/cos(radians(dec))*(epoch-2016)

AS palpha,

dec+pmde*(epoch-2016) AS pdelta,

as a workable approximation.
More and more TAP services, however, have an ADQL extension function (UDF; see TOP-
CAT’s “Service” tab for a per-service list of those) ivo epoch prop pos that will do a precise
job. We will use it here:

SELECT alpha, delta, parallax, pmra, pmdec, source_id

FROM (

SELECT

alpha, delta, parallax, pmra, pmdec, source_id,

ivo_epoch_prop_pos(ra, dec, parallax,

pmra, pmdec, radial_velocity, 2016, epoch) AS tpos

FROM tap_upload.t1

JOIN gaia.dr3lite

ON DISTANCE(alpha, delta, ra, dec)<0.1) AS q

WHERE DISTANCE(POINT(alpha, delta), tpos)<2/3600.

(don’t forget to adapt the table name behind tap upload!).
If you’ve tried it, you’ll have noticed that 53 rows were returned for 54 input rows. For “real” data you’d
of course not have this; there’d be objects not matching at all and probably objects matching multiple
objects. The reason this worked so nicely in this case is that the sample data is artificial: I made that up
using ADQL, too. The statement was:

SELECT coord1(tpos) alpha, coord2(tpos) AS delta, epoch FROM (

SELECT

ivo_epoch_prop_pos(ra, dec, parallax,

pmra, pmdec, radial_velocity, 2016, epoch) AS tpos,

epoch

FROM (SELECT d3l.*, 1900+75*rand() AS epoch

FROM gaia.dr3lite AS d3l tablesample(1)

WHERE

POWER(pmra,2)+POWER(pmdec,2)>500*500) AS gs) AS transgs

This is rather subquery-heavy and in addition uses two features that we have not seen yet. For one,
rand() returns a random number between 0 and 1, which we use here to generate a random source
epoch.
And there is TABLESAMPLE; this is a prototype extension that may go into ADQL 2.2, perhaps some-
what modified. As used here, you pass in how many percent of the table you want to look at. Over a

24

TOP 100 or so, this has the advantage that you get different rows every time you use it. It’s not some
statistically valid sampling, though.

The handcrafted VOTable for the example is attached as matchme.vot.

Exercise 15
Follow the example on the “Almost Real World” slide with the matchme.vot table
provided there.
Despite the artificial setting, we have lost one object in the upload join. Can you find it?
And can you guess why we have lost it?
Hint: Have a look at TOPCAT’s Pair Match facility, paying attention to the Join Type
setting.

Exercise 16
In the last exercise, we met the star with the Gaia source id 1872046574983497216 and a
total proper motion of 5 arcsec/yr. In the solution I claimed this is a really extreme case.
Well: how extreme is it? Can you estimate how many faster stars there are?
(Please resist the temptation to use the full Gaia catalogue for this purpose; see also the
next exercise).

Exercise 17
(This is slightly advanced) In the last exercise, you were asked not to consult the Gaia
source catalogue to get proper motion statistics, although to a contemporary
astronomer that would be the obvious choice. That is because all-catalogue statistics are
expensive on Gaia.
Can you find a way to still get the fastest stars in gaia.dr3lite within the time limit of
sync queries on that server (i.e., a couple of seconds)?
Cheap hint: see what columns are indexed.

TAP: Async operation

TAP jobs can take hours or days. To support that, you can run your TAP jobs asynchronously.
This means you do not have to keep a connection open all the time.
Most servers have relatively tight limits on the execution times of queries when they are run
synchronously. For instance, on the GAVO DC TAP service, the following query will probably
time out (remember that the result of this query is available in TOPCAT’s table tab, too, but it’s
a simple query that demonstrates timeouts):

select count(*)

from ucac4.main

(if this doesn’t time out, the machine has a good day; use another slow query in that case).
Async queries can also be queued (i.e., put into a waiting state until the executing machines
have resources free), and hence it is much easier to be generous with execution limits in async,
too.
To go async in TOPCAT, change the Mode selector to “Asynchronous”. After submitting the job,
you can watch your job go through “UWS phases”:

PENDING Job created, you can configure it Configuration includes setting the query, adding
uploads, setting execution limits, etc.

25

 This schema contains data re-published from the official Gaia mirrors
(such as ivo://uni-heidelberg.de/gaia/tap) either to support combining
its data with local tables (the various Xlite tables) or to make the
data more accessible to VO clients (e.g., epoch fluxes).

Other Gaia-related data is found in, among others, the gdr3mock,
gdr3spec, gedr3auto, gedr3dist, gedr3mock, and gedr3spur schemas.

 If you use public Gaia DR3 data in a paper, please take note of
`ESAC's guide`_ on how to acknowledge and cite it.

.. _ESAC's guide:
https://gea.esac.esa.int/archive/documentation/GDR3/Miscellaneous/sec_credit_and_citation_instructions/

 This is gaia_source from the Gaia Data Release 3, stripped to just
enough columns to enable basic science (but therefore a bit faster and
simpler to deal with than the full gaia_source table).

Note that on this server, there is also The gedr3dist.main, which
gives distances computed by Bailer-Jones et al. Use these in
preference to working with the raw parallaxes.

This server also carries the gedr3mock schema containing a simulation
of gaia_source based on a state-of-the-art galaxy model, computed by
Rybizki et al.

The full DR3 is available from numerous places in the VO (in
particular from the TAP services ivo://uni-heidelberg.de/gaia/tap and
ivo://esavo/gaia/tap).

 Query successful

 For advice on how to cite the resource(s) that contributed to this result, see http://dc.zah.uni-heidelberg.de/tableinfo/gaia.dr3lite#ti-citing

 More information on a resource that contributed to this data is found at http://dc.zah.uni-heidelberg.de/tableinfo/gaia.dr3lite

 -- *TAINTED*: the value was operated on in a way that unit and ucd may be severely wrong

 333.6340140164655 27.849976857459605 1965.7858191799014
 333.63439154152104 27.847405123061925 1947.3519247585068
 37.640932548792456 -15.722883426074057 1970.7613362859495
 15.640617887051132 -31.881568979728115 1938.7438159932215
 318.3940312945749 -19.321046247513873 1972.0091052176801
 57.349591580851666 -3.326745763069553 1962.9485602093544
 10.08306308889046 -59.46174063841194 1942.3577591141157
 10.071623788088228 -59.46362265289873 1926.8545099913676
 8.632337773885284 71.20022343355981 1945.4506167731026
 134.78530929035358 36.45282227746787 1902.1701747353989
 71.95882645149462 48.27898180625064 1961.1810783581943
 308.17298046054367 5.847303573127917 1940.316450898357
 282.4414223127152 -23.832277351526997 1926.5229776949748
 316.61589193043056 38.67331845368693 1921.525472658736
 185.64760924528508 -40.033957760460126 1933.0340149658534
 177.47117195940297 -40.20894686704706 1931.7337387029202
 127.66703999616873 32.70431313196559 1946.3142521041284
 125.61558454964111 7.416129715367857 1968.3133986152607
 118.27728417448131 -14.793122661781078 1952.5157837774932
 129.96316706834125 11.529560242153291 1950.438824708746
 266.66088065304507 -12.965997565691493 1942.4389675114317
 229.83187163328384 23.067880433803026 1937.4327307097165
 208.16982032762863 -50.92087061793369 1921.4381561523028
 208.1617517256657 -50.92086550762734 1962.9586603645034
 227.34014275805797 -19.959301753021517 1958.9875913830242
 8.951982058702276 52.68959526402702 1943.2097281411643
 8.95919839022566 52.695621024043355 1959.1512094428379
 270.7574708312609 75.9582084752584 1950.5022597628474
 44.124398209628296 55.44958708143954 1936.572709014636
 254.71752220896474 68.89309779083949 1913.4494566871606
 265.6172109619817 75.61616196744106 1902.6093151808363
 152.37996453042464 51.29479013901907 1973.9560056023508
 133.88317005174167 70.79658403271424 1973.392616854931
 133.89468833368636 70.79807667551529 1964.2796928702403
 274.3324327736555 68.5717716124557 1962.3805489099857
 117.16711189884757 53.65851586215758 1930.00739348807
 117.170724364647 53.663065606320096 1901.2948549576042
 217.67195825701702 59.722149014004565 1967.4392505929422
 299.2362835032754 -42.25472256197355 1935.5251281548265
 312.83117367077637 -79.28731780277282 1913.0609048993458
 62.13731001403038 50.17996217339884 1956.0809722309855
 183.2653558716693 3.2644351082596477 1926.2454559551074
 195.18525425602405 19.221439088945132 1965.890505736405
 220.38663157588852 -51.96509368354733 1960.9900359149158
 278.8628157269665 -19.725528411088195 1963.9790407796252
 203.01499743926288 -1.3009835552844349 1910.0729652970142
 247.15007724114255 3.2641606982975873 1923.4890432221996
 34.538354208523124 44.27284169091741 1925.0252727929708
 159.6427919671567 35.49494033204997 1971.4734780822916
 354.8107803302858 -20.941480001483324 1908.7872016815916
 351.4219103574577 -18.794354277818243 1900.632318417714
 22.709508881043494 -4.121517588977726 1972.6064576949682
 257.0677087562446 -34.59051259100995 1932.3458402124845
 213.13028261265407 10.148536987117131 1972.4337744759741

QUEUED Waiting for compute time

EXECUTING The job is running

COMPLETED Successful completion, fetch results

ERROR The Job has failed, fetch error message

Resuming async Jobs

You can quit your client with async and resume from somewhere else.
To do that: In Running Jobs, select the URL and save it. Uncheck Delete on Exit and leave
TOPCAT.
Then restart TOPCAT, open the TAP window and paste the URL back into the URL field. If the
job has finished, you can retrieve the result.
There is a bit more to async operation; for example, the server will not keep your jobs indef-
initely (see “destruction time” in the resume tab). TAP lets you change these values, though
TOPCAT doesn’t offer an interface to that as of now. PyVO (for instance) does, and so does
stilts, the command line variant of TOPCAT.

Exercise 18
In async mode, run this on the GAVO server:

SELECT TOP 500 source_id, flux

FROM gdr3spec.spectra

WHERE arr_max(flux)>arr_avg(flux)*5

This is using the experimental array extension to ADQL1. You can probably guess
without reading the blog post that this will select spectra with something like strong
lines.
Run that query in async mode on the GAVO server. In a course situation, shout out
your job’s phases to watch the dequeuing. Save the job URL, exit TOPCAT, resume it,
and load the result when the job is COMPLETE-d.

TAP: the TAP schema

TAP services try to be self-describing about what data they contain. They provide information
on what tables they contain in special tables in TAP SCHEMA. Figure out what tables are in
there by querying TAP SCHEMA itself:

SELECT * FROM tap schema.tables

WHERE table name LIKE ’tap schema.%’

Of the tables you get there, the most relevant ones are tap schema.tables and tap schema.columns.
From the former, you can obtain names and descriptions of tables, from the latter, about the
same for columns.
To see what columns there are in tap schema.columns, say:

SELECT * FROM tap schema.columns

WHERE table name=’tap schema.columns’

1https://blog.g-vo.org/a-proposed-vector-extension-for-adql.html

26

https://blog.g-vo.org/a-proposed-vector-extension-for-adql.html

Of course, in normal operations, clients like TOPCAT do that querying for you: it’s how they
fill their metadata views.
In addition to description, unit, datatype and arraysize (the latter two corresponding to what
you have in VOTable), there is the indexed column that says whether the column is part of an
index. While that information is, in general, not enough to be sure, on large tables querying
against indexed columns can steer you clear of the dreaded “sequential scan”, which is when
the database engine has to go through all rows (which is slow and may take hours for really
large tables).
The ucd column is also interesting. See the sidetrack on UCDs (appendix D) for details on
these.

Exercise 19
Pick a server that piques your interest from TOPCAT’s server selection. How many
tables are there on the server? How many columns? How many columns with UCDs
starting with phot.mag?

Data Discovery 1: the Registry

The list of services in TOPCAT’s TAP window comes from the VO Registry, an inventory of
the services and data kept within the VO.
There are a few more ways to search the Registry, for instance in a web browser using WIRR.
Use case: Find tables talking about quasars that have redshifts.

WIRR is not limited to search TAP services only, but also services using other VO protocols
like SIAP or SCS.
In WIRR, you add and define constraints on the data collections.
Any Text Field - match - quasar

then click + Add Constraint and in the new row select
Service Type - is - TAP(SQL) ,

again click + Add Constraint and in the new row select Blind Discovery → Column UCD .
You will then get a Pick one button. Try it to locate a redshift UCD.
What you get back is a list of data collections (“resources”) that match your criteria. In prin-
ciple, you could transmit these to TOPCAT using SAMP, and that works fine for SCS, SSAP,
and SIAP services. For TAP services, this does not work yet (2024) for complicated reasons not
easy to fix.

27

http://dc.zah.uni-heidelberg.de/wirr/q/ui/

Data Discovery 2: use ADQL

The relational registry standard says how to query this data set using ADQL. All tables are in
the rr schema and can be combined through NATURAL JOIN. Our use case looks like this in
ADQL:

SELECT ivoid, access_url, name,

ucd, column_description

FROM rr.capability

NATURAL JOIN rr.interface

NATURAL JOIN rr.table_column

NATURAL JOIN rr.res_table

WHERE standard_id LIKE ’ivo://ivoa.net/std/tap%’

AND 1=ivo_hasword(table_description, ’quasar’)

AND ucd=’src.redshift’

As in WIRR, we constrain the UCD find columns with redshifts. It is instructive to compare
the query above with the following one:

SELECT ivoid, access_url, name, ucd, column_description

FROM rr.capability

NATURAL JOIN rr.interface

NATURAL JOIN rr.table_column

NATURAL JOIN rr.res_table

WHERE standard_id LIKE ’ivo://ivoa.net/std/tap%’

AND 1=ivo_hasword(table_description, ’quasar’)

AND 1=ivo_hasword(column_description, ’redshift’)

– the difference here is that we don’t use the controlled UCD vocabulary but do a freetext
query similar to the query we performed with WIRR. You notice that precision is down (you
get many columns that talk about redshifts, for instance), but recall is up (for instance, our
naive query was missing columns with UCDs src.redshift;pos.heliocentric, but, worse, some with
empty UCDs).
To find UCDs relevant for you used “in the wild”, you can use WIRR’s Pick one button as
above, or you can do a query like

SELECT ucd, MIN(column_description), MAX(column_description)

FROM rr.table_column

WHERE 1=ivo_hasword('redshift', column_description)

GROUP by ucd

The MIN and MAX clauses sample a few of the descriptions collected into each UCD’s group. In
this example, this is admittedly not very illuminating. It might be for other cases.
As to columns with missing UCDs, the recommended remedy is to complain to data providers
that have lousy metadata, and make sure metadata is good on data that you publish yourself.
High-quality metadata is of utmost importance for the VO – but on the other hand: Even
shoddily published data is better than entirely unpublished data.
Incidentally, if you are in the business of writing RR queries yourself, be sure to look at the
sample queries in the RegTAP standard.

28

http://www.ivoa.net/documents/RegTAP/

Simbad

Simbad has a TAP interface; find it TOPCAT’s server selector and inspect Simbad’s table meta-
data. Try queries like:

SELECT TOP 20 * FROM basic

Example: Filter out boring stars. To get a sample, use your own data if you have some. Oth-
erwise, let’s use some HIPPARCOS stars. In TOPCAT, do VO/Cone Search, enter hipparcos
as keyword, use the Hipparcos Main Catalogue resource and search with, say, RA 30, Dec 12,
and Radius 10.
With that table open and Simbad’s public.basic metadata in the TAP window, do Examples/Upload
Join. Edit the resulting query to end up like

SELECT TOP 1000

otype txt, tc.*

FROM basic AS db

JOIN TAP_UPLOAD.t7 AS tc

ON 1=CONTAINS(POINT(’ICRS’, db.ra, db.dec),

CIRCLE(’ICRS’, tc.ra, tc.dec, 2./3600.))

WHERE otype txt!=’star’

Whatever is left either is so boring that nobody ever bothered to publish about it – or it is
something except a boring, plain star.
For otypes, simbad has a fairly elaborate classification system that you will need to know to
make useful queries against otype. Another secret they are not advertising loudly enough at
the moment is that you can append two dots to an object designation to query against “thing
and descendants”, as in otype=’V*..’ to catch all variable stars.

Exercise 20
In exercise 18, you selected stars with odd spectra. Can you use Simbad’s TAP service
to find what types of star these are?
Hint: you probably need to do two upload joins, first with gaia.dr3lite (or some other
Gaia DR3 table out there), then with public.basic on Simbad.

Onward

If you get stuck or a query runs forever, the operators are usually happy to help you. To find
out who could be there to help you, check TOPCAT’s Service tab or use – the relational registry.
If you have the ivoid of the service, say

SELECT role_name, email, base_role

FROM rr.res_role

WHERE ivoid=’ivo://org.gavo.dc/tap’

– if all you have is the access URL, do a natural join with interfaces.
If we have done a good job, you now know how. . .

29

http://simbad.u-strasbg.fr/simbad/sim-display?data=otype

4 Interlude: HEALPix, MOC, HiPS

What are HEALPixes?

Spherical geometry is hard. For instance, at the poles about anything goes haywire, and there
is the “stitching line” between 0 and 360 degrees.. It helps when you have numbered pixels
rather polar coordinates. HEALPix is a magic scheme for that:

• Hierarchical – there are 12 pixels at level 0, and 12 · 4n pixels at level n where pixels at
higher levels are always true subsets of pixels in lower levels: All HEALPixes make up a
tree

• Equal Area – at a given level, each pixel has the same area

• isoLatitude – distinct latitudes of pixel centers go with O(n) rather than O(n2) with the
order

• Pixelization – mapping (α, δ) → [0, . . . , N].

Take-away Concepts on HEALPix

The linear dimension of a HEALPix is ∼ 1◦ at order 6; it changes by a factor of two on each
level.
Extra trick: NEST numbering of the pixels lets you go between levels by integer division or
multiplication by 4.

HEALPix in ADQL

The VO’s query languge ADQL does not support HEALPix natively.
But on many TAP services there are standard extensions (“UDFs”) for dealing with them:

ivo_healpix_center(

hpxOrder INTEGER, hpxIndex BIGINT) -> POINT

and

ivo_healpix_index(order INTEGER,

ra DOUBLE PRECISION, dec DOUBLE PRECISION

) -> BIGINT

To find out whether your TAP service has them, inspect the TAP capabilities; in TOPCAT, you
will find the list of UDFs in the ADQL tab.

30

Application: HEALPix Maps

A prime application of these functions is the creation of HEALpix maps, which allow one to
get a quick idea of distributions of all kinds of things in catalogues.
On the GAVO DC TAP at http://dc.g-vo.org/tap service, there is a service-provided example
for producing HEALPix maps:

SELECT

MAX(parallax)/AVG(parallax) AS obs,

ivo_healpix_index(4, ra, dec) AS hpx

FROM hipparcos.main

GROUP BY hpx

In case you’re wondering: No, I don’t think there is any physical significance to the ratio of the
parallax of the closest star to the average parallax in a neighbourhood. This is just to show that
you can use interesting expressions here, not just COUNT(*).
In TOPCAT, you can plot this by using Sky Plot and then Layers → HEALPix control. With a few
extra adjustments, this will yield something like this:

In Gaia

HEALPixes are so nifty that Gaia uses them for its source ids. To get the HEALPix of a Gaia
object at level n, compute

hpx =
source id

412−n · 235 .

This only works down to level 12, which is the healpix level used to determine the Gaia source
ids. According to our rule of thumb on the linear dimension at level 6, the linear dimension of
that would be a degree divided by 26 or about an arcminute.
Use that to compute a rough dust map:

SELECT source_id/8796093022208 AS pix,

AVG(phot_bp_mean_mag-phot_rp_mean_mag) AS avgcol

FROM gaia.edr3lite

WHERE DISTANCE(ra, dec, 246.7, -24.5)<2

GROUP BY pix

31

That’s level 8 two degrees around the center of a really close dust cloud in Monoceros and
plots as:

Polygon union Polygon

Have you ever tried to compute the union or intersection of two spherical polygons?
It’s a nightmare. Not to mention the result is not a polygon any more:

In case you are curious: something like this is what select top 10 * from cstl.geo pro-
duces.
MOCs to the rescue!

MOC?

You can represent arbitrary shapes to high precision (order 29 is 0.4mas) as lists of HEALPix
indexes.
Alas, you need about 10 million such pixels for a shape of 1 deg2.
Solution: Abbreviate ranges and use lower-order indexes when the pixels are full.

That’s a Multi Order Coverage map, or MOC in short.

MOC examples

select * from openngc.shapes

32

When plotting this, consider that the HEALpix lists this time are in columns. Hence, you will
need an Area control.

Such a shape may be written like

11/34094023 12/136376116-136376117

– all the shapes together are less than half an MB.

Math with MOCs

Most operations really become simple with MOCs. For instance, the area on the sky within
magnitude-dependent circles around Hipparcos stars brighter than 4 mag:

That’s the result of the following ADQL query; note, however, that MOC support in ADQL is
highly experimental at this time and unavailable in most TAP servers.

SELECT SUM(MOC(8, CIRCLE(ra, dec, 0.5*(4-vmag)))) AS contaminated

FROM hipparcos.main

WHERE vmag<4

That’s one shape you can manipulate as such.

Exercise 21
Plot the total coverage of the Lockman Hole Radio Survey in the table emi.main on the
GAVO TAP server as a level 8-MOC in TOPCAT. What is its area? Hint: you will
probably need a subquery.
For aesthetic reasons, also try this at levels 12 and 18.

33

TMOCs, STMOCs

Recently, people have extended the scheme to time and correlated space-time. That’s cool if
you want to find data on fast-moving objects:

You can use and create these with Aladin, for instance. Outside of this, tools largely still need
updates. In particular, there is no ADQL support for them at all, and one would need to think
quite a bit how that would look like.

Mapping HEALPix to Anything: HiPS

HEALPixes are also behind HiPS, the Hierarchical Progressive Survey.
This is basically a set of maps

hpxn → Image, Catalogue, . . .

on a number of HEALPix orders n.
This is what lets you nicely zoom in and out of image surveys and catalogues in Aladin.
You can make HiPSes yourself if you have data with high spatial dynamics.
This is not even limited to equatorial coordinates if you are willing to cut the tools a bit of
slack, as exhibited by the example of a 2D classifier output for galaxy morphology2.

5 pyVO Basics

Prerequisites

• python and astropy, of course (we assume Debian stable, at least; anaconda on propri-
etary systems should do, too)

• TOPCAT3 for viewing and visualising tables

• Aladin4 to work with images
2https://pretalx.com/media/adass2023/submissions/JUTWAY/resources/polsterer ADASS2023 Lo0TZRW.

pdf
3http://www.star.bris.ac.uk/∼mbt/topcat/
4http://aladin.u-strasbg.fr/aladin.gml

34

https://pretalx.com/media/adass2023/submissions/JUTWAY/resources/polsterer_ADASS2023_Lo0TZRW.pdf
https://pretalx.com/media/adass2023/submissions/JUTWAY/resources/polsterer_ADASS2023_Lo0TZRW.pdf
http://www.star.bris.ac.uk/~mbt/topcat/
http://aladin.u-strasbg.fr/aladin.gml

• pyVO. Get it from

– https://pypi.python.org/pypi/pyvo

– or try apt-get install python3-pyvo

– or try pip install pyvo

– or try conda install pyvo

Python Matters

In this course, we will use python scripts most of the time rather than the jupyter notebooks
you may be more familiar with.
This is partly personal preference, but for “production” scripts have several important advan-
tages:

• Meaningful version control

• Can use proper editors

• Files can work as modules

However, if you prefer notebooks, you can use pyVO from Python notebooks, too. If you are
unsure how this looks like, see the attached tap-obscore.ipynb (which covers several of the
topics we will later discuss).

tap-obscore.ipynb

To fit things on slides, I am PEP 8-relaxed. PEP 85 is a set of relatively sensible rules for how
you should format your Python source code so other people want to read it. I am not always
following it here. In particular, on slides, I am using indents of two spaces against the PEP 8
standard of four, which you may need to fix when cutting and pasting.

What’s pyVO?

pyVO provides APIs for lots of VO protocols.
It is glue between astropy and python in general and the astronomical data services in the VO.

It is a community project. You are most welcome to contribute at
https://github.com/astropy/pyvo.

Running Simple Services

When querying “simple” remote services (image, spectral, cone search; not directly TAP),
pyVO has a consistent pattern:

5https://peps.python.org/pep-0008/

35

{
 "cells": [
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "This notebook introduces a few VO techniques for use with python. You need astropy and pyvo installed to make this work. python3 is assumed. It is part of the pyvo course at http://docs.g-vo.org/pyvo, which probably will help a lot to understand what's going on here."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Our use case will be something like \"Find all time series of all bright AGB stars\", but the techniques introduced here have much wider applicability. Oh, and as of this writing, there are not too many time series in the VO, but we're working on this."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "While there are ways to do this with pre-made clients, scripting this gives you great flexibility as well as the analysis capabilities of python. So, let's interface python with the VO. The most complete module to do that is pyvo. See https://pyvo.readthedocs.io/en/latest for more documentation. If you don't have it, try pip3 install pyvo.\n",
 "\n",
 "You also want TOPCAT. If you don't have that yet, this is probably not something you'd like to try – get some less nerdy VO exposure first."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "%matplotlib inline\n",
 "import matplotlib.pyplot as plt\n",
 "import pyvo\n",
 "# the following calms down astropy's overzealous VOTable\n",
 "# parser\n",
 "import warnings\n",
 "warnings.filterwarnings('ignore', module=\"astropy.io.votable.*\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "The first step is: Find a list of bright Herbig-Haro objects. There are many ways to do that, but a good first step towards problems like this is typically to use SIMBAD. And we want powerful query modes (that perhaps we don't really need here, but they're definitely good to have), so we're looking for a TAP service."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Since it's so much faster to discover Simbad's TAP service using TOPCAT's TAP window or registry interfaces like http://dc.g-vo.org/WIRR, we do that and find out that the TAP access URL is http://simbad.u-strasbg/simbad/sim-tap. Keep the table browser in TOPCAT open, as you will want to use it for query construction (not that you couldn't introspect table metadata from pyVO, but that interface is built for machines, not for humans)."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "First create an object representing the Simbad TAP service:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "sim_tap = pyvo.dal.TAPService(\n",
 " \"http://simbad.u-strasbg.fr/simbad/sim-tap\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "There are analogous classes for other VO protocols (SIAP, SSA, SCS). They all have additional attributes allowing their manipulation and inspection. For a TAP service, your program might want to check table metadata. Here's an example looking for columns with magnitudes:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "for table_name, table in sim_tap.tables.items():\n",
 " for column in table.columns:\n",
 " if column.ucd and column.ucd.startswith(\"phot.mag\"):\n",
 " print(table_name, column.name)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Regrettably, this isn't useful in this case; the real magnitudes in Simbad are given in the allfluxes table, and tehy don't have UCDs there because... well, I simply don't know. Try asking them; a contact address in, for instance, in the Service tab in TOPCAT.\n",
 "\n",
 "Anyway, the TOPCAT table browser gets us on the right track (the allfluxes tables). Also, use the Reference URL from the Service tab to investigate the object types and what to write in otype. Once you have a query (and of course it's a good idea to prototype it in TOPCAT):"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "agbs = sim_tap.run_sync(\"\"\"\n",
 "select ra, dec, main_id\n",
 "from basic join allfluxes on (oidref=oid)\n",
 "where otype='AGB'\n",
 "and V<10\n",
 "\"\"\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "What's coming back can be turned into an astropy table using the to_table() method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "agbs.to_table()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Now let's see if there's any time series for these out there. You could do an all-VO query using SSAP (and that's a good exercise; use servicetype=\"SSA\" in the registry query) -- SSAP is currently being used to publish time series, too. But my bets for the future are on obscore, so let's use that. \n",
 "\n",
 "Let's first develop a query on a single server. And let's use my own, http://dc.g-vo.org/tap"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "What do we want to run? Well, check out the Obscore table structure; either in TOPCAT's table browser or even in the underlying standard (see http://ivoa.net/documents). You'll see we want to constrain dataproduct_type to timeseries, and we want to upload join s_ra and s_dec to the positions from Simbad. Let's try things first with one service; also note how table uploads work in pyVO:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "timeseries = pyvo.dal.TAPService(\"http://dc.g-vo.org/tap\"\n",
 ").run_sync(\"\"\"\n",
 " select\n",
 " obs_collection, access_url, access_estsize, \n",
 " t_min, t_max, em_min, em_max, \n",
 " h.*\n",
 " from tap_upload.agbs as h\n",
 " join ivoa.obscore\n",
 " on 1=contains(point('', h.ra, h.dec), \n",
 " circle('', s_ra, s_dec, 1/3600.))\n",
 " where dataproduct_type='timeseries'\n",
 " \"\"\",\n",
 " uploads= {'agbs': agbs})"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Mainly because of generalised confusion this query may run for some 10 seconds.\n",
 "\n",
 "In a few years, when everyone has TAP 1.1 and ADQL 2.1, you would certainly write what you can already write on this particular server for the join condition:\n",
 "\n",
 "```\n",
 "ON 1./3600>DISTANCE(s_ra, s_dec, h.ra, h.dec)\n",
 "```\n",
 "\n",
 "But alas, that wouldn't have worked on many ObsTAP servers yet (2018)."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Let's see what we have:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "timeseries.to_table()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "You can now load a time series and plot it, perhaps like this. I frankly don't know if there's a simple way to make astropy fetch a table from a remote URL, and I got tired looking for one, so I define a quick function to do that:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "from astropy import table\n",
 "from urllib.request import urlopen\n",
 "from io import BytesIO\n",
 "def load_remote_table(url):\n",
 " if isinstance(url, bytes):\n",
 " url = url.decode(\"utf-8\")\n",
 " f = urlopen(url)\n",
 " return table.Table.read(\n",
 " BytesIO(f.read()))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# If the following fails for you, don't worry -- you have an outdated\n",
 "# pyvo, that's all. Ignore it and happily continue.\n",
 "ts = load_remote_table(\n",
 " timeseries.to_table()[0][\"access_url\"])\n",
 "plt.plot(ts[\"obs_time\"], ts[\"flux\"])"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Or we send the access URLs we've discovered to TOPCAT. Again, astropy's SAMP interface is quite clunky as of version 3, so let's define a couple of functions to make this more palatable (you don't need to understand everything that's happening in the next cell)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import contextlib, os, tempfile\n",
 "from astropy.vo.samp import SAMPIntegratedClient, SAMPProxyError\n",
 "\n",
 "\n",
 "def find_client(conn, samp_name):\n",
 " \"\"\"returns the SAMP id of the client with samp.name samp_name.\n",
 "\n",
 " This will raise a KeyError if the client is not on the hub.\n",
 " \"\"\"\n",
 " for client_id in conn.get_registered_clients():\n",
 " if conn.get_metadata(client_id).get(\"samp.name\")==samp_name:\n",
 " return client_id\n",
 " raise KeyError(samp_name)\n",
 "\n",
 "\n",
 "@contextlib.contextmanager\n",
 "def samp_accessible(astropy_table):\n",
 " \"\"\"a context manager making astropy_table available under a (file)\n",
 " URL for the controlled section.\n",
 "\n",
 " This is useful with uploads.\n",
 " \"\"\"\n",
 " handle, f_name = tempfile.mkstemp(suffix=\".xml\")\n",
 " with os.fdopen(handle, \"w\") as f:\n",
 " astropy_table.write(output=f,\n",
 " format=\"votable\")\n",
 " try:\n",
 " yield \"file://\"+f_name\n",
 " finally:\n",
 " os.unlink(f_name)\n",
 " \n",
 " \n",
 "def send_product_to(conn, dest_client_id, data_url, mtype, name=\"data\"):\n",
 " \"\"\"sends SAMP messages to load data.\n",
 "\n",
 " This is a helper for send_spectrum_to and send_image_to, which work\n",
 " exactly analogous to each other, except that the mtypes are different.\n",
 "\n",
 " If dest_client_id, this is a broadcast (and we don't wait for any\n",
 " responses). If dest_client_id is given, we wait for acknowledgement\n",
 " by the receiver.\n",
 " \"\"\"\n",
 " message = {\n",
 " \"samp.mtype\": mtype,\n",
 " \"samp.params\": {\n",
 " \"url\": data_url,\n",
 " \"name\": name,\n",
 " }}\n",
 " if dest_client_id is None:\n",
 " conn.notify_all(message)\n",
 " else:\n",
 " conn.call_and_wait(dest_client_id, message, \"10\")\n",
 "\n",
 "\n",
 "@contextlib.contextmanager\n",
 "def SAMP_conn(\n",
 " client_name=\"pyvo client\", \n",
 " description=\"A generic PyVO client\",\n",
 " **kwargs):\n",
 " \"\"\"a context manager to give the controlled block a SAMP connection.\n",
 "\n",
 " The program will disconnect as the controlled block is exited.\n",
 " \"\"\"\n",
 " client = SAMPIntegratedClient(\n",
 " name=client_name,\n",
 " description=description,\n",
 " **kwargs)\n",
 " client.connect()\n",
 " try:\n",
 " yield client\n",
 " finally:\n",
 " client.disconnect()\n",
 "\n",
 "\n"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "I told you the interface was clunky. But the reward is that SAMP is now quite simple:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "with SAMP_conn() as conn:\n",
 " topcat_id = find_client(conn, 'topcat')\n",
 " for match in timeseries:\n",
 " send_product_to(conn, \n",
 " topcat_id, \n",
 " match[\"access_url\"].decode(\"utf-8\"),\n",
 " \"table.load.votable\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "You should now see the various time series popping up in TOPCAT, where you can investigate them as usual.\n",
 "\n",
 "Now it's your turn: Build a thing that does an all-VO obscore search for spectra – perhaps of these guys, or perhaps of something you are interested in.\n",
 "\n",
 "You'll need a few extra ingredients, though. First, here's how to discover the access URLs of all the TAP services out there that claim to support obscore (once you have those, you know how to query the services, right?):"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "for svc in pyvo.regsearch(datamodel='ObsCore'):\n",
 " print(svc.access_url)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "When querying lots of external resources, it pays to expect failures. Let's define a function that runs TAP queries, well, resiliently:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "def run_sync_resilient(svc, *sync_args, **sync_kw_args):\n",
 " try:\n",
 " return svc.run_sync(*sync_args, **sync_kw_args) \n",
 " except (\n",
 " pyvo.dal.DALServiceError, \n",
 " pyvo.dal.DALQueryError,\n",
 " requests.ConnectionError) as ex:\n",
 " print(\"{}:{}\".format(svc.baseurl, ex))\n",
 " return\n",
 " except KeyboardInterrupt: # Let the user abort slow queries\n",
 " return"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "One more think I should tell you to save you some poking around in documentation: How to merge the astropy tables coming back from different services. Here's a trivial example that should get you going:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "results = []\n",
 "for svc_url in [\n",
 " \"http://vao.stsci.edu/CAOMTAP/TapService.aspx\",\n",
 " \"http://dc.g-vo.org/tap\"]:\n",
 " svc = pyvo.dal.TAPService(svc_url)\n",
 " results.append(\n",
 " svc.run_sync(\n",
 " \"SELECT TOP 2 obs_collection, access_url FROM ivoa.obscore\"\n",
 ").to_table())\n",
 "merged = table.vstack(results)\n",
 "merged"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "What remains to do: Change the query above to your liking (at least add a TOP 10 or so lest you be flooded with results when someone puts up an AGB spectrum central), iterate over the services, and then merge the results. To investigate them (e.g., by wavelength and time range, etc), send the merged table to TOPCAT."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

https://github.com/astropy/pyvo
https://peps.python.org/pep-0008/

<prot> is SIA, SSA, SCS, SLA...

import pyvo

construct a service object with a service's endpoint URL

service = pyvo.dal.<prot>Service(access_url)

#call the search method with the protocol's parameters

for result in service.search(<parameters>):

...work on dict-like object result...

The “dal” in here means “Data Access Layer”, which essentially means: the VO protocols
dealing with how to query services and how the services are supposed to respond.

You will soon learn how to find out the access URLs.

Query a Single Image Service

Example: SIAP, the VO’s protocol to access image servers.
Query a VO service for a list of images covering a small field on the sky, and download one of
these images:

svc = pyvo.sia.SIAService(ACCESS_URL)

images = svc.search((340.1,3.36), size=(0.1, 0.1))

image=images[0]

image.cachedataset()

basicsiap.py

For SIAP, pos (as a tuple of ra and dec) and size (in degrees, either one radius or extent in ra
and dec) are mandatory. More parameters: in the pyvo docs6.
Also: row.cachedataset saves the image to your local disk under a name sensible for the
metadata. In case the filename produced by cachedataset has an extension .None on your
machine: that’s a bug in pyVO that was fixed in 2024.
Note how you do not have to know anything about the service except its access URL. Since
pyVO uses a standard protocol, it knows enough to be able to, in this case, retrieve the file and
(mostly) give it a reasonable name.
This is a very basic example, though. pyVO provides you with more functionality that helps
analysing the results before selecting the images. We will see some of these functions by using
pyVO in a more interactive setting (e.g. ipython).
Getting source code: In case your PDF viewer gives you a hard time saving the attached Python
code or does not support attachments at all, you can find all the files in this course’s repository.
Just run

git clone https://codeberg.org/msdemlei/pyvo-course

6http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIAService.html#pyvo.dal.SIAService.search

36

"""
A very basic example for how to operate a SIAP service from PyVO:
find images for a specific position.
"""

import pyvo

ACCESS_URL = "http://dc.g-vo.org/maidanak/res/rawframes/siap/siap.xml?"

Make Service Instance:
svc = pyvo.sia.SIAService(ACCESS_URL)

Query the Service and return the list metadata of datarecords matching the
criteria. Note: This does not download the actual data!
images = svc.search((340.1,3.36), size=(0.1, 0.1))

Select a specific image to download. Here usually much more
sophistacted code is used, e.g. user input. We focus on a very basic
selection
image=images[0]

Download the selected image.
image.cachedataset()

Now use your favourite FITS viewer (ds9? aladin?) to look at
what you have just downloaded.

http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIAService.html#pyvo.dal.SIAService.search

Exercise 22
Get our example basicsiap.py from the notes.
Now find an image service publishing the ROSAT survey and pointed observations and
see if it has an image for the position given (or try some other service and position you
are actually interested in).
Use WIRR7 to search the VO Registry for now.
What is coming back from SIAService’s search is a sequence of SIARecords. Have a
quick look at its pyvo documentation8 and make your program print the file size and
the instrument name rather than calling cachedataset.

This is Python

The advantage of doing this in Python is that it is easy to add your own logic. Here is how to
add time constraints (SIAP version 1 unfortunately does not specify how to tell the service you
are only interested in a specific time interval – we will later see how more modern standards
let you push time constraints to the server) and search multiple positions:

svc = pyvo.sia.SIAService(ACCESS_URL)

for pos in [

(213.97, 11.50),

(230.44, 52.92)]:

images = svc.search(pos, size=(0.5, 0.5))

for row in images:

if not DATE_MIN<row.dateobs<DATE_MAX:

continue

row.cachedataset()

multisiap.py

A word on row.dateobs: While SIAP (as most of the VO) delivers dates as modified julian dates
(MJD), pyVO turns these values into astropy.time.Time instances. You could turn these back into
floats (my taking their .mjd.real attribute) and compute with MJD yourself, but it is smarter to
keep your times in Time instances, too, as shown in the multisiap.py.

Metadata in pyVO

You can access the metadata coming with the response VOTables from pyVO, too, albeit some-
what obscurely:

>>> import pprint

>>> pprint.pprint(images.votable.infos)

[<INFO ID="legal" name="legal" value="The data from Maydanak observatory

>>> pprint(images.votable.resources[0].infos)

[<INFO ID="queryPars" name="queryPars" value="(%(siaarea0)s && c

<INFO ID="QUERY_STATUS" name="QUERY_STATUS" value="OK"/>,

<INFO ID="request" name="request" value="/maidanak/res/rawframes/siap/s

<INFO ID="standardID" name="standardID" value="ivo://ivoa.net/std/sia"/

<INFO ID="server_software" name="server_software" value="DaCHS/2.9.3 tw

<INFO ID="server" name="server" value="http://dc.zah.uni-heidelberg.de"

<INFO ID="citation" name="citation" ucd="" value="http://dc.zah.uni-hei

<INFO ID="citation" name="citation" ucd="" value="http://dc.zah.uni-hei

<INFO ID="ivoid" name="ivoid" ucd="meta.ref.ivoid" value="ivo://org.gav

7http://dc.g-vo.org/WIRR
8https://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIARecord.html#pyvo.dal.SIARecord

37

"""
A trivial example for how to operate a SIAP service from PyVO:
find images from a list of positions and by date.

Get ACCESS_URL from, e.g., http://dc.g-vo.org/WIRR.
"""

from astropy.time import Time
import pyvo

ACCESS_URL = "http://dc.g-vo.org/maidanak/res/rawframes/siap/siap.xml?"
DATE_MIN = Time("2004-02-26", scale="tt")
DATE_MAX = Time("2004-03-01", scale="tt")

def main():
 svc = pyvo.sia.SIAService(ACCESS_URL)
 for pos in [
 (213.97, 11.50),
 (230.44, 52.92),
 (150.36, 55.90)]:
 images = svc.search(pos, size=(0.5, 0.5), verbosity=2)

 for row in images:

 if not DATE_MIN < row.dateobs < DATE_MAX:
 continue

 print("{} Get ({} bytes)?".format(
 row.title,
 row.filesize), end=" ")
 if input().strip().lower().startswith("y"):
 row.cachedataset()

if __name__ == "__main__":
 main()

http://dc.g-vo.org/WIRR
https://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIARecord.html#pyvo.dal.SIARecord

For why the information is available in this way, you need to understand a bit of VOTable (see
sidetrack F). But this pattern works for all responses you will deal with in current VOTable.

Excursion: The Python Debugger

To inspect metadata like this from within a running program (as opposed to a notebook), it is
really convenient to use the python debugger. To drop into it, call pdb.set_trace():

for pos in [

(150.36, 55.90)]:

images = svc.search(pos, size=(0.5, 0.5), verbosity=2)

import pdb;pdb.set_trace()

for row in images:

You can then enter Python statements (like the info expressions) and do many other things
described in the Python reference9. When done looking around, you can type cont to let your
program continue of quit to exit it.

And now all-VO

The nice thing about standard services: Handle one, and you get them all. So, let’s add a query
to the Registry and run our query all over the VO –

for svc in registry.search(servicetype="sia", waveband="optical"):

try:

search_one_service(svc.accessurl)

except Exception:

import traceback; traceback.print_exc()

globalsiap.py

Wisdom: In multi-service queries, expect at least one service to be broken. Write your scripts
to cope.
The registry.search function we are using here interfaces to a big directory of all the services
that are in the VO: The Registry, which is also what is underlying the WIRR web page em-
ployed in problem 22.
The way we are querying the Registry here is a bit simplistic. In particular, you probably do not
want to use servicetype constraints when doing science work. Global dataset discovery (which
is what we are approaching here) is a lot more involved than just querying all services of a
type (although this used to somewhat work in the early days of the VO). For now, however, we
when we query like this, for everything that comes back from registry.search, we can request
an image (“SIA”) service. This happens in search_one_resource with

svc = res_rec.get_service("sia", lax=True)

9https://docs.python.org/3/library/pdb.html

38

"""
A little script doing an all-VO SIAP query for some positions and a date
range.
"""

import random
import sys

from astropy.time import Time
from pyvo.dal import sia
from pyvo import registry

from astropy import coordinates

POS = coordinates.SkyCoord.from_name("M51")

def search_one_resource(res_rec):
 print("\nNow querying ", res_rec.res_title)
 svc = res_rec.get_service("sia", lax=True)
 images = svc.search(pos=POS, size=0.5)
 for match in images:

 if match.dateobs is None:
 # behave like a database: comparisons with NULL are always
 # False.
 continue

 print(f"{match.title} {match.filesize} Get? ", end=" ")
 if input().strip().lower().startswith("y"):
 match.cachedataset()

def main():
 for res_rec in registry.search(servicetype="image"):
 if random.random()<0.9:
 continue

 try:
 search_one_resource(res_rec)
 except KeyboardInterrupt:
 if input("\nQuit? ").strip().lower().startswith("y"):
 sys.exit()
 except:
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

https://docs.python.org/3/library/pdb.html

Accept the lax argument for now. We will have a closer look at pyVO’s Registry API later.
The exception catcher is there since not all services claiming to be standards-compliant actu-
ally are. It does not hurt to complain to the service operators if a service you are interested
in behaves weirdly – sometimes the operators simply have not noticed that it is broken, or
possibly has just broken.
To find out who to complain to, you can again use the Registry; the objects that are returned
from registry.search have a get_contact method:

>>> svcs = pyvo.registry.search(keywords="pyvo")

>>> svcs[0].get_contact()

'Hendrik Heinl (+49 6221 541849) <gavo@ari.uni-heidelberg.de>'

You will probably also see lots of warnings from astropy’s VOTable parser. This is partly
because astropy is overly paranoid, rejecting UCDs actually required by the SIAP standard,
partly because operators botch things. Interoperability is not always easy. At this point it is
probably too early to complain to operators about astropy’s VOTable warnings. We will later
turn them off.
If a service hangs, you can interrupt it by hitting Control-C. In production code, you can set
timeouts. We will later see how to do that.

Exercise 23
Get the globalsiap.py script from the attachment and change it so it skips 90% of the
services discovered randomly (use random.random()). Also, remove the constraint on
the date (we don’t need that here) and change the position to something you are
interested in or expect to have pretty pictures (M1 or M51 are always good candiates).
Run the thing and see what you find.

Add SAMP Magic

SAMP lets you exchange data between VO clients. Your script is a VO client, too. Let’s make
it broadcast some of the found images:

with pyvo.samp.connection() as conn:

... (search) ...

pyvo.samp.send_image_to(conn, image.acref)

globalsiapsamp.py

Before running this, start Aladin (or some other SAMP-enabled image client) so the images are
displayed.
In general, SAMP-enabling programs may not come quite natural to people who so far have
mainly written fairly linear science code, because when doing SAMP you usually want to react
to external events. In linear code this is rather uncommon.
In this example we are just sending data, which does not require much reacting to external
signals. We still have to manage the connection to the SAMP hub – things get ugly if you do
not properly close the connection –, which is taken care of by a context manager from pyvo.samp.
A context manager is a python construct consisting of an opening line of the form with cm [as name]:

and then a block, the “controlled block”. It is designed to ensure what is called “external in-
variants”, some piece of state that the system should be in outside of the controlled block. You
may know this from files, where the external invariant is “the file is closed”:

39

"""
A little script doing an all-VO SIAP query for some positions and a date
range; the results can be sent to SAMP clients.
"""

import sys

from astropy.time import Time
import pyvo

DATE_MIN = Time("1990-01-01", scale="tt")
DATE_MAX = Time("2005-12-31T23:59:59", scale="tt")

def search_one_resource(res_rec, conn):
 print("\nNow querying ", res_rec.res_title)
 svc = res_rec.get_service("sia", lax=True)

 for pos in [
 (213.97, 11.50)]:
 images = svc.search(pos, size=0.5)
 for match in images:

 if match.dateobs is None:
 # behave like a database: comparisons with NULL are always
 # false.
 continue
 if not DATE_MIN <= match.dateobs <= DATE_MAX:
 continue

 print(f"{match.title} Show? ", end="")
 if input().strip().lower().startswith("y"):
 pyvo.samp.send_image_to(
 conn, match.acref, name=match.suggest_dataset_basename())

def main():
 with pyvo.samp.connection() as conn:
 for res_rec in pyvo.registry.search(
 keywords=["quasars"],
 servicetype="image"):
 try:
 search_one_resource(res_rec, conn)
 except KeyboardInterrupt:
 if input("\nQuit? ").strip().lower().startswith("y"):
 sys.exit()
 except:
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

with open("test.txt", "w") as f:

f.write("some content\n")

print("f is closed")

By the time the print statement is reached, Python’s semantics guarantee that f is closed and
the content is written, regardless of what else happened (think exceptions) happened in the
controlled block. The SAMP connection similarly ensures that once the controlled block is left,
the connection is closed.
Given we are doing function calls between different processes written in different languages,
we would argue this kind of code actually is surprisingly compact.

Exercise 24
Get the pyVO source code and find the source of pyvo.samp. Start TOPCAT, find the
implementation of the connection context manager, and then open a SAMP connection
manually from an interactive Python prompt. And then again, and a third time. What
do you observe in TOPCAT?
Hint: To get the source code, try:
git clone https://github.com/astropy/pyvo.
Or, on Debian-derviced boxes:
apt source python3-pyvo

Exercise 25
Still in samp.py, inspect how send_image_to is implemented. From reading the code, can
you figure out how to only send the image to Aladin? If you can, try your solution in
globalsiapsamp.py by having Aladin and ds9 (Debian package: saods9) open at the
same time.
Hint: To find out Aladin’s client name, check TOPCAT’s SAMP status window.

6 pyVO and TAP

Enter TAP

What we have seen so far does not scale when you are interested in more regions.
Also, only fairly basic constraints are supported.

TAP is far more powerful.
Sample use case: Integrate photometry from different source catalogues, do some local work
on results, try to obtain spectra for interesting candidates.

Run Sync TAP Queries

Run queries via TAP:

40

access_url = "http://dc.g-vo.org/tap"

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(

"""SELECT raj2000, dej2000, jmag, hmag, kmag

FROM twomass.data

WHERE jmag<3""")

for row in result:

print(row["raj2000"], row["jmag"])

Exercise 26
Write a program that prints the number of rows in the table arihip.main in the TAP
service at http://dc.g-vo.org/tap (do not pull all the rows and use python’s len).
Hint: With ADQL’s AS construct you can control the names of table columns.

This is another instance of the pyVO pattern “create a service object, then call a method”. In
this case, we are calling run_sync – this is not called query as for the other services because TAP
has two modes of operation; we will get to the other one (unsurprisingly called async) in a
moment.
What is coming back from run sync is a sequence of dal.Record elements (well, the truth
about TAPResults10 is a bit more complex, but that’s the gist of it).
You can make a normal astropy table from the result by calling result.to_table(), and there
often are good reasons to do that. For instance, to save the table to a disk file, you can write:

result.to_table().write("saved.vot", format="votable")

Step 1a: Multiple TAP Queries

Imagine more interesting queries here.

QUERIES = [

("twomass", "http://dc.zah.uni-heidelberg.de/tap",

"""SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag

...CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),

...}

with pyvo.samp.connection() as conn:

for short_name, access_url, query in QUERIES:

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(query.format(**locals()), maxrec=90000)

pyvo.samp.send_table_to(

conn,

result.to_table(),

client_name="topcat",

name=short_name)

fetch3.py

This does several things we have not seen before:

• QUERIES is a sequence of tuples; for examples, check the full source. Tuples are often a
good choice when you have “inhomogeneous” (e.g., each item in a sequence “means”
something different) data without much behaviour. When the rows become more com-
plex, consider using python’s dataclasses module, and when they have non-trivial be-
haviour, a “normal” class. Here, we just group a service title, a service URL, and a tem-
plate for the query to run, for which a tuple works nicely.

10http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.TAPResults.html

41

#!/usr/bin/python

This code is in the public domain.

Step 1: Query three VO services, broadcast the result via SAMP
(requires: pyvo).

Queries are configured as triples of short name, access url (as from a
registry query) query. You *could* use TAP_SCHEMA to automate query
generation, but that's left as an exercise to the reader

import sys
import pyvo

Note that it's of course silly to use TAP to do just cone searches.
Imagine more interesting queries here.
QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("allwise", "http://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("sdss", "https://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),]

def main():
 # arguments: ra, dec, and sr; fill in a known-good default
 if len(sys.argv) != 4:
 ra, dec, radius = 30, 10, 0.05
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 # make (and close when done) a SAMP connection so we can
 # talk to other clients
 with pyvo.samp.connection() as conn:
 # now run the three queries, sending the results via samp:
 for short_name, access_url, query in QUERIES:
 service = pyvo.dal.TAPService(access_url)
 # you could now figure out interesting things about the service,
 # e.g., its table schema and such, to potentially construct queries.
 result = service.run_sync(query.format(**locals()), maxrec=90000)
 pyvo.samp.send_table_to(
 conn,
 result.to_table(),
 client_name="topcat",
 name=short_name)

if __name__ == "__main__":
 main()

http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.TAPResults.html

• query.format(**locals()) is a trivial example of what’s called templating; you write a string
that gets filled in, in this case using python’s plain format method. You can (and some-
times should) get a lot more fancy with templating; one reason to do that could be to
automatically quote strings. But as long as you control both the template and the fillers,
it is probably better to not pull in extra dependencies just for templating.

**locals() is a way to say: make all local variables available as keyword arguments. In
general, ** in an argument list means: what’s next is a mapping, and turn it into keyword
arguments, which sometimes is convenient if you want to build up a set of arguments
step by step.

• maxrec=90000 asks the server to return up to 90’000 rows (the match limit). When you do not
pass maxrec, a service-specific default kicks in; you can find that default at service.maxrec
(but take it with a grain of salt; this may be something like a lower limit). PyVO will issue
a warning if your result overflowed your maxrec.

• pyvo.samp.send_table_to does a SAMP transfer of an astropy table (hence the .to_table())
to a SAMP client; it does a broadcast if you do not pass a client_name.

Exercise 27
The following program should print URIs and titles for images in some collection for
whatever names are in OBJECTS:

import pyvo

OBJECTS = ["IC 4756", "NGC 3377"]

QUERY = """select accref, imagetitle

from maidanak.reduced

where object={object}"""

svc = pyvo.dal.TAPService("https://dc.g-vo.org/tap")

for object in OBJECTS:

print(svc.run_sync(QUERY.format(**locals())).to_table())

(Note: this is not the way to match against multiple objects; you would instead use SQL
sets or, probably more commonly, TAP uploads outside of silly exercises).
What really happens: An error message. Can you figure out where it comes from and
how to fix things?

Exercise 28
Use TOPCAT’s TAP data browser to locate services and table names for TGAS and
RAVE (or just use the GAVO DC TAP service with tables tgas.main and rave.main).
Also figure out where the positions and some usable magnitude are, plus the proper
motions from TGAS and the radial velocities from RAVE (or just blindly use ra, dec,
pmra, pmdec, phot g mean mag for TGAS and raj2000, dej2000, rv, and hmag for
RAVE).
Re-write fetch3.py to query the retrieve all stars between 8 and 8.2 mags from each table
(don’t worry about the difference between H and G magnitudes for this problem). Also,
send the results to Aladin (which is known as Aladin (capitalised) on the SAMP bus).
See if you can get a nice plot of rv, pmra, and pmdec.
Hint: Check Aladin’s Catalog/Create filter for fancy plotting options.

42

Step 2: Go Async

When doing a lot of queries or long-running queries, run them asynchronously and in parallel.
In this case, the main advantage is that we can run our queries in parallel. If all you want is
have more time for your query, see the next slide for simpler options to run async TAP jobs.

jobs = set()

for short_name, access_url, query in QUERIES:

job = pyvo.dal.TAPService(access_url).submit_job(

query.format(**locals()), maxrec=9000000)

job.run()

jobs.add((short_name, job))

while jobs:

time.sleep(5)

for short_name, job in list(jobs):

if job.phase not in (’QUEUED’, ’EXECUTING’):

jobs.remove((short_name, job))

pyvo.samp.send_table_to(...)

job.delete()

fetch3-async.py

We told you sync is easier to program with. But on the other hand: With this program, all three
queries run in parallel, which is nice, in particular if they take a while. Additionally, you have
a little more control about when to receive the data.
What’s happening here? First, we submit all jobs. Rather than run sync we now use TAPSer-
vice’s submit job method. While taking the same arguments as run sync, it immediately re-
turns. Since it cannot peek into the future, it cannot return the finished result. Instead, you
get an object that one can use to manipulate the remote job. That remote job is not started by
submit job. It is instead waiting for further configuration (e.g., increasing its maximal run-
time) or a request to put it into the processing queue.
For our task, it is enough to just start the job using the run method. We then add it to a watch
set of running jobs.
The rest of the code above is all about managing this set. In a polling loop – be sure to introduce
sleeps or your code will hit the remote services all the time – we iterate through the jobs.
Actually, we iterate over a copy of the job set since we want to delete completed from it, and
we couldn’t do that if there was an iterator over it active.
In the loop body, we check the phase attribute of the job. Although this looks like an attribute
access, in each iteration pyVO goes to the remote service and asks it what our job is doing.
While it is in either QUEUING or EXECUTING states, it is still worth waiting for a result.
Once we find a job is done, we remove it from the job list and send the result over to TOPCAT
as before.
Finally, we delete the remote job. That’s a nice thing to do. Services will eventually delete
your job anyway (you can figure out when and even change that date in the job’s destruction
attribute), but it is good style to discard jobs once you do not need them any more.
This example is primarily intended to illustrate async mode itself.

Lightweight async

If you can live without real-time monitoring, you can write more concisely:

43

#!/usr/bin/python

This code is in the public domain.

Step 2: as fetch3.py (see there for comments what's going on)
but now we're querying async, in parallel

import sys
import time

import pyvo

QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 # limiting wise matches since both vizier and astropy's
 # VOTable parser are lame in some sense
 ("allwise", "https://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE w1mag<14 AND
 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("sdss", "https://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),]

def main():
 if len(sys.argv) != 4:
 ra, dec, radius = 30, 10, 0.20
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 jobs = set()
 for short_name, access_url, query in QUERIES:
 # in async, you first create a job:
 job = pyvo.dal.TAPService(access_url).submit_job(
 query.format(**locals()), maxrec=9000000)
 # then start it. This immediately returns.
 job.run()
 # we keep note of the jobs we started -- we'll watch them later.
 jobs.add((short_name, job))

 with pyvo.samp.connection() as conn:
 # now watch jobs until they return, then take them off the watch list
 # and send their result
 while jobs:
 # we do the list(.) so we can remove jobs with impunity
 for short_name, job in list(jobs):
 # async jobs are in phases; they're done (or failed) when
 # they're neither queued nor executing.
 print(short_name, job.phase)
 if job.phase not in ('QUEUED', 'EXECUTING'):
 jobs.remove((short_name, job))
 pyvo.samp.send_table_to(
 conn,
 # this is how you get the result from a finished job
 job.fetch_result().to_table(),
 client_name="topcat",
 name=short_name)
 # be a good citizen: clean up your job (it'll be cleaned up
 # eventually anyway, but that might take a while)
 job.delete()

 # wait a bit before doing the next round of polling
 time.sleep(0.5)

if __name__ == "__main__":
 main()

job.wait()

job.raise_if_error()

result = job.fetch_result()

In its default configuration, job.wait() waits for a change in the job status or a timeout and then
returns. On modern TAP services, this generally is only one request every 10 minutes or so;
this saves server-side ressources.
The raise_if_error() method gives you more reasonable exceptions than if you blindly try to
access results from jobs that failed server-side.
With only a single job at a time, it is even simpler:

result = svc.run_async(query, ...)

The interface of run_async is that of run_sync, i.e., it will block until the results are in. Use it if
you have to go async because your job runs too long for sync but you want to avoid the dance
with checking the phases.

Step 3a: UCDs build SEDs

Can we build SEDs from the results of the three services?
Not simply; photometry metadata in the VO is not quite sufficient for that yet. However, UCDs
let us do a workaround:

UCD_TO_WL = {

"phot.mag;em.opt.u": 3.5e-7,

"phot.mag;em.opt.b": 4.5e-7,

"phot.mag;em.opt.v": 5.5e-7,

"phot.mag;em.opt.r": 6.75e-7, ...}

for row in rows:

for index, col in enumerate(row):

ucd = row.columns[index].meta.get("ucd", "").lower())

if ucd.startswith("phot.mag"):

if ucd in UCD_TO_WL:

phots.append((UCD_TO_WL[ucd], col))

Calling our multi-band data a SED (“Spectral Energy Distribution”, that is some sort of flux
densities plotted as a function of the spectral coordinate) is perhaps somewhat pretentious. To
make this an actual SED, we would at least have to worry about photometry systems, which
is a real concern even in the narrower optical, not to mention when you leave the optical. But
bear with us.
What we can do is assign rough wavebands based on the UCDs we find on the various columns
we retrieve (cf. sidetrack D for more on UCDs).
The clean way, incidentally, is a proper annotation of the columns in question with full pho-
tometry metadata (e.g., central wavelength, bandwidth, the system, perhaps a URL of the
detector’s response curve, etc). The details are hellish, but there actually is a photometry DM
in the VO. There is just not a good way to put that information into a VOTable yet. If you
are looking for something to contribute to the VO: this would be a good task. Just ask on the
IVOA’s data models mailing list.

44

Step 3b: Aggregate Photometry

Construction of “clusters” is in vohelper.py and uses astropy’s SkyCoords and match catalog to sky

(asymmetric!).
For three catalogues, we must perform six sky matches to get pairs, then walk the graph to
gather the clusters.
This actually is pure astropy and has nothing to do with pyVO as such. As a matter of fact, it
is usually smarter to have the remote sides do the cross matches if at all possible.
In this case, since we do not have a “master catalogue” to match against, that is actually hard.
For smallish crossmatches, the code in vohelper works reasonably well (but it scales horribly
when then number of tables increases; use specialised packages when your problem takes that
direction).
What is happening in that code? sky coords are astropy.SkyCoord instances (in the example
code, there is a function get coordinates for table that makes these for essentially arbitrary
tables as long as they are properly marked up).
The code then goes through all pairs of input SkyCoords and uses their catalogue match method
to generate pairs of indices into these objects that are the closest pairs (that operation is not
symmetrical, which is why we compute the matches with all permutations).
The remaining code filters out those pairs that are closer than a limit that is passed in and adds
a new pair of rows to be matched to a set. Each row is designated as a pair of table index and
row index within that table.
The rest is a graph problem: If you compute the connected subsets of the graph formed in
this way, you will have all measurements that are crossmatched together and thus, hopefully,
correspond to one object.
Sorry for this excursion. Feel free to ignore this.

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

2MASS SDSS WISE

Graph-based clustering

as
Sky

as
C

atalogue

For this course, but perhaps also for convenience in wider usage, we have gathered some
helper functions in a module vohelper that you can find on the web page and attached to the
PDF. Have a glance at the source code if you want. Otherwise, just dump it next to your scripts
so you can import it.

vohelper.py

Combine with “your” Code

This is python: Add your own logic!
Here: Let’s display the approximate SEDs and let the user interactively select “interesting”
cases.

45

Helpers for using PyVO and astropy, as used by the PyVO talk(s) given
by GAVO Heidelberg.
#
This code is in the public domain.

import requests
import pyvo
import numpy
import functools
import itertools
import re
import traceback
import warnings

astropy's votable code is overzealous in complaining about things
-- that's worthless for a consumer, so let's turn it off.
warnings.filterwarnings('ignore', module="astropy.io.votable.*")

def show_exception(func):
 """decorates func such that any exceptions coming out of it are
 shown in the terminal (and then re-raised).
 """
 def _(*args, **kwargs):
 try:
 return func(*args, **kwargs)
 except Exception:
 traceback.print_exc()
 raise

 return functools.update_wrapper(_, func)

def get_name_for_ucd(ucd, table):
 """returns the name of a column having ucd in an astropy table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 pyVO, for its result sets, already has a similar method on result sets,
 fieldname_with_ucd, but we are expecting astropy tables here.
 """
 ucd = ucd.lower()

 for col in table.columns.values():
 if col.meta.get("ucd", "").lower() == ucd:
 return col.name
 raise KeyError(ucd)

SOME_SQL_RESERVED_WORDS = set(
 "area box centroid circle coordsys distance exp log point region"
 " avg case cross current date day desc distinct double exists"
 " found full global group hour key left level max min month"
 " precision prior public real right second set size sum"
 " time timestamp to true upper user value when where year".split())

def quote_if_necessary(identifier):
 """returns a delimited version of identifier if it doesn't look it would
 pass for a SQL regular identifier.

 We actually allow dots since we don't want to parse table references
 with schema names. If someone is devious enough to break this
 with a simple dot, they have waived their moaning rights.

 We only check for a few of the most tempting SQL keywords, though.

 This function shouldn't really be necessary here as TAP operators ought
 to give pre-quoted identifiers in tap_schema and friends. They don't
 yet, though.
 """
 if re.match('".*"$', identifier):
 # we are already quoted
 return identifier

 elif (re.match("[A-Za-z][A-Za-z0-9_.]*$", identifier)
 and not identifier.lower() in SOME_SQL_RESERVED_WORDS):
 return identifier

 else:
 return '"{}"'.format(
 identifier.replace('"', '""'))

def compute_multi_join(sky_coords, radius):
 """does an len(sky-coords)-way crossmatch of rows in sky_coords and returns
 the indices to match up.

 This is essentially an n-way symmetric crossmatch. It's not efficient,
 though, and also exclusively positional.

 You probably want to use a real clustering algorithm here. Astroml,
 http://www.astroml.org/, for instance, looks like a nice package.
 """
 # match all tables against all tables for now
 matches = set()
 for left, right in itertools.permutations(range(len(sky_coords)), 2):
 idx, dist2, _ = sky_coords[left
].match_to_catalog_sky(sky_coords[right])

 pairs = numpy.array([numpy.arange(len(idx)), idx]).transpose()
 for left_ind, right_ind in pairs[dist2 < radius]:
 matches.add(((left, left_ind), (right, right_ind)))

 # aggregate the matches (i.e., put everything matched to the same thing
 # in one box
 to_join = {}
 for ob1, ob2 in matches:
 if (ob1 in to_join and ob2 in to_join
 and to_join[ob1] is not to_join[ob2]):
 to_join[ob1] = to_join[ob2] = to_join[ob1] | to_join[ob2]
 elif ob2 in to_join:
 to_join[ob1] = to_join[ob2]
 to_join[ob1].add(ob1)
 elif ob1 in to_join:
 to_join[ob2] = to_join[ob1]
 to_join[ob2].add(ob2)
 else:
 to_join[ob1] = to_join[ob2] = set([ob1, ob2])

 return set(frozenset(v) for v in to_join.values())

def run_sync_resilient(svc, *sync_args, **sync_kw_args):
 """runs a sync query in a TAP service svc, catching and logging all
 kinds of errors.

 On error, this just returns None.

 In particular, this catches ^C so people can cancel individual
 queries.

 This is really intended for all-VO-queries where we don't and shouldn't
 care about a couple of broken services.
 """
 try:
 return svc.run_sync(*sync_args, **sync_kw_args)
 except (
 pyvo.dal.DALServiceError,
 pyvo.dal.DALQueryError,
 requests.ConnectionError) as ex:
 print("{}:{}".format(svc.baseurl, ex))
 return
 except KeyboardInterrupt: # Let the user abort slow queries
 return

for pos, phots in seds:

to_plot = np.array(phots)

plt.semilogx(to_plot[:,0], to_plot[:,1], ’-’)

plt.show(block=False)

selection = input(

"s)elect SED, q)uit, enter for next? ")

if selection=="q":

break

if selection=="s":

selected.append(pos)

plt.cla()

return selected

fetch3-cluster.py

This is fairly standard matplotlib. We are interacting through input in the shell here for sim-
plicity. It is not actually hard to interact through the matlotlib window, but that requires a bit
object magic that we wanted to avoid here.

Exercise 29
Go through the source code of fetch3-cluster.py. You will see we have put in two
workarounds for where the data providers messed up. Can you see in each case what
might have gone wrong? Have the service operators fixed their software or do things
still fail when you remove a workaround? In a course setting, coordinate with your
neighbours and split up the work so each only looks at one workaround.

Exercise 30
Run fetch3-cluster.py and select a couple of objects. Keep the resulting file
(selected positions.vot) – we will want to reuse it later.

Write Tables in Style

Please furnish your tables with metadata. fetch3-cluster shows you how to do it with astropy:

t = table.Table()

t.add_column(table.Column(

name='ra',

data=selected[:, 0],

unit=u.degree,

description="ICRS RA of a selected object",

meta={"ucd": "pos.eq.ra;meta.main"}))

Looking for Spectra

Suppose you have a couple of positions for “interesting” objects. Can we find spectra for them?
SSAP is the traditional VO protocol to access spectra, quite like SIAP, and we could query SSAP
services just like we queried SIAP services. However, SSAP only lets you access one object at
a time, which is kind of tedious.
Let’s use

ObsTAP = TAP with table ivoa.obscore

ivoa.obscore has lots of metadata on observational data products (spectra, cubes, timeseries).
Having what people generally call a “data model” – here, rather a set of pre-defined columns
– enables a lot of powerful data discovery scenarious when coupled with TAP. So, why do we
bother with SCS, SIAP, and SSAP?

46

#!/usr/bin/python

This code is in the public domain.

Step 3: as Step 1, but this time cluster the points retrieved to
combine the different photometry, then show sketches of the SED
and let users select objects for closer inspection.

import pickle
import os
import sys

from astropy import coordinates
from astropy import units as u
from astropy import table
from matplotlib import pyplot as plt
import numpy as np
import pyvo

import vohelper

for rough SED: map filter UCDs to representative wavelengths
to do this better, we'd need more takeup of the photometry DM
UCD_TO_WL = {
 "phot.mag;em.opt.u": 3.5e-7,
 "phot.mag;em.opt.b": 4.5e-7,
 "phot.mag;em.opt.v": 5.5e-7,
 "phot.mag;em.opt.r": 6.75e-7,
 "phot.mag;em.opt.i": 8.75e-7,
 "phot.mag;em.ir.j": 1.25e-6,
 "phot.mag;em.ir.h": 1.75e-6,
 "phot.mag;em.ir.k": 2.2e-6,
 "phot.mag;em.ir.3-4um": 3.5e-6,
 "phot.mag;em.ir.4-8um": 6e-6,
 "phot.mag;em.ir.8-15um": 11.5e-6,
 "phot.mag;em.ir.15-30um": 22.5e-6,
}

QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 	AND Jmag<15"""),
 ("allwise", "https://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 AND w1mag<14"""),
 ("sdss", "https://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 AND i_mag<16"""),]

def work_around_vizast_bug(col):
 """fixes a non-interoperability problem between VizieR and astropy:
 arraysize=1 has not meant 1-array on Vizier-TAP.

 This function makes arrays of such 1-arrays arrays of scalars.
 """
 if not np.isscalar(col[0]) and col[0].shape == (1,):
 return col.__class__(
 data=col[:, 0],
 name=col.name,
 mask=col.mask[:, 0],
 unit=col.unit,
 meta=col.meta)
 else:
 return col

def work_around_sdss_ucd_bug(name, ucd):
 """guesses better UCDs for SDSS' botched ones.
 """
 if ucd == "phot.mag;em.opt":
 return {
 "u_mag": "phot.mag;em.opt.u",
 "g_mag": "phot.mag;em.opt.b",
 "r_mag": "phot.mag;em.opt.r",
 "i_mag": "phot.mag;em.opt.i",
 "z_mag": "phot.mag;em.opt.i",
 }[name]
 return ucd

def get_tables(ra, dec, radius):
 """returns pairs of (short_name, result) for the queries defined.

 For experimentation, we cache the results here; to clear the cache,
 delete the file cache.pickle.
 """
 if os.path.exists("cache.pickle"):
 with open("cache.pickle", "rb") as f:
 return pickle.load(f)

 results = []
 for short_name, access_url, query in QUERIES:
 service = pyvo.dal.TAPService(access_url)
 results.append(
 (short_name, service.run_sync(query.format(**locals())).to_table()))

 with open("cache.pickle", "wb") as f:
 pickle.dump(results, f)

 return results

def get_coordinates_for_table(table):
 """returns SkyCoord objects for an astropy table.

 This uses pos.eq.*; meta.main UCDs to know where to look.
 """
 ra_column = vohelper.get_name_for_ucd(
 "pos.eq.ra;meta.main", table)
 dec_column = vohelper.get_name_for_ucd(
 "pos.eq.dec;meta.main", table)

 # fix broken metadata (sigh)
 if table[ra_column].unit == "Angle[deg]":
 table[ra_column].unit = "deg"
 if table[dec_column].unit == "Angle[deg]":
 table[dec_column].unit = "deg"

 return coordinates.SkyCoord(
 # WORKAROUND!
 work_around_vizast_bug(table[ra_column]),
 work_around_vizast_bug(table[dec_column]))

def force_scalar(val):
 """returns val[0] if val is an array, val otherwise.

 Again, this is a workaround for a vizier-astropy battle.
 """
 if np.isscalar(val):
 return val
 else:
 return val[0]

def make_photo_cluster(rows):
 """makes a pair of (position, photopoint) from a list of database
 rows.
 """
 pos = [None, None]
 phots = []

 for row in rows:
 for index, col in enumerate(row):
 name = row.columns[index].name
WORKAROUND!
 ucd = work_around_sdss_ucd_bug(
 name,
 row.columns[index].meta.get("ucd", "").lower())

 if ucd.startswith("phot.mag"):
 col = force_scalar(col)
 if ucd in UCD_TO_WL:
 phots.append((UCD_TO_WL[ucd], col))
 elif ucd == "pos.eq.dec;meta.main":
 pos[1] = force_scalar(col)
 elif ucd == "pos.eq.ra;meta.main":
 pos[0] = force_scalar(col)

 return tuple(pos), sorted(phots)

def make_seds(tables, clusters):
 """returns a sequence of (position, photopoints) from database tables
 and the custer result.

 We select columns based on UCDs.
 """
 seds = []
 for cluster in clusters:
 seds.append(
 make_photo_cluster([tables[table_ind][1][row_ind]
 for table_ind, row_ind in cluster]))
 return seds

def select_seds(seds):
 selected = []

 for pos, phots in seds:
 to_plot = np.array(phots)
 plt.semilogx(to_plot[:, 0], to_plot[:, 1], '-')
 plt.ylim([min(to_plot[:, 1]), max(to_plot[:, 1])])
 plt.ylabel("Mag", fontsize=15)
 plt.xlabel("Wavelength", fontsize=15)
 plt.show(block=False)
 selection = input("s)elect SED, q)uit, enter for next? ")
 if selection == "q":
 break
 if selection == "s":
 selected.append(pos)
 plt.cla()

 return selected

def main():
 if len(sys.argv) != 4:
 ra, dec, radius = 130.8, 3.4, 0.3
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 tables = get_tables(ra, dec, radius)

 clusters = vohelper.compute_multi_join([
 get_coordinates_for_table(t) for name, t in tables],
 0.2*u.arcsec)

 seds = make_seds(tables, clusters)

 selected = np.array(select_seds(seds))

 if not len(selected):
 sys.exit("Nothing selected, nothing written.")

 t = table.Table()
 t.add_column(table.Column(
 name='ra',
 data=selected[:, 0],
 unit=u.degree,
 description="ICRS RA of a selected object",
 meta={"ucd": "pos.eq.ra;meta.main"}))
 t.add_column(table.Column(
 name='dec',
 data=selected[:, 1],
 unit=u.degree,
 description="ICRS Declination of a selected object",
 meta={"ucd": "pos.eq.dec;meta.main"}))
 with open("selected_positions.vot", "wb") as f:
 t.write(output=f, format="votable")

if __name__ == "__main__":
 main()

Good question. It mainly has historical reasons – the S-protocols where easier to define than
TAP and Obscore. And until datalink was there, there were a few tricks you could play with
them that just do not work with simple ObsTAP (cutouts, for instance).
Even now, there is still much less data in ObsCore services than in SSAP; hence, if your problem
easily admits querying through SSAP, it is certainly no mistake to do so, perhaps in addition
to Obscore (beware: there is some data that’s in Obscore but not in SSAP).
What we are doing here is another instance of the more general problem of global dataset
discovery, to which I will return later in more generality.

Plan:

• Search for ObsTAP services

• Use TAP upload to search to collect spectra

• Send spectra to SPLAT

Obscore

The obscore “data model” consists of ∼ 40 columns; use a TAP browser to look at them. Some
highlights:

• dataproduct type – states image, timeseries, and the like. The full list of terms is at http:
//www.ivoa.net/rdf/product-type.

• obs publisher did – a dataset identifier. By design, it should be globally unique and
resolvable, but not all data providers are following this design. . .

• access url – where to get the data from.

• s ra, s dec, s fov – centre and FoV of the observation

• s region – area covered by the dataset as an ADQL geometry. This column allows very
concise queries, but alas, operators are free to have this NULL even when the have centre
coordinates and a field of view.

Query the Registry

Iterate over all obscore services (here: see what data collections they house):

for svc_rec in pyvo.registry.search(datamodel="obscore"):

print(f">>>>>> {svc_rec.short_name}...")

try:

svc = svc_rec.get_service("tap", lax=True)

result = svc.run_sync("SELECT DISTINCT obs_collection"

" FROM ivoa.obscore")

except (Exception, KeyboardInterrupt):

import traceback; traceback.print_exc()

continue

print("\n".join(r["obs_collection"] for r in result))

47

http://www.ivoa.net/rdf/product-type
http://www.ivoa.net/rdf/product-type

Do not run this script just for fun. It will hit quite a few services and make them seqscan their
obscore tables.
To “use ObsTAP”, just query the ivoa.obscore table via TAP.
To find TAP services having these tables, we once more use pyvo.registry.search but this time
use the datamodel constraint. Also, we again use the get_service method on the RegistryResource
instance that comes back from search; you should always specify what sort of service you want
– "tap" in this case. Prefer this pattern over the explicit use of access_url on RegistryResource-s
you may see in other places; access URLs are not a terribly well-defined concept, in particular
not if one does not constrain the servicetype.
The selling point here is: we are running the same database query on all the ObsTAP services,
and we are processing their results in the same way. That is the power of uniform data models.
This script does not come attached. That’s because on large services, the SELECT DISTINCT can
actually be computationally expensive for the remote side; it is likely that you will see timeouts
or very long runtimes. Hence, to try it, you will have to cut and paste, and then add the pyvo
import.
More useful Obscore queries with positional constraints are usually much faster: the wonder
of indexes and one of the major reasons why “just download stuff” is not a good plan with
large datasets.

Query with Upload

For each ObsTAP service, we query against our object list (assumed to be in an astropy Table
in pois):

if not svc.upload_methods:

return

result = svc.run_sync(

"""SELECT TOP 2000 oc.obs_publisher_did, oc.access_url

FROM ivoa.obscore AS oc

JOIN TAP_UPLOAD.pois AS mine

ON 1=CONTAINS(

POINT(’ICRS’, oc.s_ra, oc.s_dec),

CIRCLE(’ICRS’, mine.ra, mine.dec, 0.01))

WHERE oc.dataproduct_type=’spectrum’

"""),

uploads = {"pois": pois})

What is going on here? Right after constructing the service, we check whether it supports table
uploads – not all TAP services do. TAPService objects have a few other attributes that let you
inspect various properties of services. This, in particular, includes resource limits (maximum
upload size, limit to which maxrec can be raised, etc).
Here, it is enough to know there is any upload method at all, because the standard says that
inline upload must be supported if there is any upload support, and inline uploads is what we
are doing.
To actually perform the upload, pass a dictionary to the uploads keyword argument of run_sync
and friends. The keys there are simple names (starting with a letter and letters or numbers after
that), the values can be various things, but you will probably get by passing either a string
(which is interpreted as a URL to fetch a VOTable from) or an astropy table.

48

You can upload multiple tables using different keys; for each key, a table TAP UPLOAD.key be-
comes available – this is where the TAP UPLOAD.pois above comes from. Remember that TOP-
CAT, which is what many upload examples are written for, has the convention of naming its
uploads t<n>, where the n is the index in the table list in TOPCAT’s main window.
You will almost always join the uploaded table with a table on the service, and thus it is almost
always a good idea to use ADQL’s AS construct to give abbreviated names to tables. The name
mine is typically a good choice if you only have one upload, for the simple reason that other
people use it, too.
Instead of the common run sync, this uses vohelper.run sync resilient, which catches all
kinds of exceptions and other trouble. As said above, when you do all-VO queries, expect at
least one service to fail completely and another to give results that look like they come from a
fuzzer.
The actual obscore query does a classical, ADQL 2.0 crossmatch, because we are querying lots
of services, many of which will not be updated to more recent standards even by the time your
read this. Also, stellar spectra come from essentially point-like objects, and thus you probably
do not want to write something like

1=CONTAINS(POINT(mine.ra, mine.dec), s_region)

This could be more attractive if you are looking for images or other artefacts with a reasonable
coverage. Note, however, that proper s region support is not mandatory, whereas all data
providers get the center RA and Dec for their datasets roughly right. The bottom line is: If you
can get by with just positions (rather than s region) in your obscore queries, do it.
The code in get spectra.py is actually a bit more general in that it does not hardcode the column
names in the uploaded table but instead discovers them using UCDs. So, as long as your tables
are properly annotated, the function there will just work for global spectra discovery (or, if you
change the query, really any other global Obscore discovery on sets of positions).

Exercise 31
One particularly cool part about async is that you can keep your results publicly
available on the remote server for a while. That, in turn, you can use to do cross-service
joins without having to download intermediate tables.
You can use URLs in a query’s upload argument. To try this out, review the TGAS and
RAVE exercise 28. Let the initial RAVE query be asynchronous. On the resulting job,
call wait as above. Once it is done, upload what is job’s result uri attribute into the
TGAS server with a normal positional upload join.

Collect Spectra finished

The rest is almost standard SAMP fare to get the spectra retrieved to SPLAT as they come in:

for ds_name, access_url in specs:

print("Opening ...".format(access_url))

try:

pyvo.samp.send_spectrum_to(

conn, access_url, client_name="splat", name=ds_name)

except KeyError as exc:

regrettably, astropy raises the unspecific KeyError

when there it does not find the client.

print(" ** Failed: is splat running?")

except Exception:

print(" *** Unexpected failure:")

import traceback; traceback.print_exc()

49

get-spectra.py

As for images, spectra are usually passed around by their URLs in SAMP.
What is new here is that we are catching exceptions. Somewhat suboptimally (because it is too
non-specific), pyVO raises a KeyError when it cannot find SPLAT on the SAMP bus.
Giving some reminder-type message probably helpful when you run the program after a cou-
ple of months and have forgotten about SPLAT being a part of this analysis chain. Letting
through the KeyError with a key of splat is probably a lot less helpful than the message we
emit, even at the risk of catching KeyErrors of different origin. In practice, you would prob-
ably want to break out of the loop, too; the way this is written, you will get one message per
spectrum, which may be slightly panic-inducing.
We catch all other exceptions; we do not want to exit the loop just because some spectrum is
funny. Given what is in the try-block, the most likely origin of these exceptions is when SPLAT
fails to open a spectrum for some reason and sends back an indication of that. What we are
catching here, in effect, are an exceptions raised within SPLAT.
In general, there is no telling if the target client has already informed the user that something is
wrong – it is probably better to assume it has in generic code most of the time, and so sending
code should avoid modal error messages (“Click here to continue”). But you basically never
want to silence all exceptions, because that will hide all kinds of unexpected misbehaviour. So,
as a relatively safe and diagnosable fallback, we just dump the traceback and trudge on.

Exercise 32
Can you change get_spectra.py such that only spectra of resolving power 10000 or
greater are retrieved?
Hint: Use TOPCAT or the tables property of your TAPService to inspect the metadata
of the ivoa.obscore table to figure out which column to query against. Just in case: It is
almost always better to filter on the remote side rather than the local side. And chuck
the “almost” if the constraint can be expressed as a single condition in a WHERE clause.

7 Higher SAMP Magic

Use Case: An Object Investigator

Let’s say you are debugging your pipeline and want to manually inspect “weird” objects by
querying a set of other catalogues have on them.
Plan: Write a program that other clients

• can send tables to and then

• when a table row is selected, computes a new table with data from other services

• that is then sent to Aladin for inspection.

50

#!/usr/bin/python

This code is in the public domain.

do an all-VO obscore search for spectra around a list of points.

import sys

from astropy import table
import pyvo

import vohelper

def get_spectra_for_table(svc, pois, radius, samplesize):
 """yields pairs of (dataset name, access_url) for spectra within radius
 degrees of points in pois for and obscore service.
 """
 ra_column_name = vohelper.get_name_for_ucd(
 "pos.eq.ra;meta.main", pois)
 dec_column_name = vohelper.get_name_for_ucd(
 "pos.eq.dec;meta.main", pois)

 # the rstrip in the next line is a workaround for a botched registration of
 # VAO
 if not svc.upload_methods:
 # service doesn't support upload, can't use it
 return

 # you'd normally really match
 # CONTAINS(POINT(up.ra, up.dec), s_region); however, we need to fudge here
 # since there's still too little data in obscore.
 result = vohelper.run_sync_resilient(svc,
 """SELECT TOP {samplesize} oc.obs_publisher_did, oc.access_url
 FROM ivoa.obscore AS oc
 JOIN TAP_UPLOAD.pois AS mine
 ON 1=CONTAINS(
 POINT('ICRS', oc.s_ra, oc.s_dec),
 CIRCLE('ICRS',
 mine.{ra_column_name},
 mine.{dec_column_name},
 {radius}))
 WHERE oc.dataproduct_type='spectrum'
 """.format(**locals()),
 # add more constraints (spectral region, resolution... here)
 uploads={"pois": pois})

 if result is None:
 return

 for row in result.to_table():
 yield str(row[0]), str(row[1])

def main():
 args = sys.argv+["selected_positions.vot", "1000", "2"][len(sys.argv)-1:]

 with open(args[1], "rb") as f:
 pois = table.Table.read(f)
 radius = float(args[2])/3600
 n_samp = int(args[3])

 with pyvo.samp.connection() as conn:
 for res in pyvo.registry.search(datamodel="obscore"):
 sys.stdout.write("Querying {} ...".format(res.ivoid))
 sys.stdout.flush()

 try:
 specs = list(get_spectra_for_table(
 res.get_service("tap"), pois, radius, n_samp))
 except (Exception, KeyboardInterrupt) as ex:
 sys.stdout.write(f"broken ({ex}\n")
 continue
 sys.stdout.write(" done. ({})\n".format(len(specs)))

 for ds_name, access_url in specs:
 print("Opening {}...".format(access_url))
 try:
 pyvo.samp.send_spectrum_to(
 conn, access_url, client_name="splat", name=ds_name)
 except KeyError:
 # regrettably, astropy raises the unspecific KeyError
 # when there it does not find the client.
 print(" ** Failed: is splat running?")
 except Exception:
 print(" *** Unexpected failure:")
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

SAMP: Listening to Messages

SAMP is based on messages; there are several message types (MType-s), which are documented
on the IVOA wiki11.
The SAMP client objects’s bind_receive_message method arranges for the hub to call a function
when a message of a certain MType comes in. The calling pattern is a bit complicated, but what
really counts is a dictionary of the parameters passed to the call on the sender side (params).
SAMP has two types of messages: Notifications, which do not expect a response, and calls,
which do. If you use bind_receive_message, you will cover both cases, which is generally a good
idea, because all kinds of messages can come as either.
If a call (as opposed to a notification) comes in, it is associated with a message id, and the
sending client will expect a response. If you do not give one, you will have ugly “pending”
SAMP messages. Notifications have no message id, and they require not responses.
Here is a program that prints sky coordinates of “things” the user pointed to:

import pyvo

import vohelper

@vohelper.show_exception

def print_coord(privkey, sender_id, msg_id, mtype, params, extra):

print("{} {}".format(params["ra"], params["dec"]))

if msg_id is not None:

conn.reply(msg_id, {"samp.status": "samp.ok", "samp.result": {}})

with pyvo.samp.connection(addr="localhost") as conn:

conn.bind_receive_message("coord.pointAt.sky", print_coord)

input()

The handler function has a rather complex signature (i.e., what parameters it takes and what
it returns). Don’t sweat it too much. In particular, do not be alarmed when you ignore
private_key; for all I know no client at this point does any kind of cryptographic validation.
There are security implications from SAMP, but very frankly: if you regularly have your browser
execute Javascript from random web pages, you are in worse trouble.
The important part is params; this is where the parameters given on the SAMPMtypes page are
in; in the case of the coord.pointAt.sky message we receive here, these are in the keys ra and dec.
To try this, start Aladin and then the sample program. When you click on the sky, you will see
the target coordinates in your terminal.
Versus the basic “Add SAMP Magic” method of getting a SAMP connection, we have now
added an addr="localhost". This is a workaround to make listening to messages a bit more
robust on machines that have both IPv4 and IPv6 enabled (most have in 2024). If you get
“connection refused” messages or the like when trying to send a message, try removing the
argument.
As said above, when msg_id is not None (i.e., we got a call, not a notification), we have to send
a reply. The sample code essentially says: “I have no results, and that is fine for this MType”.

MTypes for the Vicinity Searcher

To make our program ready to receive tables via SAMP, we have to listen to table.load.votable.
Params for that as per the MTypes wiki page:

11http://wiki.ivoa.net/twiki/bin/view/IVOA/SampMTypes

51

http://wiki.ivoa.net/twiki/bin/view/IVOA/SampMTypes

url URL of the VOTable document to load

table-id local identifier for referencing

name human-readable name

To monitor whether a row in a table you received is selected, listen to table.highlight.row. Params:

table-id the local identifier

row the row index

Python Classes: Why?

We have to keep quite a bit of state in our program, at least:

• the SAMP connection

• the table sent to us.

There is also quite a bit of behaviour:

• receive and store the remote table

• see when rows are selected

• do searches when that happens.

When you have state and behaviour linked together, in Python think: “class”.

Python Classes: How?

class VicinitySearcher:

vicinity_size = 30

client_name = "Aladin"

def __init__(self, conn):

self.conn = conn

self.cur_table = self.cur_id = None

def load_VOTable(self,

private_key, sender_id, msg_id, mtype, params, extra):

...

def handle_selection(self,

private_key, sender_id, msg_id, mtype, params, extra):

...

vicinitysearcher.py

The trivial version of object lore in python is: All functions belonging to an object (method-
s) have a first argument conventionally called self (the instance), and whenever you put an
attribute on self, you can find it again in other methods’ self, provided these other methods
are called on the same instance (i.e., object).
You can also have attributes in the class itself; consider these constants, as assigning to these
may not always do what you expect.
To call other methods of the same object, use self.methodname().
Create an instance by calling the class (here: VicinitySearcher(conn)). Whatever you pass
into that call will be passed to the __init__ method (the constructor).

52

"""
A quick example showing astropy and pyvo working hand in hand with the
rest of the VO

This program expects Aladin to run. It then waits for tables to be sent,
and when a row is selected, it will search some (SERVICE_META) cone
search services. The results are joined and sent to aladin with
positions, proper motions, and source.

Sample use:

(1) start TOPCAT, aladin, then python vicinitysearcher.py
(2) in TOPCAT, open VO/Cone Search, look for "transitional YSOs"
(3) select the Magnier+ 1999 service, make RA and DEC 0, SR 180, "ok"
(4) broadcast table
(5) in Aladin, pan and zoom until you have a catalog object in a FoV of
 an arcminute or so
(6) hover over the object to pull in the potential matches
(7) select the items to see the catalog entries.
"""

import vohelper

from astropy import table
import pyvo

SERVICE_META = [
 ("PPMXL", "http://dc.zah.uni-heidelberg.de/ppmxl/q/cone/scs.xml?"),
 ("2MASS", "http://dc.zah.uni-heidelberg.de/2mass/res/2mass/q/scs.xml?"),
 ("UCAC4", "http://dc.zah.uni-heidelberg.de/ucac4/q/s/scs.xml?")]

class VicinitySearcher:
 """The SAMP handling class.

 This is where the action takes place: receiving VOTables, handling
 notifications of selected rows, querying the remote services.

 True, in a less one-off program this should be less god-like, and
 at least make_response_table shouln't be part of this.
 """
 vicinity_size = 30 # arcsec
 client_name = "Aladin" # samp.name of the client for the match table

 def __init__(self, conn):
 self.conn = conn
 self.cur_table = self.cur_id = None

 self.services = []
 for short_name, access_url in SERVICE_META:
 self.services.append(pyvo.dal.scs.SCSService(access_url))
 self.services[-1].my_tag = short_name

 self.conn.bind_receive_call(
 "table.load.votable", self.load_VOTable)
 self.conn.bind_receive_message("table.highlight.row",
 self.handle_selection)

 @vohelper.show_exception
 def load_VOTable(self, private_key, sender_id, msg_id, mtype,
 params, extra):
 """the SAMP handler to load VOTables.

 (binding is done in the constructor)
 """
 self.cur_table = table.Table.read(params['url'])
 self.ra_name = vohelper.get_name_for_ucd(
 "POS_EQ_RA_MAIN", self.cur_table)
 self.dec_name = vohelper.get_name_for_ucd(
 "POS_EQ_DEC_MAIN", self.cur_table)
 self.cur_id = params["table-id"]

 self.conn.reply(msg_id,
 {"samp.status": "samp.ok", "samp.result": {}})

 @vohelper.show_exception
 def handle_selection(self, private_key, sender_id, msg_id, mtype,
 params, extra):
 """the SAMP handler for a row selection in our current table.
 """
 print("incoming: ", params)
 if msg_id:
 self.conn.reply(msg_id,
 {"samp.status": "samp.ok", "samp.result": {}})

 if params["table-id"] == self.cur_id:
 table_index = int(params["row"])
 print("Row selected:", table_index)
 response = self.make_response_table(table_index)

 if response is not None:
 pyvo.samp.send_table_to(
 self.conn, response,
 client_name=self.client_name, name="vicinity")

 def make_response_table(self, table_index):
 """returns an astropy table (or None) for the row table_index.

 This is essentially the "user code" that reacts on the incoming
 messages.
 """
 ra = self.cur_table[self.ra_name][table_index]
 dec = self.cur_table[self.dec_name][table_index]
 pm_unit = "deg/yr"

 ras, decs, pmras, pmdecs, svcs = [], [], [], [], []
 for service in self.services:
 print("Querying ", service.my_tag)
 cone_result = service.search((ra, dec),
 self.vicinity_size/3600.).to_table()
 nrecs = len(cone_result)

 ras.extend(cone_result[
 vohelper.get_name_for_ucd("POS_EQ_RA_MAIN", cone_result)])
 decs.extend(cone_result[
 vohelper.get_name_for_ucd("POS_EQ_DEC_MAIN", cone_result)])

 try:
 pmra_name = vohelper.get_name_for_ucd(
 "pos.pm;pos.eq.ra", cone_result)
 pmras.extend(
 cone_result.columns[pmra_name].to(pm_unit).value)
 except KeyError:
 pmras.extend([None]*nrecs)

 try:
 pmdec_name = vohelper.get_name_for_ucd(
 "pos.pm;pos.eq.dec", cone_result)
 pmdecs.extend(
 cone_result.columns[pmdec_name].to(pm_unit).value)
 except KeyError:
 pmdecs.extend([None]*nrecs)

 svcs.extend([service.my_tag]*nrecs)

 if not ras:
 return None
 else:
 print("Found {} matches".format(len(ras)))

 res = table.Table([
 table.Column(name="ra",
 data=ras,
 description="Right Ascension from upstream",
 unit="deg",
 meta={"ucd": "pos.eq.ra;meta.main"}),
 table.Column(name="dec",
 data=decs,
 description="Declination from upstream",
 unit="deg",
 meta={"ucd": "pos.eq.dec;meta.main"}),
 table.Column(name="pmra",
 data=pmras,
 description="Proper motion in Right Ascension from upstream",
 unit=pm_unit,
 meta={"ucd": "pos.pm;pos.eq.ra"}),
 table.Column(name="pmdec",
 data=pmdecs,
 description="Proper motion in declination from upstream",
 unit=pm_unit,
 meta={"ucd": "pos.pm;pos.eq.dec"}),
 table.Column(name="service",
 data=svcs,
 description="Source of the data",
 meta={"ucd": "meta.id"}),])

 return res

def main():
 with pyvo.samp.connection(
 client_name="Vicinity Searcher",
 description="An edifying example for a SAMP service",
 addr="127.0.0.1") as conn:
 _ = VicinitySearcher(conn)
 print("Listening. Send me a table, hit return to exit.")
 input()

if __name__ == "__main__":
 main()

vim:sta:et:sw=2

Handling table.load.votable

class VicinitySearcher:

def __init__(self, conn):

[...]

self.conn.bind_receive_call(

"table.load.votable", self.load_VOTable)

def load_VOTable(self,

private_key, sender_id, msg_id, mtype, params, extra):

self.cur_table = Table.read(params['url'])

self.cur_id = params["table-id"]

self.conn.reply(msg_id,

{"samp.status": "samp.ok", "samp.result": {}})

Since we bind the SAMP table.load.votable MType to self.load VOTable (a bound method, which
VicinitySearcher.load VOTable would not be), we get our instance of VicinitySearcher (self)
passed into our method for free.
When we then get notified of a table load, we set some instance variables that let us work with
the table later.
To make this robust, we should catch exceptions and send replies with a status of samp.error in
case of trouble; as said above, clients really want some reply when they send messages directly
to clients and complain about pending SAMP calls when they receive none.

Handling table.highlight.row

@vohelper.show_exception

def handle_selection(self,

private_key, sender_id, msg_id, mtype, params, extra):

if params["table-id"]!=self.cur_id:

return

table_index = int(params["row"])

print("Row selected:", table_index)

response = self.make_response_table(table_index)

if response is not None:

vohelper.send_table_to(self.conn, self.dest_client, response)

The @vohelper.show_exception thing before the method definition is called a decorator. These are
things (actually: functions) that operate on methods. In this particular case, all it does is make
sure any exceptions raised within the SAMP handler are properly displayed. Since the SAMP
handlers do not run in the main thread (and thus exceptions do not terminate the program),
without this you will miss errors in the handlers.
The actual functionality (in this case, searching for matching data in a few catalogues and
broadcasting any matches found) I have delegated to another method, make_response_table. This
is an example for using Simple Cone Search; have a look at it!

Exercise 33
The action of the SAMP handler is in the make_response_table method; have a brief look
at it to appreciate what is going on. Then, replace what is there with something that
does a SIAP search on the service at
http://dc.g-vo.org/lswscans/res/positions/siap/siap.xml and returns the
corresponding table for sending to Aladin (hint: remember the to_table method of DAL
results).

53

Exercise 34
Listening to the SAMP message coord.pointAt.sky, implement an “odometer” computing
and printing after each step the distance travelled by the pointer.
To do this, you will need to keep the SAMP connection, the last position and the
distance travelled so far as state; take the vicinitysearcher, remove the code keeping the
state and behaviour used for its function, and insert our new logic.
Hints: Look at SkyCoord in Astropy and the mtypes page; when re-using SAMP
bindings, make sure you handle messages, not calls.

Try It Out

Start TOPCAT, Aladin, and the vicinity searcher.
Look for openngc SCS and pull some 40 degree cone.
Send the resulting table to the vicinity searcher, have Send row index as an activation action.
Click on table rows or plot points.

8 pyVO and the Registry

A Closer Look at registry.search

We have seen registry.search already in some places.
To go more deeply, you need to understand a bit more of the Registry data model:

Resource

TAP cap SCS capability
Tableset

TAP intf SCS v1 SCS v2

The illustration shows a resource, the thing that has common metadata like a title, description,
authors, space-time coverage, and the like.
On top of that sit capabilities, which are things the resource “can do for you”: typically, proto-
col endpoints. This particular resource has two capabilities: TAP for database queries and SCS
for simple cone searches.

54

Each capability can have one or more interfaces, that is, things that clients can talk to. For
reasons of practicality, a “good” capability should only have one interface; but this may change
as future standards are defined. Interfaces for multiple versions of a protocol on one capability,
as sketeched here, is not something we are planning for, though; SIA1 and SIA2, the only
example where that would matter right now, are modelled as two different capabilities.
There are many other things that a resource can harbour beyond capabilities; an important
example is the tableset, which lists what tables the resource contains. Be warned that VO-
DataService (the standard that defines how tablesets are written) does not require tablesets,
and so some data publishers still do not provide them. If you catch one of those, complain to
them.

Principles of RegistryResource

What you get back from registry.search is a sequence of RegistryResource instances.
It has attributes for metadata (res_title, res_description. . .), and important methods:

• describe() – return a summary of what pyVO knows about the resource.

• access_modes() – short identifiers for the capabilities of the resource

• get_service(type, lax, keyword) – return a service object to query the resource

• get_tables() – return a sequence of table-like objects with what tables you can query

The main method for practical use really is get_service. Its type argument is something like
"tap" – the strings that will produces something for a given resource can be obtained using
access_modes().
The lax keyword argument deserves some explanation: If there are multiple capabilities of a
given type on a resource – something that is still common for VizieR, who like to keep all tables
belonging to one paper together in one VO resource in this way –, pyVO does not know which
one to pick unless you pass keywords (to be matched within the capabilities’ descriptions).
If you think you know what you are doing, you can ask pyVO to pick one of the capabilities
more or less at random: That is what lax=True does. It is not recommended to do that in code
that matters.
As of 2024, most of this code has recently been refurbished, and there have been bugs off and
on. If you find you need to use lax=True when you do not expect to, it is likely you ran into a a
buggy version. In these cases, don’t feel bad about passing lax=True.
There are some legacy attributes and methods that you should no longer use: access_url,
service, search(); all these only do something sensible when there is only one capability on
a RegistryResource. This is not unlikely if you did constrain the servicetype in your call to search.
But in general it is a much better idea to search for data and decide on access modes later in
data discovery. Most resources today come with multiple capabilities, and it is good if you can
choose the most appropriate for your task at hand.

Interactive Use of the PyVO Registry API

Finally: A jupyter notebook!
data-discovery-demo.ipynb

55

{
 "cells": [
 {
 "cell_type": "markdown",
 "id": "considered-spanking",
 "metadata": {},
 "source": [
 "# Data Discovery in using pyVO"
]
 },
 {
 "cell_type": "markdown",
 "id": "registered-mirror",
 "metadata": {},
 "source": [
 "This notebook is an introduction to using the Virtual Observatory Registry interactively from within pyVO. It belongs to the lecture on using the Virtual Observatory. See \n",
 "https://codeberg.org/msdemlei/pyvo-course for more information on this course and in particular for what the VO Registry is and what it is there for."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "published-fountain",
 "metadata": {},
 "outputs": [],
 "source": [
 "# set up things; we're also ignoring over-zealous\n",
 "# astropy warnings against bleeding-edge VOTable.\n",
 "from pyvo import registry, dal\n",
 "import warnings\n",
 "warnings.filterwarnings('ignore', module=\"astropy.io.votable.*\")\n",
 "warnings.filterwarnings('ignore', module=\"pyvo.io.vosi.vodataservice\")\n",
 "import pyvo"
]
 },
 {
 "cell_type": "markdown",
 "id": "modified-mitchell",
 "metadata": {},
 "source": [
 "The most general way to run registry queries is by passing registry.search Constraints. It is quite a bit more flexible than the alternative keyword-based interface, but admittedly somewhat more verbose.\n",
 "\n",
 "For instance, to find data giving redshifts on quasars, you could say:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "beginning-explanation",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs = registry.search(\n",
 " registry.Freetext(\"quasar\"),\n",
 " registry.UCD(\"src.redshift\"))"
]
 },
 {
 "cell_type": "markdown",
 "id": "smooth-electric",
 "metadata": {},
 "source": [
 "As said above, in simple cases (such as this one) you can use an interface based on keyword arguments as well, like this:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "mineral-national",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs = registry.search(keywords=\"quasar\", \n",
 " ucd=\"src.redshift\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "substantial-emission",
 "metadata": {},
 "source": [
 "The list of constraints available (and explanations what they do) is found in the pyVO documentation at https://pyvo.readthedocs.io/en/latest/registry/.\n",
 "\n",
 "What ``registry.search`` returns here is a collection (works as a sequence, but technically it is a ``RegistryResults`` instance) of resource records. Conceptually, you can thing of one item in there, represented as ``RegistryResource`` instances, as a data collection: A catalogue, the archive of an instrument, a collection of spectra reduced in a common way, etc. The simplest way to have a look at the result as a while is through the ``get_summary`` method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "rotary-brain",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs.get_summary()"
]
 },
 {
 "cell_type": "markdown",
 "id": "skilled-carter",
 "metadata": {},
 "source": [
 "While this particular list is perhaps a bit unwieldy, this lets you relatively quickly browse what is available. In particular, the last column tells you how, i.e., using which protocols, you can talk to a service serving the data.\n",
 "\n",
 "Once you have found data you are interested in, you can pick it out of the list using the numeric index (which, however, is unstable between sessions and thus we don't do it here), using the short name (for which there *could* be clashes, though they should be rare) or through the ivoid (which is globally unique, but somewhat lengthy). In this example, we are using the short name.\n",
 "\n",
 "Let's say we want to work with the resource III/175, “Gaia DR3 Part 2. Extra-galactic”. By the last column, there is a cone search, TAP, and web service that provides access to it.\n",
 "\n",
 "The most immediate way to get to the data usually is the cone search, which gives something like a dump of a catalogue around a position (using 0,0,180 will give you the full catalogue most of the time). To see a relatively concise representation of what a service is about, use the ``describe`` method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "bdf88aff",
 "metadata": {},
 "outputs": [],
 "source": [
 "short_name = \"I/356\"\n",
 "rec = rscs[short_name]\n",
 "rec.describe()"
]
 },
 {
 "cell_type": "markdown",
 "id": "6a20fd58",
 "metadata": {},
 "source": [
 "To interact with the resource, there is ``get_service``. Pass it an identifier of a service type as per the last column of the overview table or whatever the ``access_modes`` method returns:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "touched-ratio",
 "metadata": {},
 "outputs": [],
 "source": [
 "print(rscs[short_name].access_modes())\n",
 "svc = rscs[short_name].get_service(service_type=\"conesearch\", lax=True)\n",
 "svc.search((126, -20), radius=0.2).to_table()"
]
 },
 {
 "cell_type": "markdown",
 "id": "responsible-bradley",
 "metadata": {},
 "source": [
 "The lax=True here is a bit of an uglyness: VizieR often has multiple sub-services on their resources, perhaps one per major table in a publication. See the list of interfaces in the ``describe`` output above, and then pick the interface you actually want a ``keyword`` parameter. ``lax=True`` basically means “leave the choice to VizieR”, which *may* to what you want (it will, for instance, with the TAP capabilities, because they all point to the same service) but may be entirely random, too.\n",
 "\n",
 "We are trying to improve this admittedly unfortunate situation."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "809f2eef",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_service(\"scs\", keyword='QSO' \n",
 ").search((126, -20), radius=0.2)"
]
 },
 {
 "cell_type": "markdown",
 "id": "d748e429",
 "metadata": {},
 "source": [
 "A more powerful interface is TAP, which lets you send database queries to the service (forget about the “#aux” in the interface name for now). To do something sensible in TAP, you need to know the name(s) of the table(s) making up the resource. You can figure these out using the registry record's get_tables method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "brave-biotechnology",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_tables()"
]
 },
 {
 "cell_type": "markdown",
 "id": "comprehensive-consolidation",
 "metadata": {},
 "source": [
 "Let's have a look at what columns one of these tables has – this is a normal astropy table:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "young-hundred",
 "metadata": {},
 "outputs": [],
 "source": [
 "td = rscs[short_name].get_tables()['I/356/qsocand']\n",
 "td.columns"
]
 },
 {
 "cell_type": "markdown",
 "id": "olympic-second",
 "metadata": {},
 "source": [
 "From here, you could inspect the various BaseParams for units, descriptions, and the like, but for this level of interactivity, you may want to use TOPCAT. Just paste the service's access URL in its TAP window:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "sudden-jerusalem",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_service(service_type=\"tap\", lax=True).baseurl"
]
 },
 {
 "cell_type": "markdown",
 "id": "mounted-indianapolis",
 "metadata": {},
 "source": [
 "While I was preparing the first version of this notebook, the metadata of this resource still had a bug, which showed itself as warnings of the type\n",
 "\n",
 "```\n",
 "WARNING: W02: ?:?:?: W02: '' is not a valid datatype according to the VOSI spec [pyvo.io.vosi.vodataservice]\n",
 "```\n",
 "\n",
 "While you might ignore warnings, at least with errors it is usually a good idea to notify the operators. To see who to talk to, use the ``get_contact`` method of the record:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "floral-mountain",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_contact()"
]
 },
 {
 "cell_type": "markdown",
 "id": "disabled-compilation",
 "metadata": {},
 "source": [
 "To actually run queries, get a TAP service and do queries based on the columns that you found. Let's use VizieR's III/175, “Optical Spectroscopy of Radio Sources“, for that:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "a4293846",
 "metadata": {},
 "outputs": [],
 "source": [
 "short_name = \"III/175\"\n",
 "rscs[short_name].describe()"
]
 },
 {
 "cell_type": "markdown",
 "id": "55e9a00c",
 "metadata": {},
 "source": [
 "Phewy, just one capability and one table; no problems with lax or keyword. What tables are there?"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "31e332a3",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_tables()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "c22bde31",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_tables()['III/175/table1'].columns"
]
 },
 {
 "cell_type": "markdown",
 "id": "f95a1c82",
 "metadata": {},
 "source": [
 "Let us see what object types this table lists:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "transsexual-firmware",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc = rscs[short_name].get_service(\"tap\")\n",
 "svc.run_sync('SELECT DISTINCT type FROM \"III/175/table1\"').to_table()"
]
 },
 {
 "cell_type": "markdown",
 "id": "structural-residence",
 "metadata": {},
 "source": [
 "To figure out the correlation between the 5 GHz flux and the optical magnitude for Quasars, you could do:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "ranking-today",
 "metadata": {},
 "outputs": [],
 "source": [
 "flux_and_mag = svc.run_sync(\"SELECT m, S5Ghz FROM \\\"III/175/table1\\\" where type='QSO'\").to_table()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "inner-award",
 "metadata": {},
 "outputs": [],
 "source": [
 "from scipy import stats\n",
 "stats.pearsonr(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"])"
]
 },
 {
 "cell_type": "markdown",
 "id": "62942982",
 "metadata": {},
 "source": [
 "That there's an anticorrelation (the first value returned) is not surprising (magnitudes grow as flux decreases). Judging from the p-value (the second value), you could even convince a medicine journal that that is a real thing. How does all this look like anyway?"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "8ac35b46",
 "metadata": {},
 "outputs": [],
 "source": [
 "from matplotlib import pyplot\n",
 "_ = pyplot.scatter(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"])"
]
 },
 {
 "cell_type": "markdown",
 "id": "demographic-employee",
 "metadata": {},
 "source": [
 "Let's quickly see how the same thing looks like for Blazars:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "8684a466",
 "metadata": {},
 "outputs": [],
 "source": [
 "flux_and_mag = svc.run_sync(\"SELECT m, S5Ghz FROM \\\"III/175/table1\\\" where type in ('BL/QSO')\").to_table()\n",
 "print(stats.pearsonr(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"]))\n",
 "_ = pyplot.scatter(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"])"
]
 },
 {
 "cell_type": "markdown",
 "id": "1c0d5a59",
 "metadata": {},
 "source": [
 "We have not looked at web-typed interfaces yet.\n",
 "They correspond to something you can operate with your web browser, and hence there's just one thing pyVO can do: Open a browser. That happens when you call that fake service's search method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "speaking-latest",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_service(\"web\").search()"
]
 },
 {
 "cell_type": "markdown",
 "id": "trying-bubble",
 "metadata": {},
 "source": [
 "By the way, this is *not* the way to look for a webpage *on* the service. The URL of a documentation-type web page is available (provided the publishers did their homework) in a resources' reference_url attribute. To get there, you could do: "
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "nonprofit-record",
 "metadata": {},
 "outputs": [],
 "source": [
 "import webbrowser\n",
 "webbrowser.open(rscs[\"III/175\"].reference_url, 1)"
]
 },
 {
 "cell_type": "markdown",
 "id": "challenging-discount",
 "metadata": {},
 "source": [
 "There are more constraints available than just free text and UCD.\n",
 "A particularly interesting one is the spatial coverage. For instance, you could look for data on flare stars around the Orion nebula like this:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "circular-express",
 "metadata": {},
 "outputs": [],
 "source": [
 "from astropy.coordinates import SkyCoord\n",
 "flrscs = registry.search(\n",
 " registry.Freetext(\"flare\"),\n",
 " registry.Spatial((SkyCoord.from_name(\"M42\"), 2)))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "binding-brook",
 "metadata": {},
 "outputs": [],
 "source": [
 "flrscs.get_summary().show_in_notebook(display_length=60)"
]
 },
 {
 "cell_type": "markdown",
 "id": "hydraulic-rating",
 "metadata": {},
 "source": [
 "The services here a bit more diverse than with our first example. For instance, there are image services, as you will see when you skim the last column:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "sunrise-tournament",
 "metadata": {},
 "outputs": [],
 "source": [
 "matches = flrscs[\"flare_survey.dat\"].get_service(service_type=\"sia\").search(\n",
 " pos=SkyCoord.from_name(\"M42\"),\n",
 " size=2)\n",
 "matches"
]
 },
 {
 "cell_type": "markdown",
 "id": "applicable-inspection",
 "metadata": {},
 "source": [
 "In order to have at least a few images in this notebook, let's use datalink to fetch a few previews of our matches (this datalink trick does not work on all services; if it does not for a service you care about, complain to its operators, demanding datalink support – see the thing with get_contact above)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "realistic-evans",
 "metadata": {},
 "outputs": [],
 "source": [
 "from IPython.display import Image, display\n",
 "for dl in matches.iter_datalinks():\n",
 " for row in dl.bysemantics(\"#preview\"):\n",
 " display(Image(url=row[\"access_url\"], width=200,\n",
 " embed=True, format=\"jpeg\"))"
]
 },
 {
 "cell_type": "markdown",
 "id": "committed-wheel",
 "metadata": {},
 "source": [
 "There are similar constraints for the Spectral and Time axes. For instance, to look for resources talking about spectra and the Balmer break, you could say:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "substantial-nightmare",
 "metadata": {},
 "outputs": [],
 "source": [
 "from astropy import units as u\n",
 "registry.search(\n",
 " registry.Freetext(\"spectra\"),\n",
 " registry.Spectral(364*u.nm)).get_summary()"
]
 },
 {
 "cell_type": "markdown",
 "id": "renewable-single",
 "metadata": {},
 "source": [
 "Note that in particular for time and spectral coverage, as of 2023 many data providers in the VO have not updated their resource records to provide such information; hence, you will have to expect missing resources. For spectral coverage, see also the ``Waveband`` constraint, which is older and therefore better supported."
]
 },
 {
 "cell_type": "markdown",
 "id": "continuous-telephone",
 "metadata": {},
 "source": [
 "Behind the scenes, all this just does ADQL queries via TAP. So, whenever the pre-canned queries from the Registry module are not enough (e.g., because you want to do table uploads or need exotic constraints), you can simply switch to using TAP directly. To help you with that, you can use the ``build_regtap_query`` function to get an ADQL query to start with. For instance:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "worth-catch",
 "metadata": {},
 "outputs": [],
 "source": [
 "print(registry.get_RegTAP_query(\n",
 " registry.Spatial((30, 40)),\n",
 " registry.Servicetype('tap'),\n",
 " registry.Datamodel(\"obscore\")))"
]
 },
 {
 "cell_type": "markdown",
 "id": "southwest-highway",
 "metadata": {},
 "source": [
 "This is not overly pretty, but once you have had a look at the RegTAP documentation at https://ivoa.net/documents/RegTAP/, it should start to make sense. By cutting and pasting, you could create a registry query using an uploaded object list, perhaps a bit like this (ignore the next code cells if you've not played with TAP uploads yet and/or feel uncomfortable near to large amounts of ADQL). Anyway, we get a few random positions and then see what Obscore services declare they cover our sample."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "dedicated-snowboard",
 "metadata": {},
 "outputs": [],
 "source": [
 "objects = dal.TAPService(\"http://dc.g-vo.org/tap\").run_sync(\n",
 " \"SELECT source_id, ra, dec FROM gaia.dr3lite TABLESAMPLE(0.00005)\"\n",
 ").to_table()\n",
 "objects"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "musical-council",
 "metadata": {},
 "outputs": [],
 "source": [
 "from pyvo.registry import regtap\n",
 "\n",
 "rt_query = \"\"\"\n",
 "SELECT DISTINCT\n",
 "ivoid, res_title, \n",
 "res_description, access_url FROM\n",
 "rr.resource\n",
 "NATURAL LEFT OUTER JOIN rr.capability\n",
 "NATURAL LEFT OUTER JOIN rr.interface\n",
 "NATURAL LEFT OUTER JOIN rr.res_detail\n",
 "NATURAL LEFT OUTER JOIN rr.stc_spatial\n",
 "JOIN TAP_UPLOAD.t1\n",
 "ON\n",
 " (1 = CONTAINS(MOC(6, POINT(TAP_UPLOAD.t1.ra, TAP_UPLOAD.t1.dec)), coverage))\n",
 "WHERE\n",
 " (detail_xpath = '/capability/dataModel/@ivo-id' AND 1 = ivo_nocasematch(detail_value, 'ivo://ivoa.net/std/obscore%'))\n",
 " AND (standard_id IN ('ivo://ivoa.net/std/tap'))\n",
 "\"\"\"\n",
 "ocrscs = regtap.get_RegTAP_service(\n",
 ").run_sync(rt_query, uploads={\"t1\": objects}).to_table()\n",
 "ocrscs"
]
 },
 {
 "cell_type": "markdown",
 "id": "interim-entry",
 "metadata": {},
 "source": [
 "Note, however, that in particular Obscore services are notoriously bad at properly defining their physical coverage, so this sort of query is probably more appropriate for TAP tables and perhaps image or spectral services."
]
 },
 {
 "cell_type": "markdown",
 "id": "complete-lebanon",
 "metadata": {},
 "source": [
 "Finally, “classic” Registry queries did what's now called “service discovery”, where you are looking for all, say, image services. This, if I am very frank, is still the way you have to do searches by product type (“look for spectra”) – although we are working on rectifying that, because it does not work very well.\n",
 "\n",
 "You can do service discovery in pyvo by constraining the service type. For instance, you will find services returning X-ray images somewhat in this way – and you can probably get away with calling a method called ``get_service()``, because your service objects will usually only have one associated service of a given type (but note that there exceptions to that):"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "cordless-george",
 "metadata": {},
 "outputs": [],
 "source": [
 "total_matches = 0\n",
 "for res in registry.search(\n",
 " keywords=\"rosat\", waveband=\"X-Ray\", servicetype=\"image\"):\n",
 " try:\n",
 " print(f\"Querying {res.short_name}...\")\n",
 " mats = res.get_service().search(pos=(30, 20), size=0.3)\n",
 " print(f\"...yielded {len(mats)}\")\n",
 " total_matches += len(mats)\n",
 " except Exception as msg:\n",
 " print(f\"Service {res.short_name} failed: {msg}\")\n",
 "print(f\"Total found: {total_matches}\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "corresponding-pharmacy",
 "metadata": {},
 "source": [
 "Comments, questions and ideas for improvement are very welcome. Contact:\n",
 "msdemlei@ari.uni-heidelberg.de (PGP key: 0x555FA86CC57AE128)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "welsh-fifth",
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

Exercise 35
Can you figure out the default output limit (i.e., in effect an implied TOP) for the TAP
service at http://dc.g-vo.org/tap? How far can you raise it?
Can you write a program that figures it out for all TAP services out there that talk about
tgas?

Exercise 36
Which IAU constellation is the least massive exoplanet in the exoplanet merged
catalogue in? Try solving this using pyVO’s registry API; hint: to figure out
constellations, having the constellations as ADQL polygons is really handy.

Resolving Ivoids

IVOA identifiers are the primary keys in the VO Registry.
When keeping notes like “which service did I use”, the ivoid (rather than a DOI) still is the
better choice in the VO for the simple reason that all VO resources have an ivoid, but many
have no DOI.
To resolve an ivoid:

svc = pyvo.registry.search(ivoid='ivo://org.gavo.dc/tap')[0]

You can then go on as we did above with access_modes, get_service, etc.

Write Your Own Constraint

registry.search uses constraint classes to build queries.
You can extend the set of constraint classes yourself by inheriting from registry.SubqueriedConstraint.
Say you want to use the experimental UAT extension to RegTAP, i.e., rr.uat_concept:

56

class UATConcept(pyvo.registry.SubqueriedConstraint):

_keyword = "uat"

_subquery_table = "rr.subject_uat"

def __init__(self, uat_id):

self._condition = "uat_concept={uat_id}"

self._fillers = {"uat_id": uat_id}

new-constraint.py

What is going on here?

• We define a class inheriting from the base class SubqueriedConstraint. This is defined in
pyvo/registry/rtcons.py; but the code there is rather dense, so it is probably best to look
at other classes that are SubqueriedConstraint-s further down the source to get a feeling
for how this is supposed to work.

• The first thing we need to define is what table we want to match in; this ends up in the
_subquery_table class variable. Here, we are using an extension on the default RegTAP
server, a table containing UAT keywords for all the services. This is more useful than
what is in the standard rr.res_subject table, as there, you have all kinds of words and
keyword schemes and all that – but the UAT table is non-standard, which may be the
reason why you need to write your own constraint.

• In the constructor, we fill instance attribute _condition, which needs to contain ADQL
suitable for WHERE. However, this is just a template with fields (here: the stuff with
curly braces) to be replaced when the machinery bakes the actual query.

• For each template field, we have to give a key-value pair in the _fillers dictionary. Here,
there is just uat_id. The reason this is done behind the scenes is that we want to make
SQL string literals from python strings, and the logic to do that should not be repeated
in each constraint class but in only one central place.

• The rest of the query generation is done by pyvo.registry. In reality, this is often a bit
more complex, for instance, because you may want to have multiple terms combined
with OR; when you pass multiple constraints, they are combined with AND. See, for
instance, the UCD constraint for how you would go about this.

• The _keyword class variable gives the name of the keyword argument equivalent to passing
in a UATConcept constraint.

Exercise 37
(You will need to have looked at the vocabularies sidetrack for this)
Take new-constraint.py and add support for query expansion: add a keyword argument
expand. If that is true, include the narrower concepts of what was passed in, too.
Hint: You can leave (something like) this to the server with a UDF, or you can do the
query expansion locally; the first way is simpler, the second perhaps more instructive.

9 Datalink

Datalink: Getting Related Artefacts

57

import pyvo

class ForSource(pyvo.registry.SubqueriedConstraint):
 _keyword = "subject"
 _subquery_table = "rr.subject_uat"

 def __init__(self, uat_id):
 self._condition = "uat_concept={uat_id}"
 self._fillers = {"uat_id": uat_id}

if __name__=="__main__":
 print(pyvo.registry.search(
 ForSource("exoplanet-astronomy")).get_summary())

Datalink is a standard for “linking” files to datasets. Think calibration data, previews, extracted
objects, alternative formats, etc.
https://dc.g-vo.org/static/datalinks.shtml is a showcase of various applications of datalink.
You can retrieve the links in a web browser and ought to get a reasonable UI if you have
enabled javascript.
This is really machine-readable data; load any of these links into TOPCAT to inspect it as a
VOTable:

The power of datalink comes from the fixed structure of these rows, which allows machines to
do sensible things with them. The rows (normally) consist of

• a (theoretically globally unique) ID of the dataset the link is for

• a URL for the data linked access_url

• a human-readable description,

• semantics, that is, a machine-readable identification of what this link is. This comes from
a controlled vocabulary, http://www.ivoa.net/rdf/datalink/core. This allows clients to
sensibly group and/or select these links

• a type and length of the content that lets client figure out what to do with the file:
content_type, content_length

• and a few more technical fields.

Datalink in a Cartoon

58

https://dc.g-vo.org/static/datalinks.shtml
http://www.ivoa.net/rdf/datalink/core

2 3 4 5

1ID access url semantics content type

ivo://example/s?1 http://iv.oa/full-image.fits #this image/fits

ivo://example/s?1 http://iv.oa/scaled4.fits #coderived image/fits

ivo://example/s?1 http://iv.oa/foto.jpg #preview-image image/jpeg

ivo://example/s?1 http://iv.oa/wedge.jpg #calibration image/png

ivo://example/s?1 http://iv.oa/preview.jpg #preview image/jpeg

ivo://example/s?1 http://iv.oa/sources.vot 8 #derivation application/x-votable+xml

ivo://example/s?1 #servicedef #access NULL
10 ivo://example/s?2 http://iv.oa/spect.vot #this application/x-votable+xml

ivo://example/s?2 http://iv.oa/spect.fits #this application/fits

ivo://example/s?2 http://iv.oa/spect-preview.vot #preview-plot image/png

ivo://example/s?2 http://iv.oa/split-order/dl #progenitor 13 app/vot?content=datalink

6

7

11 12

9

14semantics content type

#this application/x-votable+xml

#derivation app/vot;content=datalink

#access NULL

15 16 17

Here is what you can see on this cartoon if you zoom in sufficiently far:
The first seven rows in correspond to a scanned plate. There is a placeholder for the original
dataset with semantics #this, i.e., the “main” dataset. A rebinned version (the figure shows
a larger area) is declared as #coderived from the main dataset. The semantics here could be
a bit more precise to indicate this link is just the resampled #this. If there were a clear idea
what a machine would do differently if it knew that, one can define a refined term using IVOA
processes (look for “IVOA VEP” if interested).
The original plate was part of an early survey which has been published in book form. A JPEG
photo of the book page corresponding to the plate is declared as #preview-image in row three.
Datalink is ideal for declaring files from a dataset’s provenance chain. In row four, we include
a PNG grey wedge from the scan with #calibration semantics.
In the other direction, you can also declare derived data products, such as the sources.vot in
row five, supposed to be a table of extracted sources from the image; the corresponding se-
mantics is #derivation, and again there may be cases when some more refined term for extracted
sources would be beneficial and should be defined.
Row six has a thumbnail of the image, declared as a #preview.
The next row defines a cutout service. Datalink allows a straightforward declaration of the
parameters for server-side data manipulation services within the VOTables that return datalink
metadata. If you decipher the XML, you will see that this is sufficient not only to operate the
service but also produce attractive UIs by declaring units, UCDs, and ranges of the pertinent
parameters.
The remaining three rows correspond to a spectrum (a single datalink document can contain
links for more than one dataset, but in practice that is rare).
The semantics #this in row eight should already be familiar; it corresponds to a spectrum
here.
The preview in spectrum case is a plot, which is reflected in the different semantics. A client
consulting the datalink vocabulary will figure out that #preview-plot actually is-a #preview.

59

The last datalink shows recursive datalink: its file has the media type

application/x-votable+xml;content=datalink

that designates datalink documents (and can be used in protocols like ObsTAP, too). In this
case, the datalink is for a #progenitor in the provenance chain, which here is a file with un-
merged Echelle orders.

Datalink in PyVO

In pyVO, datalink is (primarily) exposed in search results.
On datalink-enabled services, you can iterate over iter_datalinks(), which iterates over DatalinkResults
instances.
On these, you can pull links using bysemantics:

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")

matches = svc.search(SkyCoord.from_name("EI Eri"), 0.001)

for links in matches.iter_datalinks():

for link in links.bysemantics("#preview"):

print(link["access_url"])

Or just iterate over links to see all links available.
Yes, this is a bit deeply nested in the way of iteration, but that is the price of flexible proto-
cols. The links come as dictionary-like objects with keys matching the column labels from the
datalink specification. The labels are those written in typewriter in the enumeration of the
datalink fields above.

Exercise 38
Write a function get available semantics(dl) -> set returning a set of the
semantics available for a given datalink.
Try your program on the SSA example from the lecture.

Use Case: Overview With Previews

Let’s say you want to spot bad or weird spectra without actually retrieving or plotting the
spectra themselves.
Just download the previews and merge them into one image:

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")

matches = svc.search(SkyCoord.from_name("EI Eri"), 0.001)

previews = []

for dl in matches.iter_datalinks():

prev_url = next(dl.bysemantics("#preview"))["access_url"]

im = Image.open(io.BytesIO(requests.get(prev_url).content))

previews.append(im)

datalink-previews.py

The perhaps slightly alarming next(...) construct is just “pick off the first item from an itera-
tor”; we can do that here because we only want one preview per dataset (and actually, there is
only one). This is a convenient construct when dealing with the nested iteration in datalink in
many cases when you (think you) know there is only one link with a certain semantics.
The full source has some code merging all the previews into one raster image using the excel-
lent python imaging library PIL.

60

import io
import requests
import pyvo
from astropy.coordinates import SkyCoord
from PIL import Image, ImageDraw

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")
matches = svc.search(
 SkyCoord.from_name("EI Eri"),
 radius=0.001,
 maxrec=30,
 format="votable")

previews = []
for dl in matches.iter_datalinks():
 rec = next(dl.bysemantics("#preview"))
 im = Image.open(
 io.BytesIO(
 requests.get(rec["access_url"]).content))
 previews.append((rec["ID"], im))

xsz, ysz = previews[0][1].size

we jam together the previews to save space, but we need to make white
transparent to do that.
montage = Image.new("L",
 (xsz, ysz*len(previews)),
 color=240)

for index, (id, preview) in enumerate(previews):
 frame = preview.convert('L')
 ctx = ImageDraw.Draw(frame)
 ctx.text((0, 0), id.split("?")[-1], fill=0)
 montage.paste(frame, (0, index*ysz))
montage.save("previews.png")

Datalink: Remote Processing on Datalink Documents

Datalink also lets you declare processing services. The SODA standard defines a special set of
parameters applicable to astronomical images (CIRCLE, POLYGON, TIME, BAND,. . .).
Save a lot of time by only downloading cutouts of the object you are interested in:

roi = SkyCoord.from_name('Mira')

for rec in svc.run_sync(

"SELECT access_url, access_format FROM ivoa.obscore"

" WHERE obs_collection='HDAP'"

"AND 1=CONTAINS(CIRCLE('ICRS', {}, {}, 0.05),"

"s_region)".format(roi.ra.deg, roi.dec.deg)):

processed = rec.processed(

circle=(roi.ra.deg, roi.dec.deg, 0.05))

datalink-soda.py

This example retrieved datasets that come as datalinks directly. This is why we included
access_format in the obscore query: This way, pyVO knows when it is dealing with a datalink
document, and it will add the iter_datalinks and processed methods when the service offers the
necessary facilities.
It is more common to deliver “normal” files and offer datalink on the side. In this case, things
get somewhat more complicated at the moment because with the current API you can either
see the actual records or the datalinks.

Datalink: Remote Processing on Non-Datalink Documents

Use case: Hα maps of Sd galaxies from CALIFA.
CALIFA is a collection of spectral cubes (i.e., an array of small-band images) of galaxies; there is
a datalink-enabled TAP table (califadr3.cubes) listing the cubes on the TAP service http://dc.g-
vo.org/tap. We can extract Hα maps by doing spectral cutouts, supported via SODA’s BAND
parameter (which takes vacuum wavelengths in meters).
Use TOPCAT to inspect the tables belonging to califadr3; in particular note the objects table
that you can join with cubes via the califaid column. The cubes come in three different setups.
To avoid duplicate data, we will only look at COMB data.
Hα is at 656.25 nm (vaccuum) in the lab. For the low redshifts we are talking about here,
λlab = (1 + z)λ0 is just fine to compute where the galaxy’s Hα is at the spectrograph.
Doing the cutouts by calling processed on the link for the data itself (#this):

matches = svc.run_sync(

"SELECT califaid, obs_publisher_did, mime, em_min, em_max, redshift"

" FROM califadr3.cubes"

" JOIN califadr3.objects USING (califaid)"

" WHERE setup=’COMB’ AND hubtyp=’S d’")

for dl in matches.iter_datalinks():

lobs = ???

map = next(dl.bysemantics("#this")).processed(band=(lobs, lobs))

Trouble: How do I find the redshift (i.e., lobs) for my dl?
The (current) answer is: Use ID in the dl rows to match against obs_publisher_did in matches.
How do you know it’s that column? Well, for obscore and obscore-like tables, it will almost
always be that.

61

import math, io
from PIL import Image
import pyvo
from astropy.coordinates import SkyCoord
from astropy.io import fits

svc = pyvo.dal.tap.TAPService("http://dc.g-vo.org/tap")
roi = SkyCoord.from_name('Mira')

cutouts = []
for rec in svc.run_sync(
 "SELECT access_url, access_format FROM ivoa.obscore"
 " WHERE obs_collection='HDAP'"
 "AND 1=CONTAINS(CIRCLE('ICRS', {}, {}, 0.05),"
 "s_region)".format(roi.ra.deg, roi.dec.deg)
):
 processed = rec.processed(
 circle=(roi.ra.deg, roi.dec.deg, 0.05))

 pixels = fits.open(io.BytesIO(processed.read()))[0].data

 cutouts.append(
 Image.fromarray(((pixels/float(pixels.max()))*255).astype('uint8'))
)

 per_line = int(math.ceil(math.sqrt(len(cutouts))))
 dest_size, stamp_size = 1600, 1600//per_line

 montage = Image.new("L", (dest_size, dest_size))

 for index, img in enumerate(cutouts):
 montage.paste(
 img.resize((stamp_size, stamp_size)),
 (index//per_line*stamp_size, index%per_line*stamp_size)
)

 montage.save("cutouts.jpg")

If you have to dig yourself, things get messy because pyVO does not expose that information
properly yet. Meanwhile, you can trudge on by inspecting the VOTable. You first get the
service definition for the cutout service, most of the time the first service there is (in VOTable,
that corresponds to a RESOURCE). In there, look at the PARAMs of the GROUP in there, and
you will find a PARAM named ID. Whatever is in its ref attribute is what you are looking for:

>>> svc = next(matches.iter_adhocservices())

>>> print(list(svc.groups[0].iter_fields_and_params()))

[<PARAM ID="ID" arraysize="*" datatype="char" name="ID"

ref="obs_publisher_did" ucd="meta.id;meta.main" value=""/>]

Yes. There should be a better and more robust API for this; in pyVO 1.6, there you will probably
have an original_row attribute on what you get back from iter_datalinks.

Datalink: Simultaneous Links and Metadata

matches = svc.run_sync(

"SELECT califaid, obs_publisher_did, mime, em_min, em_max, redshift"

" FROM califadr3.cubes"

" JOIN califadr3.objects USING (califaid)"

" WHERE setup=’COMB’ AND hubtyp=’S d’")

result_rows = matches.to_table()

result_rows.add_index("obs_publisher_did")

for dl in matches.iter_datalinks():

rec = result_rows.loc["obs_publisher_did", dl["ID"][0]]

califaid = rec["califaid"]

lobs = l0*(1+rec["redshift"])

processed = next(dl.bysemantics("#this")

).processed(band=(lobs, lobs))

soda-with-rows.py

The novelty here is that we are making a proper astropy table of the results now in order to be
able to create an index on it. That’s a technial term for “make it so we can fetch rows quickly
by using values from this column”. With the add_index call, we can use .loc attribute on the
table to quickly pick out rows by obs_publisher_did. This is how we can find the table row for a
datalink.

Exercise 39
Get the soda-with-rows.py script for doing cutouts on CALIFA DR3 and make a false
colour image for IC 1151 by taking the slices from the COMB cube (see the setup
column) at 400 nm as blue, at 550 nm as green, and at 700 nm as red. Do not download
the whole cube, use SODA to just retrieve exactly what you need.
Hint: If you have no better way to combine single-channel pixels to an RGB image in
Python, use the excellent Python Image Library PIL (in its modern incarnation of
pillow). This is still not entirely trivial, so here is how to get three arrays red, green, and
blue, made up of three frames into a colour jpeg using plain PIL and numpy:

def _normalize_for_image(pixels):

pixels = numpy.flipud(pixels)

pixMax, pixMin = numpy.max(pixels), numpy.min(pixels)

pixels = (pixels-pixMin)/(pixMax-pixMin)*255

return numpy.asarray(pixels, numpy.uint8)

62

import pyvo

l0 = 6.5625e-7
svc = pyvo.dal.tap.TAPService("http://dc.g-vo.org/tap")

matches = svc.run_sync(
 "SELECT califaid, obs_publisher_did, mime, em_min, em_max, redshift"
 " FROM califadr3.cubes"
 " JOIN califadr3.objects USING (califaid)"
 " WHERE setup='COMB' AND hubtyp='S d'")
result_rows = matches.to_table()
result_rows.add_index("obs_publisher_did")

for dl in matches.iter_datalinks():
 rec = result_rows.loc["obs_publisher_did", dl["ID"][0]]
 califaid = rec["califaid"]
 lobs = l0*(1+rec["redshift"])
 if not rec["em_min"]<=lobs<=rec["em_max"]:
 continue

 processed = next(dl.bysemantics("#this")
).processed(band=(lobs, lobs))
 with open(str(califaid)+".fits", "wb") as f:
 f.write(processed.read())

pixels = numpy.array([

normalize_for_image(red),

normalize_for_image(green),

normalize_for_image(blue)]).transpose(1,2,0)

Image.fromarray(pixels, mode="RGB"

).save("IC1151.jpeg", format="jpeg")

I have not tried looking for a less pedestrian way to do this; if you have one, please
write in.

10 At the Limit: VO-Wide TAP Queries

VO-Wide TAP Queries

People often say: “I want everything in the VO on object X”.
This is far too hard. There are many reasons why this is hard, beginning with what “every-
thing” is – for instance, you would not normally want every frame containing the object ever
taken.
What is marginally possible: “Give me all measurements of a certain sort of UCD in a certain
vicinity.” Actually, the constraints can be a lot more general than just a cone search, as long as
you can formulate it with UCDs.
However, this is surprisingly involved, mostly for stupid reasons. Follow me along for proper
motions (pos.pm).
Note: This is probably not something realistic for research within the next few years. But it is
a nice exercise in how far you can take pyVO and TAP.

A RegTAP Query for Tables and TAP Services

For “where can I find data with UCD X?”, there is pyvo.registry.UCD.
But we need to know which table has a column with our UCD.
PyVO can’t do that yet; hence, use a direct RegTAP query:

SELECT DISTINCT access_url, table_name

FROM rr.interface

NATURAL JOIN rr.capability

NATURAL JOIN rr.res_table

NATURAL JOIN rr.table_column

NATURAL JOIN rr.stc_spatial

WHERE

standard_id LIKE 'ivo://ivoa.net/std/tap%'

AND ucd LIKE 'pos.pm%'

AND 1=INTERSECTS(POINT({RA}, {DEC}, {SR}), coverage)

AND (table_type!='output' OR table_type IS NULL)

How do you come up with a query like this? Well: you can start from what pyVO does;
pyvo.registry has the get_RegTAP_query function that will return what pyVO would generate for
a given set of constraints. For instance:

import pyvo

print(

pyvo.registry.get_RegTAP_query(

pyvo.registry.UCD('pos.pm%')))

63

outputs this horror:

SELECT

ivoid, res_type, short_name, res_title, content_level, res_description,

reference_url, creator_seq, created, updated, rights, content_type,

source_format, source_value, region_of_regard, waveband,

ivo_string_agg(COALESCE(access_url, ''), ':::py VO sep:::') AS access_urls,

ivo_string_agg(COALESCE(standard_id, ''), ':::py VO sep:::') AS standard_ids,

ivo_string_agg(COALESCE(intf_type, ''), ':::py VO sep:::') AS intf_types,

ivo_string_agg(COALESCE(intf_role, ''), ':::py VO sep:::') AS intf_roles,

ivo_string_agg(COALESCE(cap_description, ''), ':::py VO sep:::') AS cap_descriptions

FROM

rr.resource

NATURAL LEFT OUTER JOIN rr.capability

NATURAL LEFT OUTER JOIN rr.interface

NATURAL LEFT OUTER JOIN rr.alt_identifier

NATURAL LEFT OUTER JOIN rr.table_column

WHERE

(ucd LIKE 'pos.pm%')

GROUP BY

ivoid, res_type, short_name, res_title, content_level, res_description,

reference_url, creator_seq, created, updated, rights, content_type,

source_format, source_value, region_of_regard, waveband

This is massively uglified by pyVO’s need to be generic and to, in a single query, pull all kinds
of information on the services available. In tailored RegTAP queries you rarely need that kind
of thing. Still, you could take this query and strip it down until it does what you want, in
particular as regards what tables to hit in the first place.
Alternatively, RegTAP is written such that to build a query, you only have to look for what table
a piece of data you want to retrieve or constrain is in and then NATURAL JOIN with the table.
The canonical source to find this kind of information is the RegTAP standard, Demleitner and
Harrison et al. (2019), in particular its Figure 2; also skim over the example queries in section 10
if you need to hand-write RegTAP queries.
In this case, to be able to query TAP services, we need the access url (in rr.interface) of the
service and the table name (in rr.res table) for a table containing a column with a UCD (in
rr.table column). To be able to say “I want a TAP service”, we need to constrain the standard
identifier (in rr.capabilty). Finally, we want to throw out tables that do not have data for our
region of interest, and hence we also need to constrain the spatial coverage (in rr.stc spatial).
That consideration almost results in the hand-tailored query shown above already.
Two details are in there on top: the DISTINCT after the SELECT is so we do not get one pair of
access url and table name for every column in the tables that have matching UCDs; in general,
there will be more than one of them, and we still only want to query the table once.
And then there is the odd

AND (table_type!='output' OR table_type IS NULL)

This is another instance of where something seemed like a good idea to the standards designers
– in this case: Use the same elements to declare output tables and queriable tables – makes for
something that is hard to understand in later use. What this means is: Ignore tables that are
declared in the registry but that one probably cannot query.

64

Running the RegTAP Query

Running RegTAP queries just means picking a suitable TAP service and calling run_sync:

reg_svc = pyvo.registry.regtap.get_RegTAP_service()

result = reg_svc.run_sync(regtap_query)

svcs = {}

for row in result.to_table():

svcs.setdefault(row["access_url"], []).append(row["table_name"])

return svcs.items()

There is no magic behind get_RegTAP_service – it is constructing a normal TAPService, just con-
figured with an access URL known to lead to a RegTAP service. By the way, you can change
that URL if you want to use a different registry service; use choose_RegTAP_service from within
pyVO, or set the IVOA_REGISTRY environment variable to your preferred RegTAP service’s access
URL.
Note how we are grouping the tables belonging to a service in this code. This is exactly a
GROUP BY operation in the database sense. So:

Exercise 40
In multitap.py, have a look at get_services_and_tables; in there, we are doing a grouping
operation on the client (i.e., our) side. Can you move to to the server side using GROUP
BY and the ivo_string_agg UDF?

Query Generation I: Defining the Schema

We want to build queries that let us fill a table defined like this:

col-name, UCD, Unit, type-to-cast-to

RESULT_SCHEMA = [

('cat_id', "meta.id;meta.main", None, "CHAR(*)"),

('ra', "pos.eq.ra;meta.main", "deg", None),

('dec', "pos.eq.dec;meta.main","deg", None),

('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),

('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

You may recognise our technique of writing “inhomogeneous” records in tuples from our
fetch3 example. In this case, we give names, the UCDs from which to fill the columns, the
target unit, and a type the column should have; this is important in the case of cat_id, the ob-
ject identifier within the catalogue, which sometimes is an integer and sometimes is a string.
We have to unify this if rows from different tables are supposed to end up in one result table.
All other columns will be real-valued if they are somehow sane, and hence we do not need to
cast.
We now need to write code that can create database queries from these specifications and table
metadata.

65

Query Generation II: From Clause And a Template

Given a TAP service svc, a table_name, our result schema, and the region of interest in RA, DEC,
and SR, make a query to produce rows for our result schema:

db_table, select_clause = svc.tables[table_name], []

for dest_name, ucd, unit, type in RESULT_SCHEMA:

select_clause.append("{} AS {}".format(

fieldname_with_ucd(ucd, db_table),

dest_name))

select_clause.append(f"'{table}' AS table_name")

select_clause.append(f"'{svc.baseurl}' AS svc_url")

return ("SELECT {select_serialised} FROM {srctable}"

" WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"

" CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(

select_serialiased=", ".join(select_clause),

srctable=table_name,...)

In this snippet, we first incrementally build a select clause by looking for the UCDs we are
interested in in the remote table definition (that we retrieve using svc.tables[table_name]) and
make “their-name AS our-name” particles. We add two constant fields for the table name and
the service access URL; this is so we can later still see where everything came from.
We have to define the function fieldname_with_ucd ourselves, because astropy tables (which
is what is in svc.tables) do not have the convenient fieldname_with_ucd method that pyVO
DALResults have. Perhaps this should change? Anyway: the implementation is trivial, ex-
cept that we lowercase both the incoming UCD and the UCDs we get from the service. Curse
case-insenstitive items.
These particles are then joined into the selclause in the ADQL template.

Query Generation III: Delimited Identifier Workaround

Regrettably, the code immediately fails.

$ python3 multitap-broken1.py

[...]

pyvo.dal.exceptions.DALQueryError:

Incorrect ADQL query:

Encountered "/". Was expecting one of: <EOF> "." "," ";" "AS"

"WHERE" "GROUP" "HAVING" "ORDER" "\""

<REGULAR_IDENTIFIER_CANDIDATE> "NATURAL" "INNER" "LEFT"

"RIGHT" "FULL" "JOIN"

multitap-broken1.py

The problem: Vizier uses delimited identifiers but has them unquoted in the registry. Workaround:

def perhaps_quote(table_name):

parts = table_name.split(".")

for index, part in enumerate(parts):

if not re.match("[A-Za-z0-9][A-Za-z0-9_]*$", part):

parts[index] = '"{}"'.format(part.replace('"', '""'))

return ".".join(parts)

66

import pyvo

RA, DEC, SR = 12, 13, 0.1

RESULT_SCHEMA = [
 ('cat_id', "meta.id;meta.main", None, "CHAR(*)"),
 ('ra', "pos.eq.ra;meta.main", "deg", None),
 ('dec', "pos.eq.dec;meta.main", "deg", None),
 ('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),
 ('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

def fieldname_with_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 We need this function here because astropy tables do not have
 something like the DALResults.fieldname_with_ucd method.
 """
 ucd = ucd.lower()

 for col in table.columns:
 if col.ucd and col.ucd.lower()==ucd:
 return col.name
 raise KeyError(ucd)

svc = pyvo.dal.TAPService("http://tapvizier.cds.unistra.fr/TAPVizieR/tap")
table_name = "I/256/veronc81"

db_table, select_clause = svc.tables[table_name], []
for dest_name, ucd, unit, type in RESULT_SCHEMA:
 select_clause.append("{} AS {}".format(
 fieldname_with_ucd(ucd, db_table),
 dest_name))
select_clause.append(f"'{table_name}' AS table_name")
select_clause.append(f"'{svc.baseurl}' AS svc_url")

query = ("SELECT {selclause} FROM {srctable}"
 " WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"
 " CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(
 selclause=", ".join(select_clause),
 srctable=table_name,
 racol=fieldname_with_ucd("pos.eq.ra;meta.main", db_table),
 deccol=fieldname_with_ucd("pos.eq.dec;meta.main", db_table),
 ra=RA, dec=DEC, sr=SR)
print(query)
svc.run_sync(query)

This is a long-standing problem on VizieR’s side; the standard has been clear on this for a long
time (“when delimited identifiers are used as table names on the relational side, the quotes
must be part of name’s value, and the capitalisation used in the DDL must be preserved”), and
actually, a function like perhaps_quote cannot even really work (e.g, in “USNO-B-1.0”, is the dot
part of a name or a schema separator?). So – this is another illustration of where sometimes
one has to live with imperfections and just cope as well as possible.

Running Queries I: Feature Detection

On a service like VizieR with our pos.pm criterion, we will have to query a lot of tables and
stack the results on the client side.
Don’t take my word for “a lot of tables”; on VizieR, at the time of writing, the ADQL query

SELECT COUNT(*)

FROM (

SELECT DISTINCT table_name FROM tap_schema.columns

WHERE ucd LIKE 'pos.pm;%') AS q

returns a whopping 2003; in reality, due to our positional constraint, we would be firing off a
lot fewer queries, but it would still be nice if we only had to run one.
Can we take a union of the results on the server side?
Perhaps. We need the ADQL UNION operator for that. Regrettably, it is optional.
Interactively, you will find information on supported features in the ADQL tab of modern TOP-
CATs. From within pyVO, there is a complex hierarchy of objects below a TAPService instance.
Unless you really want to read Demleitner and Dowler et al. (2012), take the following blindly
as a recipe.
Does a service support union?

knows_union = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

The get_feature method takes two arguments: An ivoid identifying the sort of feature you are
querying, and a key into the feature listing. To figure out these two strings, I am afraid you
will need to consult the ADQL standard (Mantelet and Morris et al., 2023).
Incidentally, as of mid-2024, VizieR’s ADQL engine does not yet support UNION, which is the
main reason we have put it a sanity break in multitap.py

if len(tables)>30:

sys.stderr.write(" (cropping to 30 tables for handleability)\n")

tables = tables[:30]

(but then we probably would have anyway, because even a union over 300 tables is a bit too
much for an educational example).

67

Running Queries II: Adapting to Server Capabilities

Since UNION is optional, we have to have two code paths now, one for services with UNION,
one for ones without. It will not get much simpler than that:

svc = pyvo.dal.TAPService(access_url)

knows_union = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

queries = [get_query(svc, table_name)) for table_name in tables]

result_rows = []

def feed_rows(astropy_table):

for row in astropy_table:

result_rows.append(dict(zip(row.colnames, row.as_void())))

if knows_union:

feed_rows(svc.run_sync(

" UNION ".join(queries)).to_table())

else:

for query in queries:

feed_rows(svc.run_sync(query).to_table())

This is seriously ugly code; to smuggle shared code into the two legs of the knows_union selec-
tion, we first take out the generation of the queries from where they run, and then create a local
function encapsulating the logic of processing result rows (this is called a closure in this case,
because the function encloses the result_rows list from the parent block).
And we have two rather different pieces of code on the two sides of the selection. They will
age and break differently, and all this is painful.
Take it from me: Optional features suck. In almost everything. If you ever write software or a
standard, try to avoid them as much as you can.

Exercise 41
Can you find out the strings you need to pass to get_feature find find out whether a
service supports the nifty IN_UNIT function?

Query Generation IV: Casting

Even this ends with an obscure error. Try multitap-broken2.py
multitap-broken2.py

pyvo.dal.exceptions.DALQueryError: Field query: UNION types integer

and text cannot be matched LINE 1: ...S(12), RADIANS(13)), RADIANS(0.1))))

UNION SELECT localid AS...

The reason? Idenifier columns are sometimes integers and sometimes texts.
The solution? Cast them all to string.
But: CAST is optional. Oh no!
We could probably get away with just blindly casting, because as long as a service does not
support UNION, we can do the casting locally in Python, while services with UNION will
probably support CAST, too. But that’s just guessing, and this is more about education rather
than economy of work.

68

import re
import sys

from astropy import table
import pyvo

For lazyness, we define our search criterion globally:
RA, DEC, SR = 12, 13, 0.1

the data items you're interested in, expressed through UCDs
that's pairs of (ucd, name, unit); implied is src, src_table
RESULT_SCHEMA = [
 ('cat_id', "meta.id;meta.main", None, "CHAR(*)"),
 ('ra', "pos.eq.ra;meta.main", "deg", None),
 ('dec', "pos.eq.dec;meta.main", "deg", None),
 ('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),
 ('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

def get_services_and_tables():
 """returns a sequence of (service, [table-names]) pairs for a
 hardwired RegTAP query.

 regtap_query must (at least) have access_url and table_name in
 the select clause.
 """
 regtap_query = f"""
 SELECT DISTINCT access_url, table_name
 FROM rr.interface
 NATURAL JOIN rr.capability
 NATURAL JOIN rr.res_table
 NATURAL JOIN rr.table_column
 NATURAL JOIN rr.stc_spatial
 WHERE
 standard_id LIKE 'ivo://ivoa.net/std/tap%'
 AND ucd LIKE 'pos.pm%'
 AND 1=CONTAINS(CIRCLE({RA}, {DEC}, {SR}), coverage)
 AND (table_type!='output' OR table_type IS NULL)
 AND access_url='http://dc.zah.uni-heidelberg.de/tap'
 """

 reg_svc = pyvo.registry.regtap.get_RegTAP_service()
 result = reg_svc.run_sync(regtap_query)

 svcs = {}
 for row in result.to_table():
 svcs.setdefault(row["access_url"], []).append(row["table_name"])
 return svcs.items()

def fieldname_with_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 We need this function here because astropy tables do not have
 something like the DALResults.fieldname_with_ucd method.
 """
 ucd = ucd.lower()

 for col in table.columns:
 if col.ucd and col.ucd.lower()==ucd:
 return col.name
 raise KeyError(ucd)

def perhaps_quote(table_name):
 """adds double quotes around table_name if it's not a plain SQL
 identifier.

 This is a workaround for broken services that do not pre-quote in
 VODataService tableset.
 """
 parts = table_name.split(".")
 for index, part in enumerate(parts):
 if not re.match("[A-Za-z0-9][A-Za-z0-9_]*$", part):
 parts[index] = '"{}"'.format(part.replace('"', '""'))
 return ".".join(parts)

def get_query(svc, table_name):
 """returns a query producing RESULT_SCHEMA for table in svc.

 svc is a pyvo.dal.TAPService, table a name from its schema.
 """
 db_table = svc.tables[table_name]
 select_clause = []
 for dest_name, ucd, unit, type in RESULT_SCHEMA:
 select_clause.append("{} AS {}".format(
 perhaps_quote(fieldname_with_ucd(ucd, db_table)),
 dest_name))

 select_clause.append(f"'{table_name}' AS table_name")
 select_clause.append(f"'{svc.baseurl}' AS svc_url")

 return ("SELECT {selclause} FROM {srctable}"
 " WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"
 " CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(
 selclause=", ".join(select_clause),
 srctable=perhaps_quote(table_name),
 racol=fieldname_with_ucd("pos.eq.ra;meta.main", db_table),
 deccol=fieldname_with_ucd("pos.eq.dec;meta.main", db_table),
 ra=RA,
 dec=DEC,
 sr=SR)

def get_rows_for_svc(access_url, tables):
 """returns rows in RESULT_SCHEMA for tables in the service at access_url.
 """
 svc = pyvo.dal.TAPService(access_url)
 sys.stderr.write(f">>>>> {access_url} ({len(tables)})\n")

 knows_union = svc.get_tap_capability().get_adql().get_feature(
 "ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

 if len(tables)>30:
 sys.stderr.write(" (cropping to 30 tables for handleability)\n")
 tables = tables[:30]

 queries = []
 for table_name in tables:
 try:
 queries.append(get_query(svc, table_name))
 except KeyError as msg:
 sys.stderr.write(f" Skipping {table_name} ({msg} missing)\n")

 result_rows = []
 def feed_rows(astropy_table):
 for row in astropy_table:
 # TODO: Fix units here
 result_rows.append(dict(zip(row.colnames, row.as_void())))

 if knows_union:
 sys.stderr.write("> querying all\n")
 feed_rows(svc.run_sync(
 " UNION ".join(queries)).to_table())

 else:
 sys.stderr.write(f"> querying {table_name}\n")
 # Server has no union, we need to query individual tables
 for query in queries:
 print(query)
 feed_rows(svc.run_sync(query).to_table())

 return result_rows

def make_result_table(recs):
 """returns an astropy table for RESULT_SCHEMA plus src, src_table.
 """
 res = table.Table()
 res.add_column(table.Column(name='src',
 description="Source service",
 data=[r["svc_url"] for r in recs]))
 res.add_column(table.Column(name='src_table',
 description="Source table",
 data=[r["table_name"] for r in recs]))

 for name, ucd, unit, adqltype in RESULT_SCHEMA:
 res.add_column(table.Column(name=name,
 data=[r[name] for r in recs],
 meta={"ucd": ucd})),

 return res

def main():
 recs = []
 svcs_and_tables = get_services_and_tables()
 for svc_url, tables in svcs_and_tables:
 try:
 recs.extend(get_rows_for_svc(svc_url, tables))
 except Exception as msg:
 import traceback; traceback.print_exc()
 sys.stderr.write(f"{svc_url} broken (skipped): {msg}\n")

 res_table = make_result_table(recs)
 res_table.write("all-pms.vot", format="votable", overwrite=True)
 with pyvo.samp.connection() as conn:
 pyvo.samp.send_table_to(conn, res_table,
 name="all-pms", client_name="topcat")

if __name__=="__main__":
 main()

Query Generation V: Still Casting

knows_cast = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-type", "CAST")

for dest_name, ucd, unit, type in RESULT_SCHEMA:

if type and knows_cast:

select_clause.append("CAST({} AS {}) AS {}".format(

perhaps_quote(fieldname_with_ucd(ucd, db_table)),

type,

dest_name))

else:

Don't cast and hope for the best

select_clause.append("{} AS {}".format(

perhaps_quote(fieldname_with_ucd(ucd, db_table)),

dest_name))

The fallback is of course error-prone: If a table schema would need a CAST but the service
cannot do it, we may fail that service. Sometimes best effort is all one can do.

Bringing it all together

After all this preparation, the actual program is trivial except for our usual error handling:
multitap.py

recs = []

svcs_and_tables = get_services_and_tables()

for svc_url, tables in svcs_and_tables:

try:

recs.extend(get_rows_for_svc(svc_url, tables))

except Exception as msg:

import traceback; traceback.print_exc()

sys.stderr.write(f"{svc_url} broken (skipped): {msg}\n")

res_table = make_result_table(recs)

res_table.write("all-pms.vot", format="votable", overwrite=True)

with pyvo.samp.connection() as conn:

pyvo.samp.send_table_to(conn, res_table,

name="all-pms", client_name="topcat")

Exercise 42
There is one glaring hole in our multitap script: Units. Try to improve on this: If the
service supports IN_UNIT, use it in about the way we have been using CAST.
If you actually need something like this, you can of course also compute the conversion
factors locally (using astropy.units) and bake them into the queries. Feel free to try that,
too.

11 Odds and Ends

11.1 EPN-TAP

EPN-TAP 1

EPN-TAP is like obscore, just for solar system data. That is: there is a pre-defined schema that
you can query on many services in a uniform way. normal VO TAP plus a pre-defined table
structure; the tables are always called epn core. Columns of note include:

69

import re
import sys

from astropy import table
import pyvo

For lazyness, we define our search criterion globally:
RA, DEC, SR = 12, 13, 0.25

the data items you're interested in, expressed through UCDs
that's pairs of (ucd, name, unit); implied is src, src_table
RESULT_SCHEMA = [
 ('cat_id', "meta.id;meta.main", None, "CHAR(*)"),
 ('ra', "pos.eq.ra;meta.main", "deg", None),
 ('dec', "pos.eq.dec;meta.main", "deg", None),
 ('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),
 ('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

def get_services_and_tables():
 """returns a sequence of (service, [table-names]) pairs for a
 hardwired RegTAP query.

 regtap_query must (at least) have access_url and table_name in
 the select clause.
 """
 regtap_query = f"""
 SELECT DISTINCT access_url, table_name
 FROM rr.interface
 NATURAL JOIN rr.capability
 NATURAL JOIN rr.res_table
 NATURAL JOIN rr.table_column
 NATURAL JOIN rr.stc_spatial
 WHERE
 standard_id LIKE 'ivo://ivoa.net/std/tap%'
 AND ucd LIKE 'pos.pm%'
 AND 1=INTERSECTS(CIRCLE({RA}, {DEC}, {SR}), coverage)
 AND (table_type!='output' OR table_type IS NULL)
 """

 reg_svc = pyvo.registry.regtap.get_RegTAP_service()
 result = reg_svc.run_sync(regtap_query)

 svcs = {}
 for row in result.to_table():
 svcs.setdefault(row["access_url"], []).append(row["table_name"])
 return svcs.items()

def fieldname_with_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 We need this function here because astropy tables do not have
 something like the DALResults.fieldname_with_ucd method.
 """
 ucd = ucd.lower()

 for col in table.columns:
 if col.ucd and col.ucd.lower()==ucd:
 return col.name
 raise KeyError(ucd)

def perhaps_quote(table_name):
 """adds double quotes around table_name if it's not a plain SQL
 identifier.

 This is a workaround for broken services that do not pre-quote in
 VODataService tableset.
 """
 parts = table_name.split(".")
 for index, part in enumerate(parts):
 if not re.match("[A-Za-z0-9][A-Za-z0-9_]*$", part):
 parts[index] = '"{}"'.format(part.replace('"', '""'))
 return ".".join(parts)

def get_query(svc, table_name):
 """returns a query producing RESULT_SCHEMA for table in svc.

 svc is a pyvo.dal.TAPService, table a name from its schema.
 """
 knows_cast = svc.get_tap_capability().get_adql().get_feature(
 "ivo://ivoa.net/std/TAPRegExt#features-adql-type", "CAST")
 db_table = svc.tables[table_name]
 select_clause = []
 for dest_name, ucd, unit, type in RESULT_SCHEMA:
 if type and knows_cast:
 select_clause.append("CAST({} AS {}) AS {}".format(
 perhaps_quote(fieldname_with_ucd(ucd, db_table)),
 type,
 dest_name))

 else:
 # Don't cast and hope for the best
 select_clause.append("{} AS {}".format(
 perhaps_quote(fieldname_with_ucd(ucd, db_table)),
 dest_name))

 select_clause.append(f"'{table_name}' AS table_name")
 select_clause.append(f"'{svc.baseurl}' AS svc_url")

 # There's a TOP 10 in the following because we want a wide code
 # in order to get results from sparse catalogues but we don't
 # want to be swamped by deep surveys. Of course, you want to
 # remove that in science use.
 return ("SELECT TOP 10 {selclause} FROM {srctable}"
 " WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"
 " CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(
 selclause=", ".join(select_clause),
 srctable=perhaps_quote(table_name),
 racol=fieldname_with_ucd("pos.eq.ra;meta.main", db_table),
 deccol=fieldname_with_ucd("pos.eq.dec;meta.main", db_table),
 ra=RA,
 dec=DEC,
 sr=SR)

def get_rows_for_svc(access_url, tables):
 """returns rows in RESULT_SCHEMA for tables in the service at access_url.
 """
 svc = pyvo.dal.TAPService(access_url)
 sys.stderr.write(f">>>>> {access_url} ({len(tables)})\n")

 knows_union = svc.get_tap_capability().get_adql().get_feature(
 "ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

 if len(tables)>30:
 sys.stderr.write(" (cropping to 30 tables for handleability)\n")
 tables = tables[:30]

 queries = []
 for table_name in tables:
 try:
 queries.append(get_query(svc, table_name))
 except KeyError as msg:
 sys.stderr.write(f" Skipping {table_name} ({msg} missing)\n")

 result_rows = []
 def feed_rows(astropy_table):
 for row in astropy_table:
 # TODO: Fix units here
 result_rows.append(dict(zip(row.colnames, row.as_void())))

 if knows_union:
 sys.stderr.write("> querying all\n")
 feed_rows(svc.run_sync(
 " UNION ".join(queries)).to_table())

 else:
 sys.stderr.write(f"> querying {table_name}\n")
 # Server has no union, we need to query individual tables
 for query in queries:
 feed_rows(svc.run_sync(query).to_table())

 return result_rows

def make_result_table(recs):
 """returns an astropy table for RESULT_SCHEMA plus src, src_table.
 """
 res = table.Table()
 res.add_column(table.Column(name='src',
 description="Source service",
 data=[r["svc_url"] for r in recs]))
 res.add_column(table.Column(name='src_table',
 description="Source table",
 data=[r["table_name"] for r in recs]))

 for name, ucd, unit, adqltype in RESULT_SCHEMA:
 res.add_column(table.Column(name=name,
 data=[r[name] for r in recs],
 meta={"ucd": ucd})),

 return res

def main():
 recs = []
 svcs_and_tables = get_services_and_tables()
 for svc_url, tables in svcs_and_tables:
 try:
 recs.extend(get_rows_for_svc(svc_url, tables))
 except Exception as msg:
 import traceback; traceback.print_exc()
 sys.stderr.write(f"{svc_url} broken (skipped): {msg}\n")

 res_table = make_result_table(recs)
 res_table.write("all-pms.vot", format="votable", overwrite=True)
 with pyvo.samp.connection() as conn:
 pyvo.samp.send_table_to(conn, res_table,
 name="all-pms", client_name="topcat")

if __name__=="__main__":
 main()

• granule_uid – an identifier for the dataset (“granule” is a word for something like a dataset
in solar system sciences).

• target_name – what was observed? Regrettably, there are no strict rules for what is called
what, so it requires a certain amount of domain feeling to guess how to constrain this.

• time_min, time_max – when was it observed? Most values in EPN-TAP come as pairs of min
and max.

• c<n>_min, c<n>_max – where is it? Compared to core astronomy, solar system science is
plagued by a plethora of coordinate systems. Hence, there is no RA and Dec, but rather
three generic coordinate intervals. What they actually mean is given by spatial frame type

(which could be something like “cylindrical”; in the solar system, you have a lot more
than just the spherical coordinats that are fine for most of core astronomy) and some
identifier for how to interpret these numbers spatial coordinate description (which
would correspond to thing like ICRS or Galactic on the sky). You will need to constrain
at least the latter if you expect any sensible result to come out of spatial constraints.

• dataproduct_type – the sort of observation. This is like the eponymous column in Obscore,
except that these are hashlists of 2-letter codes at this point, defined in the standard itself
(Erard and Cecconi et al., 2022) rather than in the product-type vocabulary.

• instrument_host_name – the probe or laboratory that produced the data. Again, at this point
it is not certain what strings would match a given probe; here, however, there is hope that
soon-ish a vocabulary will be produced.

• instrument_name – the instrument that produced the data. Again, you have to bascially
guess what the instrument is called, and the column may contain a hashlist.

EPN-TAP 2: Hashlists

Many EPN-TAP fields are “hash lists”: they are actually multivalued, and to still keep every-
thing in one table, multiple values are concatenated by hashes (#), as in an instrument name
like

Visible Infrared Thermal Imaging Spectrometer#VIRTIS
To match such columns, use the ivo_hashlist_has(hashlist, item) UDF.

EPN-TAP 3: Global Discovery

Global EPN-TAP discovery means: query all epncore tables. To find these, you have to:

• look for resources containing epncore tables at all and then

• find the tables implementing epncore in them.

To make things even more complicated, essentially all EPN-TAP tables appear twice: Once in
a record dedicated to them (with author, title, description for the table itself), once in the TAP
service that hosts them. We only want to match the first kind, which for technical reasons is
done in pyVO by only accepting a resource record if it has an access mode tap#aux.
In code:

70

def iter_epncore_tables(*args, **kwargs):

for resrec in pyvo.registry.search(datamodel="epntap", *args, **kwargs):

if not 'tap#aux' in resrec.access_modes():

continue

for tab in resrec.get_tables().values():

utype = tab.utype or ""

if (utype=='ivo://vopdc.obspm/std/epncore#schema-2.0'

or utype.startswith('ivo://ivoa.net/std/epntap#table-2.')):

yield resrec, tab

epnquery.py

This will only work on pyVO later than 1.5, because in 1.5 the table utype was not exposed. In
case you wonder what the yield statement does: it makes the function a generator. This means
that you can iterate over its result without having to create a sequence in between.
The inner loop examines the tables published by the resource; tables conforming to EPN-TAP
are identified by a utype, which is some characteristic string saying about as much as “some-
thing to do with data models”. In this case, there are still two substantially different utypes
around in the VO, one created during the development of the standard (the one with the
vopdc.obspm authority), one for the final IVOA standard. Hence, we need to match against
both for the time being. The ivoa.net identifier will also change as future (minor, i.e., com-
patible) versions of EPN-TAP come around, which is why we do a prefix match. This second
constraint is what will be enough in a future when all the legacy services will be updated.
The entire extra function is necessary here because we are not only discovering full resources
here (the normal “unit of discovery” in the VO Registry) but have to discover tables on top. I
expect pyVO will grow a function that will isolate you from these technicalities in the future;
it may be worth perusing the current documentation when you need to do something like this
in practice.
Doing something with our results is a bit more complex here than in the, say, obscore case,
because EPN-TAP lets people put almost any kind of data into such tables, and what your
access_url points to – spectra, profiles of elemental abundances, odd magnetospheric data,
or nothing at all – is impossible to tell before at least inspecting the dataproduct_type column
(and even then your average non-solar-system astronomer may be stumped. . .). Hence, in our
example we restrict ourselves to simply send any non-empty result to TOPCAT.
In mid-2024, the program will also fail with a syntax error when it hits the VizieR EPN-TAP
service, because the do not properly quote their table name; with a bit of luck, this problem
will be gone by the time you read this.

Exercise 43
Get the epnquery.py and change it to only discover spectra (that’s dataproduct type sp
in EPN-TAP). then send the first two spectra your program finds to TOPCAT (or SPLAT,
or CASSIS, if you have one of them).

11.2 Custom Parameters to Simple Services

Custom Parameters: Discovery

SIAP only has very few standard parameters (e.g., no time constraints), and even SSAP’s rich
parameter set is insufficient for, e.g., theoretical spectra.
SIAP and SSAP services can define custom parameters. Discover them using a FORMAT=METADATA
URL parameter.

71

import pyvo

def iter_epncore_tables(*args, **kwargs):
 for resrec in pyvo.registry.search(datamodel="epntap", *args, **kwargs):
 if not 'tap#aux' in resrec.access_modes():
 continue

 for tab in resrec.get_tables().values():
 utype = tab.utype or ""
 if (utype=='ivo://vopdc.obspm/std/epncore#schema-2.0'
 or utype.startswith('ivo://ivoa.net/std/epntap#table-2.')):
 yield resrec, tab

def global_query():
 for resrec, tab in iter_epncore_tables():
 svc = resrec.get_service("tap", lax=True)
 print(f"{resrec.ivoid}, {tab.name}")
 res = svc.run_sync(
 f"SELECT TOP 30 * FROM {tab.name}"
 " WHERE 1=ivo_hashlist_has(instrument_host_name, 'Juno')")
 if res:
 yield resrec.short_name, res.to_table()

if __name__=="__main__":
 with pyvo.samp.connection() as conn:
 for short_name, table in global_query():
 pyvo.samp.send_table_to(
 conn, table, name=short_name, client_name="topcat")

The input parameters are given as VOTable params in the root VOTable RESOURCE, where
their names are prefixed with INPUT:. You can figure out names, units, descriptions, and, if
the service operators do a good job, even hints as to what you should pass in when you want
to get data back.
pyVO does not yet have some API that would properly hide this (not terribly pretty) imple-
mentation detail. Worse, it is not totally trivial to get these PARAMs with astronomer-level
pyVO.
To make amends, this course comes with a script viewparams.py that has a function and a UI
to retrieve metadata. To see how an example works, try

python viewparams.py "http://dc.g-vo.org/bgds/q/sia/siap.xml?"

viewparams.py

Custom Parameters: Usage

Pass custom parameters as keyword arguments to search:

svc.search((107, -10), (0.05, 0.05),

dateObs="57050/58050",

bandpassId="SDSS i'")

siapextra.py

Custom Parameters: Syntax Trouble

We often have to pass intervals. You need some syntax to write upper/lower limits.
Old-style VO services (most of them) have intervals declared as char[*] or double) and expect
min/max.
Others have two simple float parameters with _MIN and _MAX.
New-style (SIAv2, datalink...) services have interval xtypes and type double[2]. These inter-
vals are written with a blank.
We are sorry about this, but not all standards work out well on the first attempt. In defence
of the early standards authors that came up with the wretched slash syntax: There was prior
un-art for this from the geospatial community.

72

"""
A program to dump the extra parameters accepted by SIAP and SSAP services.

It takes an access URL as its parameter; example:
http://dc.g-vo.org/bgds/q/sia/siap.xml?
"""

import requests
PyVO convenience functions don't let us access the RESOURCE that we
need here.
from astropy.io.votable import parse as vot_parse

def get_parameter_description(access_url):
	"""returns tuples of name, unit, ucd, type, description, values for
	the (custom) parameters of the service at access_url.
	"""
	if not "?" in access_url:
		# is a standards violation, but it's a cheap mitigation:
		access_url = access_url+'?'

	vot = vot_parse(
		requests.get(
			access_url, {"REQUEST": "doQuery", "FORMAT": "Metadata"}, stream=True
).raw.read)
	for param in vot.resources[0].params:
		if param.name.lower().startswith("input:"):
			type_desc = param.datatype
			if param.arraysize:
				type_desc = "{}[{}]".format(type_desc, param.arraysize)
			yield (
				param.name[6:],
				param.unit or "",
				param.ucd or "",
				type_desc,
				param.description,
				param.values)

def print_parameter_description(access_url):
	for param_desc in get_parameter_description(access_url):
		print("\n{0} [{1}] {3} -- {2}\n{4}".format(*param_desc))
		values = param_desc[5]
		if values.min and values.max:
			print("{} .. {}".format(values.min, values.max))
		if values.options:
			print("|".join(o[1] for o in values.options))

def parse_command_line():
	import argparse
	parser = argparse.ArgumentParser(
		description="Print a VO service's custom parameters")
	parser.add_argument("access_url", type=str,
		help="The service's access URL")
	return parser.parse_args()

if __name__=="__main__":
	print_parameter_description(
		parse_command_line().access_url)

"""
Use extra (non-protocol) parameters in SIAP. To see what a service supports,
look at ACCESS_URL?FORMAT=METADATA (the INPUT: PARAMs); in the pyvo
course, there's viewparams.py.

This example: Use the custom dateObs parameter to fetch a few
SODA cutouts from a survey of the galactic plane.
"""

from pyvo.dal import sia

ACCESS_URL = "http://dc.g-vo.org/bgds/q/sia/siap.xml?"

svc = sia.SIAService(ACCESS_URL)

for index, match in enumerate(svc.search((107, -10), (0.1, 0.1),
 dateObs="57050/57150",
 bandpassId="SDSS i'").iter_datalinks()):
 with open(f"cutout-{index:03d}.fits", "wb") as f:
 f.write(
 match.get_first_proc()
 .processed(circle=(107, -10, 0.1)).read())

Exercise 44
The SSAP service at http://dc.g-vo.org/theossa/q/ssa/ssap.xml? houses theoretical
spectra mostly of hot, compact stars (think central stars of planetary nebula or perhaps
young white dwarfs).
See if you can retrieve three spectra for stars with log_g between 4.5 and 5.5, an effective
temperature between 7 × 104 and 105 Kelvin, and a Nitrogen mass fraction larger than
0.015 dex (write +Inf for “no upper limit”).
Send the spectra retrieved to splat.
Hints: Use viewparams.py, start from siapextra.py, remember dal.ssa.SSAService, and
pass in FORMAT='VOTable' to avoid retrieving spectra in both FITS and VOTable.
Use pyvo.samp.send_spectrum_to; this needs a URI of the spectrum, which you will find
using the getdataurl method or what you get back from search. Note that current splat-s
will not start a SAMP hub themselves, so you will need to start, for instance, TOPCAT
first. Feel free to try another spectral client if you want.
You cannot directly use send_spectrum_to to send the spectra to TOPCAT, because
TOPCAT does not subscribe to spectra. You could, however, make an astropy table out
of the spectrum using its URL and then send_table_to as before.

11.3 TAP Uploads: The right way

Efficient Uploads: The Problem

TAP uploads are powerful, but they do have limits. In general, you cannot upload billion-row
tables and expecte services to go along.
To make things fast and save the server’s resources, you should only upload enough to select
the relevant data. So, avoid:

first_result = svc1.run_sync(...).to_table()

second_result = svc2.run_sync(

"SELECT * FROM local.t JOIN TAP_UPLOAD.up as b USING (foo, bar)",

uploads={"up": first_result})

– this will upload all of first_result and download it right again; transferring data you already
have, ingesting it into the remote database in between is just a waste of resources.

Efficient Uploads: The Pattern

Instead, if you want to join on first result’s columns foo and bar, make a new local table con-
taining just those plus a unique local identifier (add a record number if no such identifier
exists), somewhat like this:

first_result = svc1.run_sync(...).to_table()

remote_match = svc2.run_sync(

"SELECT * FROM local.t JOIN TAP_UPLOAD.up as b USING (foo, bar)",

uploads={"up": table.Table([

first_result["main_id"],

first_result["foo"],

first_result["bar"])})

full_result = table.join(

first_result,

remote_match.to_table(),

keys="main_id")

73

http://dc.g-vo.org/theossa/q/ssa/ssap.xml?

Efficient Uploads: Slicing

If you still run into resource limits, you process your data in batches. Use case: retrieve quality
measures for Gaia DR3 data by matching on Gaia’s source_id.

def iter_slices(total_length, batch_size):

limits = list(range(0, total_length, batch_size))+[batch_size]

for lower, upper in zip(limits[:-1], limits[1:]):

if lower < upper:

yield slice(lower, upper)

def remote_match(svc, source_table, remote_table, batch_size, match_column):

matched_records = []

match_on = source_table[match_column]

only match the match_column (for a positional crossmatch, use

an id column (create one if necessary) and the positions).

for slice in iter_slices(len(source_table), batch_size):

result = svc.run_sync(

f"""SELECT a.* FROM

{remote_table} AS a JOIN

TAP_UPLOAD.mine AS b

USING ({match_column})"""),

uploads={"mine": table.Table([match_on[slice]])})

matched_records.append(result.to_table())

joined_match = table.vstack(matched_records)

return table.join(source_table, joined_match, keys=match_column)

smart-tap-upload.py

This example is only somewhat contrived: For instance, in the result, you can compare the
plain ruwe – which says how much you may trust Gaia’s solution – with fidelity_v2 – which
says something similar, but may be a bit more meaningful, as it takes into account a source’s
environment –, and you can then look for systematics on, say, magnitudes or parallaxes.
Do not be alarmed by the MergeConflictWarnings; these are because the metadata of the
source_id column different between the two TAP services participating (ESAC and GAVO) here.

Exercise 45
Add full Gaia records from ivo://esavo/gaia/tap’s DR3 gaia_source to some records
from the hdgaia.main table on GAVO’s data centre. This does not need any slicing; still,
only upload what you actually need for matching; for that, the smart-tap-upload.py
example should be helpful.
Hint: for our simple table.join to work (which needs the same name in both tables), it is
probably smart to rename source_id3 in hdgaia at the ADQL level.

12 Troubleshooting and FAQ

This section collects a few spots of troubles including advice that came up while running the
course and did not fit anywhere else.

74

#!/usr/bin/env python
"""
A little and artificial example to show how to properly and efficiently
do cross-server upload joins.

get_basic_data is of course a silly function.

remote_match, on the other hand, probably is a good starting point for a
more general functionality.

In real life, you'd have a much larger batch_size (1e7 ought to be possible
depending on several details), and you probably need to use run_async
rather than run_sync, but that's about it.

This assumes there's enough RAM for the full match; if that assumption is
not true, you either need to get a computer manufactured in this millenium
or re-think your problem.
"""

from astropy import table
import pyvo

def iter_slices(total_length, batch_size):
 """iterates over slices of up to batch_size filling 0 to total_length.
 """
 limits = list(range(0, total_length, batch_size))+[batch_size]
 for lower, upper in zip(limits[:-1], limits[1:]):
 if lower < upper:
 yield slice(lower, upper)

def remote_match(svc, source_table, remote_table, batch_size, match_column):
 """adds records from remote_table on svc to source_table.
 """
 matched_records = []
 match_on = source_table[match_column]

 # only match the match_column (for a positional crossmatch, use
 # an id column (create one if necessary) and the positions).
 for slice in iter_slices(len(source_table), batch_size):
 result = svc.run_sync(f"""SELECT a.* FROM
 {remote_table} AS a JOIN
 TAP_UPLOAD.mine AS b
 USING ({match_column})""",
 # the next line is where most of the magic is.
 uploads={"mine": table.Table([match_on[slice]])})
 matched_records.append(result.to_table())

 joined_match = table.vstack(matched_records)
 del matched_records

 # now fiddle back what we've pulled from the server into the source_table.
 return table.join(source_table, joined_match, keys=match_column)

def get_basic_data(svc):
 """returns some test data from svc.

 Here, that's a some subset of upstream Gaia data.
 """
 result = svc.run_sync("""
 SELECT TOP 400
 source_id, ra, dec, ra_error, dec_error, ruwe, parallax,
 phot_g_mean_mag
 FROM gaiadr3.gaia_source
 WHERE
 source_id BETWEEN 4657847914607935488 AND 4657988652096290815
 """)
 return result.to_table()

def main():
 my_gaia_part = get_basic_data(
 pyvo.dal.TAPService("https://gea.esac.esa.int/tap-server/tap"))
 with_remote_data = remote_match(
 pyvo.dal.TAPService("http://dc.g-vo.org/tap"),
 source_table=my_gaia_part,
 remote_table="gedr3spur.main",
 batch_size=100,
 match_column="source_id")

 with open("matched_stuff.vot", "wb") as f:
 with_remote_data.write(output=f, format="votable")

if __name__ == "__main__":
 main()

12.1 TOPCAT and Aladin are unreadably small on HiDPI screens?

Well, that’s because Java’s native GUI toolkit, Swing, at its core is from way before there were
small screens with giant resolutions. Fortunately, for non-antique Java environments, there is
a workaround: Set the GDK_SCALE environment variable to 2 or so. To try things out, just type

GDK_SCALE=2 topcat

– if you now have a readable TOPCAT, consider setting the environment variable permanently
(or define a shell alias).

12.2 TOPCAT TAP example stays gray?

This is particularly annoying for the Upload Join example. It is a symptom for when TOPCAT
cannot work out the columns containing positions in both tables to be joined. The most com-
mon reason is: you did not select the table in the table browser. Just clicking on the schema (the
top-level list item) is not enough, you need to open the fold and actually click on a table name.
You know you’re doing it right if you see the table’s columns in the corresponding pane.
On the second spot of frequent reasons is that the publishers did not define proper UCDs; the
RA and Dec columns need UCDs like pos.eq.ra and pos.eq.dec. If they are missing, complain
to the contact address of the server operators.

A Side Track: Terminology

Terminology: Client-Server

Server A machine that runs services

Service A program listening to network requests, processing and answering them according
to some standard protocol

Client A program talking to a Service using some standard protocol; perhaps a library, per-
haps some polished application, perhaps a bit of cobbled-together curl

Terminology: Data

Dataset An image, spectrum, time series, etc. Ah: Is a catalogue or a catalogue row as dataset?
Well: that depends on what you are doing, I’m afraid.

Data Collection A somehow coherent collection of Datasets (e.g., instrument archive, uni-
formly reduced data, thematic collections)

Metadata Data “about data” (who created it when, why, and how, what’s inside,. . .). Note:
one problem’s data is another problem’s metadata.

75

B Side Track: Architecture

Decentralised and Federated

The Virtual Observatory is

decentralised – there is no central node, and everyone can run any sort of service – and

federated – each client can talk to all services, and all services can be discovered uniformly.

Actually, both of these statements are whitish lies. We will introduce the one central infras-
tructure in a second, and whenever there are bugs, a service may work with one client but
not some other. That’s called interoperability problem, and everyone is grateful if you complain
about those.

Why no Platform?

We couldn’t do a platform if we wanted to.
To start with, getting the sort of international funding we would need is probably close to
impossible, and then if we got that, there are so many different sub-disciplines that we’d need
a large establishment that would start mainly to deal with itself.
But more importantly: With multiple

interoperable
(i.e., they can be used in a well-defined, uniform way by machines) providers the VO can

grow from the edges:
Users control

their end of processing, operators can adapt services to their needs and
evolve the standards.

No single part can dictate what happens. Not to mention it saves a lot of money if people don’t
have to write elaborate web pages per project, and if software written for one data collection
just works (adapting for differences between instruments, that is) for another data collection.
But then, of course, people can build platforms on top of our standards (“APIs”).

In a slogan
Protocols, not Platforms

. . . and you will not have to fear Elon Musk and his ilk.

Federation in practice: the VO Registry

The VO Registry is what holds everything together: It’s what your client asks when you look
for, say, “a TAP service with proper motions for stars fainter than 23 mag”.
It is a fairly complex system; but it’s also an excellent example for what “federation” means.

76

Publishing Registry 1

Publishing Registry 2

Publishing Registry 3

Registry of
Registries

Searchable Registry a

Searchable Registry b

Client Applications

pull harvest

pull list of publishing registries

discovery queries

What’s going on here? The “Publishing registries” in the yellow boxes are the different data
centres. They have a machine-readable list of their “resources” (i.e., stuff they publish); some-
times just a dozen of those, sometimes, as for VizieR, several tens of thousands.
The clients (green, near the bottom) don’t want to go to each of these individually when the
look for services; there are currently about 50 of them, and it would suck to have to visit each
in turn. Instead, clients talk to searchable registries. Anyone can set up one of these (in practice,
currently GAVO, STScI, and ESAC run one each). These offer a common client interface, which
is called RegTAP.
They know about the resources published in the VO because they “harvest” the publishing
registries, typically once per day. The machine readable resource lists are transmitted using a
non-VO protocol named OAI-PMH.
How do the searchable registries know which publishing registries to harvest? Well, that’s the
one central infrastructure in the VO: the Registry of Registries or RofR (at https://rofr.ivoa.
net). You can find lists of registered publishing and searchable registries there. Physically, the
RofR is at the CADC in Victoria, BC, at the moment (but it has been in Urbana-Champaign, IL
and in Cambridge, MA before).

C Side Track: Standards

Data Access Without Standards

If you want to N clients (programs, say) to communicate with M servers (archives, say), there
are N · M things that can go wrong:

77

https://rofr.ivoa.net
https://rofr.ivoa.net

TOPCAT

astroquery

C library

Aladin

Shell script

SDSS

GAVO DC

CADC

CDS

ESAC

IPAC

ESO Archives

Note that M, the number of servers, is potentially pretty large. Try

SELECT DISTINCT gavo_getauthority(access_url)

FROM rr.interface

on the GAVO DC TAP server; for me, that’s more than 200 different hosts running services.
With a few clients in the mix, you’d quickly be up to hundreds of fragile adapter functions that
would have to be maintained.

Data Access With Standards

With a standards there’s just one thing to get right for each client and server (i.e., N + M
sources of brokenness):

TOPCAT

pyVO

C library

Aladin

Shell script

Standard
Interface SDSS

GAVO DC

CADC

CDS

ESAC

IPAC

ESO Archives

IVOA Standards

Alas, one standard does not do it. Of course there’s TCP/IP, HTTP, SSL, XML etc. behind the
VO start with.
And there are ∼ 50 standards on https://ivoa.net.
As a consumer, you hopefully will not have to read any of that.
But things break or folks want to be smart. Then it’s good to know where to look.
Also, even as a user, you are frequently confronted with names of standards, as they are often
used as synonyms for things you may want to do.

78

Hitch-Hiker’s Guide to the IVOA: DAL

The IVOA Data Access Layer Working Group talks about how to locate data sets and how to
access them in hopefully smart ways:

Searching for data Images (SIAP), spectra (SSAP), objects (SCS), spectral lines (SLAP), generic
datasets (ObsCore).

Remote manipulation SODA lets you do cutouts, rescaling, etc., to avoid pulling data you
don’t need.

Interacting with databases Access using TAP, common query language ADQL.

Hitch-Hiker’s Guide to the IVOA: Apps

The applications working group talks about things relevant on the client side:

Formats Table exchange using VOTable, complex spherical geometries with MOC, multiscale
images with HiPS.

SAMP Assembling complex environments from simple building blocks.

Hitch-Hiker’s Guide to the IVOA: Others

Registry Registry Interfaces for the architecture, VOResource, VODataService, TAPRegExt,
SimpleDALRegExt for the metadata format, RegTAP for how to search it.

Semantics Light semantics of physical quantities (UCD), Unit syntax, Vocabulary mainte-
nance.

Grid and Web Services All kinds of invisible support stuff (Authentication, Authorisation,
server-side metadata. . .).

In practice, you have clients and libraries that speak these protocols for you. Most of the time.
And even where you directly see things as specified by the IVOA – as in the query language
ADQL –, you normally want to learn the stuff from somewhere else than the standards that
are typically hard to read. However. . .

Contributing

If you want to contribute, the IVOA is very open.

• Subscribe to mailing lists: https://www.ivoa.net/members/

• File bugs against standards: https://github.com/ivoa-std

• Improve our vocabularies: https://www.ivoa.net/rdf/

• Come to one of our semiannual meetings, the IVOA Interops.

79

https://www.ivoa.net/members/
https://github.com/ivoa-std
https://www.ivoa.net/rdf/

D Side Track: UCDs

UCDs?

Different catalogues have different names for roughly the same thing. For instance, I found
848 column names containing V-band magnitudes:

magc, apass vmag, vmaglan, v74, hip mag, v55, johnson mag v, vmag, mv, vma-
gapass, vap2, . . .

UCDs, Unified Content Descriptors, let a machine figure out that all of these correspond to
roughly the same physical concept.
Note the roughly: This is not precise semantics intended to uniquely define every physical
quantity there is. We would never finish if we wanted to build a vocabulary that could do this.
No, these are rough indicators for use in data discovery, exploratory investigation or similar
endeavours whose results will, eventually, be filtered through a human mind.
In case you are wondering where I found the column names for the V-band magnitudes: The
Registry has UCDs for the columns in the various services. They are kept in the RegTAP table
rr.table_column, and the query I ran was

SELECT DISTINCT name FROM rr.table_column

WHERE ucd='phot.mag;em.opt.v'

UCDs Have a Grammar

There is a large number of concepts represented in our tables. A single label hence is not
enough.
The list of UCDs (Cecconi and Louys et al., 2023) therefore only defines a hierarchy of atoms
that you can then combine according to some (simple) syntax rules. For instance:

• phot.mag is a “Photometric magnitude”

• em.opt.V is the “Optical band between 500 and 600 nm”

• phot.mag;em.opt.V is something like a visual magnitude

UCDs in Data Discovery

You can discover VO resources offering certain sorts of data using, for instance, WIRR, http://dc.g-
vo.org/WIRR:

80

(try Blind Discovery → Column UCD)

Finding UCDs

Probably the best way to find UCDs publishers actually have used for things you are interested
in is via the RegTAP table rr.table_column, which has a column description in which you can to
free-text search:

SELECT DISTINCT ucd, column_description

FROM rr.table_column

WHERE 1=ivo_hasword(column_description, 'effective temperature')

This of course has many false positives – which is exactly why you should try to assign useful
UCDs to your own columns when you publish data.

Exercise 46
Assume you are about to publish a table containing a column that gives the angular size
of an object you observed. What would be a good UCD to assign to that column?

Exercise 47
Assume you are about to publish a table containing a column where you subtracted
magnitudes (or the same object, of course) in the SDSS u and r bands. Can you come up
with a good UCD for that?

E Side Track: Vocabularies

Why Vocabularies?

In many cases, interoperable data publication requires common labels for “things”, perhaps
even hierarchically organised:

• Subject keywords (as in journals)

• Reference frames (ICRS, etc), time scales, and the like

• Sorts of data products (“I need a spectrum”)

• Parts of the spectrum (“Near Infrared”?)

81

• Object types (“AGN” or “Active Galactic Nucleus”?)

• Relations between resources (Cites, Replaces, . . .)

These must be machine-readable, and people need to be able to extend and evolve them with-
out too much strife.

In the VO

In the VO, a standard called “Vocabularies in the VO” (Demleitner and Gray et al., 2023) says
how we are doing it:

• You can get vocabularies at http://www.ivoa.net/rdf

• Full identifiers continue with <vocname>#<concept-id>

• e.g., http://www.ivoa.net/rdf/uat#astronomy-education, which resolves in your browser

• Vocabularies are retrievable in various RDF (Resource Description Framework, the basis
of the semantic web) formats, and

• desise, dead simple semantics – a trivial JSON serialisation that allows one to use the
vocabularies with minimal tooling

• Develop vocabularies in a community process using VEPs – Vocabulary Enhancement
Proposals, semistructured documents arguing why some concept you propose is a good
idea

In Instance Documents

While in mainstream RDF, you mostly have full URIs, in the VO, we usually only use identi-
fiers, e.g.,

• datalink/core: #progenitor in the semantics column of datalink documents – the leading
hash is a bit of cleverness where we say “it’s a URI relative to the vocabulary URI”, so
you could use non-IVOA terms by writing full URIs. But that is not a smart thing to do
in general, because datalink clients will not understand what you mean.

• refframe: <COOSYS system="ICRS"/> in VOTable

• product-type: image in Obscore’s dataproduct_type column

• relationship type: IsServedBy in VOResource’s relationship

• uat: abundance-ratios in RegTAP’s res_subject column.

82

http://www.ivoa.net/rdf
http://www.ivoa.net/rdf/uat#astronomy-education

Machine Readable

IVOA vocabularies can be consumed in a trivial JSON format. Just request the vocabulary URI
asking for the application/x-desise+json media type:

$ curl -LH "accept: application/x-desise+json" \

http://www.ivoa.net/rdf/timescale

{

"uri": "http://www.ivoa.net/rdf/timescale",

"flavour": "RDF Class",

"terms": {

"TAI": {

"label": "International Atomic Time TAI",

"description": " atomic time standard, TT-TAI = 32.184 s.",

"wider": [],

"narrower": []

},

"TT": {

...

In pyVO

In PyVO, use get_vocabulary; this will let you easily find out whether terms are in the vocabu-
lary, their labels and descriptions, and narrower and wider terms:

>>> v = pyvo.utils.vocabularies.get_vocabulary("datalink/core")

>>> "preview" in v["terms"]

True

>>> "rearview" in v["terms"]

False

>>> v["terms"]["documentation"]["description"]

'Structured or unstructured metadata helping to understand, interp...

>>> v["terms"]["calibration"]["narrower"]

['bias', 'dark', 'flat']

In some places, code doing things like these are already built into pyVO; for instance, there is
bysemantics on datalink results; see sect. 9 for details.

In ADQL

Some TAP services have the gavo_vocmatch(voc, term_id, col) UDF built in. For instance, to look
for everything roughly image-like in an obscore table, you can do:

SELECT dataproduct_type, access_url

FROM ivoa.obscore

WHERE DISTANCE(s_ra, s_dec, 10, 10)<1

AND 1=gavo_vocmatch('product-type',

'spatially-resolved-dataset', dataproduct_type)

Exercise 48
The constraint

1=gavo_vocmatch('product-type',

'spatially-resolved-dataset', dataproduct_type)

that we have put in on the vocabularies in ADQL slide claims to match
spatially-resolved-dataset and all narrower concepts. Can you give an equivalent
expression of the form

83

dataproduct_type IN ('...',)

based on the product-type vocabulary? And why is that less desirable than using the
UDF?

F Side Track: VOTable

The VO’s Native Table Format: VOTable

Most tables in the VO are transported as VOTables. These are XML files with (potentially) rich
metadata, for instance:

<VOTABLE xmlns="http://www.ivoa.net/xml/VOTable/v1.3" version="1.4">

<DESCRIPTION> The catalogue ARIHIP has been constructed by selecting the ’best

[...]</DESCRIPTION>

<RESOURCE type="results">

<INFO name="QUERY_STATUS" value="OK"/>

<INFO name="request" value="/arihip/q/cone/scs.xml?RA=333&DEC=43&SR=2"/>

<INFO name="standardID"

value="ivo://ivoa.net/std/ConeSearch">DaCHS 2.9.2 SCSRenderer</INFO>[...]

<COOSYS ID="system" epoch="J2000.0" system="ICRS"/>

<TABLE name="result">

</FIELD>

<FIELD ID="hipno" arraysize="*" datatype="char" name="hipno" ucd="ID_MAIN">

<DESCRIPTION>Number of the star in the HIPPARCOS Catalogue (ESA 1997).</DESCRIPTION>

</FIELD>

<FIELD ID="raj2000" datatype="double" name="raj2000" ref="system"

ucd="pos.eq.ra;meta.main" unit="deg">

<DESCRIPTION>Right ascension from a single-star solution</DESCRIPTION>

</FIELD>

<DATA>

<BINARY>

<STREAM encoding="base64">P8ZMQ7q5V6gAAAAGMTA5[...]</STREAM>

</BINARY></DATA>

</TABLE>

</RESOURCE>

</VOTABLE>

The example VOTable actually is an excerpt of the response of a Cone Search service; you can
run it by pulling http://dc.g-vo.org/arihip/q/cone/scs.xml?RA=333&DEC=43&SR=2.
Many VO services can be run (albeit in a rather reduced fashion) using generic web tools, such
as curl (available everywhere) and perhaps xmlstarlet, a nice program to make XML a bit more
human-readable. On a suitably equipped POSIX system, you could try:

$ curl "http://dc.g-vo.org/arihip/q/cone/scs.xml?RA=333&DEC=43&SR=2" \

| xmlstarlet fo | less

Admittedly, the document shown has a lot of characters looking very computerish. It still pays
to have an idea of how a VOTable looks like for at least three reasons:

• When creating VOTables yourselves (and sooner or later you will), it is good to have an
idea of what you may possibly want to communicate to the consumers of your data.

• When things go wrong, it is nice to be able to be able to eavesdrop into what the machines
tell one another – and also to make sense of error messages.

• Abstractions leak (that’s nerdspeak for: it’s quite common for user interfaces to reflect
the underlying technology). If you know VOTable, it is easier to understand APIs and
user interfaces.

Let me hence go through the various items making up a VOTable.

84

http://dc.g-vo.org/arihip/q/cone/scs.xml?RA=333&DEC=43&SR=2

VOTable: Top-Level Declarations

<VOTABLE xmlns="http://www.ivoa.net/xml/VOTable/v1.3" version="1.4">

<DESCRIPTION>The catalogue ARIHIP has been constructed by selecting

the 'best data' for a given star from combinations of HIPPARCOS data

with Boss' GC and/or the Tycho-2 catalogue as well as the FK6. It

provides 'best data' for 90 842 stars with a typical mean error of

0.89 mas/year (about a factor of 1.3 better than Hipparcos for this

sample of stars).</DESCRIPTION>

• Anything within <...> in XML is called a tag. A tag has a name and perhaps attributes.

• An opening tag, some content, and a closing tag make up an XML element.

• Elements within another element are called its children.

The opening tag in the snippet says it is a VOTable of version 1.4. VOTable is a standard that
continually evolves. As a user, you should not notice much of that, but certain features only
become available in newer versions. For instance, VOTable 1.4 introduced an element called
TIMESYS to declare metadata on times.
The odd xmlns declaration is deeper nerdstuff that I included only in order to tell you to ignore
it. The v1.3 in there is a totally red herring. If you really want to know the full story, you could
read Harrison and Demleitner et al. (2018) and learn something about the difficulties of writing
standards for globally developed software: you can’t always correct mistakes and then need
ugly hacks to work around them.
The DESCRIPTION element contains human-readable information on what to expect further
down. Since few clients show that description prominently, most data providers are not very
diligent here.

VOTable: result Resources

<RESOURCE type="results">

<INFO name="QUERY_STATUS" value="OK"/>

• A VOTable consists of RESOURCE-s.

• All current DAL protocols return a RESOURCE of type results with the main table.

• The INFO with the name QUERY_STATUS is a DAL-mandated machine-readable success indica-
tor. This could also indicate an error (and then includes an error message) or an overflow,
when there was more data that was not returned for one reason or another.

VOTable: Light Provenance

<INFO name="request"

value="/arihip/q/cone/scs.xml?RA=333&DEC=43&SR=2"/>

<INFO name="standardID" value="ivo://ivoa.net/std/ConeSearch"

>DaCHS 2.9.2 SCSRenderer</INFO> [...]

<INFO name="publication_id" value="2001VeARI..40....1W"

>A bibliographic source citable for (parts of) this data</INFO>

<INFO name="contact" value="gavo@ari.uni-heidelberg.de"

>Contact option</INFO>

85

Provenance is information on how some artefact came to be. It is mighty useful when debugging
or trying to reproduce something one did yesterday. Not to mention last year.
In TOPCAT, see Views/Table Parameters :

Data providers are rather free to put into these INFO items (and the related PARAM elements,
which work like constant FIELD elements) whatever they want, and most are still rather stingy.
But when they are there, they are a treasure trove where you may get advice on citing things,
pointers to further information (reference_url), the original request and so on. The IVOA Note
on “Data Origin” (Landais and Muench et al., 2024) tries to work towards a more standardised
set of such pieces of information.

FIELDs of a Table

<FIELD ID="hipno" arraysize="*" datatype="char" name="hipno"

ucd="meta.id;meta.main">

<DESCRIPTION>Number of the star in the HIPPARCOS Catalogue (ESA 1997).

</DESCRIPTION>

<VALUES><MIN value="1"/><MAX value="120404"/></VALUES>

</FIELD>

<FIELD ID="parallax" datatype="float" name="parallax" ucd="pos.parallax"

unit="deg">

<DESCRIPTION>Parallax used in deriving the data of the star in the

catalogue selected for the ARIHIP. This is either the HIPPARCOS

parallax or a photometric/spectroscopic parallax (see

Kp).</DESCRIPTION>

<VALUES><MIN value="-8.216667e-06"/><MAX value="0.00015250278"/></VALUES>

</FIELD>

The main table metadata in VOTable is in FIELD elements. They give names, types, units,
UCDs, value ranges.
For more on these UCDs, see the the UCD sidetrack D.
Note that VOTable at this point still does not have a string datatype but instead models strings
like hipno here as arrays of characters, which keeps resulting in multiple headaches but is really
hard to fix. In this case, for instance, the range of identifiers is not quite right: For array-valued
FIELDs, MIN and MAX should really give the ranges of individual elements rather than the whole
string.
It’s often seemingly simple things that are really hard to fix in distributed systems.
When you write your units, please make sure you use the right syntax so computers can read
them and convert your values as appropriate. The corresponding standard, VOUnits (Gray
and Cecconi et al., 2023), is rather readable.

86

FIELDs in TOPCAT

In TOPCAT, use Views/Column Info to inspect the metadata from the FIELDs.
Note that you can sort by all the various columns, which is particularly nifty for UCDs:

VOTable: The STC Drama

Regrettably, the annotation of space-time coordinate metadata in VOTables is still woefully
inadequate:

<COOSYS ID="system" epoch="J2000.0" system="ICRS"/>

<COOSYS ID="system-02" epoch="J2000.0" system="ICRS"/>

<FIELD ID="raj2000" datatype="double" name="raj2000" ref="system"

ucd="pos.eq.ra;meta.main" unit="deg">

<DESCRIPTION>Right ascension from a single-star solution</DESCRIPTION>

</FIELD>

<FIELD ID="dej2000" datatype="double" name="dej2000" ref="system"

ucd="pos.eq.ra;meta.main" unit="deg"/>

<FIELD ID="pmra" datatype="float" name="pmra" ref="system"

ucd="pos.pm;pos.eq.ra" unit="deg/yr"/>

<FIELD ID="pmde" datatype="float" name="pmde" ref="system"

ucd="pos.pm;pos.eq.dec" unit="deg/yr"/>

<FIELD ID="raLTP" datatype="double" name="raLTP" ref="system-02"

ucd="pos.eq.ra" unit="deg"/>

About the most basic thing a computer would want to do with a star catalogue is to transform
it to a different epoch; perhaps to match it to some other catalogue, perhaps to precisely plot it
over an image of the sky (which was taken off the catalogue epoch).
Regrettably and despite many efforts by yours truly, this still is not really possible based on
standard VOTable metadata. If you are courageous, you can collect FIELD-s referencing the
same COOSYS and guess their roles (position, proper motion, parallax. . .) based on the UCDs.
But that’s so brittle and ugly that not much software actually does this (Aladin being an excep-
tion).
It also immediately fails in cases like this, where the positions (raj2000, dej2000) belong to two
coordinate sets for which only the proper motions are different.

87

Sorry about this. This is probably the worst failure of the IVOA’s consensus-based decision
model.

VOTable: The Data

<DATA>

<BINARY>

<STREAM encoding="base64">P8ZMQ7q5V6gAAAAGMTA5NTExQHT...

VOTable can encode tabular data in different ways. Most importantly:

• TABLEDATA – more or less human-readable values in TD and TR elements. Nice, for in-
stance, to format using XSLT.

• BINARY – FITS-like binary data made XML-clean using base64.

• BINARY2 – the successor to BINARY, mainly fixing the representation of missing values.

Here, the service has chosen to return BINARY data.
Many services let you influence what kind of VOTable you get back, typically by passing a
RESPONSEFORMAT parameter. Regrettably, there is no widely accepted standard as to what dif-
ferent formats are called. On the particular service we have used here (and others based on
DaCHS), BINARY2 is called votableb2 and TABLEDATA is called votabletd. So, if you want to get
“readable” data here, you can say

$ curl "http://dc.g-vo.org/arihip/q/cone/scs.xml?RA=333&DEC=43&SR=2&RESPONSEFORMAT=votabletd"

Exercise 49
Get the VOTable at http://dc.g-vo.org/arihip/q/cone/scs.xml?RA=333&DEC=43&
SR=2&RESPONSEFORMAT=votabletd and add to the value of the publisher INFO a
(alas, hypothetical) (note to self: they were on holiday in May 2024), using a text
editor. If you have xmlstarlet, try re-formatting it first.
Ensure that the edit actually happened using TOPCAT. There, edit the note, too
(doubleclick) and then see if you can see the change in the text editor.

Exercise 50
Again in our VOTable, use a text editor to add an INFO element with a name of
(yourname)-note, a value of (today’s date): learned how to add INFO elements the
hard way, and a content of private processing note. Load your modified table into
TOPCAT to ensure you have not damaged the file and the information is there.
(Just to be sure: This is not how you should add such infos in the wild. Astropy, for
instance, offers ways to do this kind of thing (although it’s harder than it should be).
Leaving notes about your operations in such files, however, is a good idea in principle.

Exercise 51
Still in our VOTable, set the vrad field for the object with the Hipparcos number 109481
to the value −16.268137 (which is what Gaia DR3 gives for this object).
Again, try it once with TOPCAT and once with a text editor. For the latter, you will
need the table to be in TABLEDATA format. At your option, use the RESPONSEFORMAT
parameter or just save the table as TABLEDATA from TOPCAT.

88

http://dc.g-vo.org/arihip/q/cone/scs.xml?RA=333&DEC=43&SR=2&RESPONSEFORMAT=votabletd
http://dc.g-vo.org/arihip/q/cone/scs.xml?RA=333&DEC=43&SR=2&RESPONSEFORMAT=votabletd

G Side Track: IVOA Identifiers

Ivoids as URIs

The primary identifier for resources in the VO is the IVOA identifier or ivoid; it is also what
you always implicitly join on in RegTAP.
They are URIs with an ivo scheme:

ivo://<authority>[/<local-part>][?<query-part>][#<fragment>]

The authority is a short name for who has created an ivoid; each authority must only be used by
one institute and managed by one registry. The local part is a path-like thing that the authority
uses to keep all their resources apart.
Ivoids regrettably must be compared case-insensitively; the best thing to do is to lowercase
them as soon as you get them.

Resolving Ivoids

Ivoids can be resolved to registry records.
One way to do so is to prepend http://dc.g-vo.org/I/ to them.
Ivoids without local parts point to authorities: http://dc.g-vo.org/I/ivo://cds.vizier.
Ivoids with local parts mostly point to services: http://dc.g-vo.org/I/ivo://org.gavo.dc/
bgds/l/ssa.
Actually, there several kinds of resources in the VO registry in addition to the services and au-
thorities already mentioned. There are Registries12 (which are, perhaps somewhat confusingly,
used in keeping the VO Registry up to date), Organisations13 (which are not very useful), doc-
uments14 (which point to tutorials and the like; this is what http://dc.g-vo.org/VOTT is built
from), standards15 (which are, for instance, used to identify capabilties adhering to them), and
actually several different sorts of service records. But a normal VO consumer does not need to
care about resource types; the only important thing is that they agree on what the string is.

Special IVOIDs

Publisher DIDs: These are hopefully globally unique identifiers for datasets as used in datalink
or obscore.
They should have the form

<ivoid-of-service-resolving-them>?<dataset-key>

If they are built like that, http://dc.g-vo.org/glopidir can resolve a PubDID to the dataset.
Standard IDs Fragment identifiers are supposed to be resolved into standard keys, and these,
in turn, are used to define some standard features in the VO. Example:
ivo://ivoa.net/std/tapregext#upload-inline

12Example: ivo://gaia.aip.de/registry
13Example: ivo://ivoa.net/ivoa
14Example: ivo://edu.gavo.org/hd/arvo dfbs
15Example: ivo://ivoa.net/std/sia

89

http://dc.g-vo.org/I/
http://dc.g-vo.org/I/ivo://cds.vizier
http://dc.g-vo.org/I/ivo://org.gavo.dc/bgds/l/ssa
http://dc.g-vo.org/I/ivo://org.gavo.dc/bgds/l/ssa
http://dc.g-vo.org/VOTT
http://dc.g-vo.org/glopidir

This ivoid, used in the right place in the capabilities document of a TAP server, informs a client
that a TAP service supports table uploads.
In practice, the standard identifiers used to say “this is an SSAP service” (say) just reference
the full standard rather than a standard key; that is really not a problem because no machine
actually resolves the standard ids in capability elements.

H Solutions for Most of the Exercises

Solution for Exercise 1 A query you could have used against the Einstein catalogue is

SELECT lx, ra, dec, cluster_radius, name

FROM eingalclus

Again, the catalogue is so small that you can pull it in full.
The radius-luminosity plots do not have much in common with each other. My hypothesis on
the reason is primarily that the Einstein catalogue is flux-limited (the instrument sensitiviy),
whereas mcxc probably has tried to gather a full sample with a completely different selection
function. But, as the comparison of the radii shows, different definitions of a cluster radius
probably play a role, too.
Since the centres of clusters of galaxies are not terribly well-defined, I have chosen a match
radius of 10 arcminutes for the crossmatch between the two catalogues (the results do not
appreciatably change when you vary that within reason).
Good descriptions would let you guess details on the radius definitions. The way things are,
you will have to go back to the papers to figure this out (getting to these papers is less straight-
forward than it should be in TOPCAT; we will get to that later). The X-ray-luminosities, on the
other hand, are well-correlated; that’s how this kind of thing should look like.

Solution for Exercise 2 For noise reduction, turning the condition for fancy morphologies
from the lecture notes around is probably a good thing; actual quasars in SDSS will probably
appear pointlike regardless of whether or not they are lensed most of the time (exception:
unresolved double images). So, what about abs(psfmags[5]-petmags[5])<1?

Solution for Exercise 3 The column names are phot g mean mag for brightness, phot bp mean mag
for the optical B-band and phot rp mean mag for the optical R-band.

Solution for Exercise 4 X Persei is a high-mass X-ray binary system. These are usually
formed from a massive star and a compact object like a neutron star or a black whole. You
could figure this out by selecting the SIMBAD plane, which then will show you a “HMXB” in
the images, and after clicking on that, you can use the link at the bottom of the viewer to open
the selected object on the SIMBAD web page.

Solution for Exercise 5

SELECT TOP 20 *

FROM fk6.part1

ORDER BY vmag ASC

90

Solution for Exercise 6

SELECT TOP 20

5+5*LOG10(pres*3600.)+vmag AS absmag, comname

FROM fk6.part1

ORDER BY vmag ASC

Solution for Exercise 7 Just add a WHERE pres>0. In serious science, one would of course need
to be more careful; there is a reason, after all, for the negative parallaxes (at least with frequen-
tist estimators, but really with any kind of measurement).

Solution for Exercise 8 Inspecting TOPCAT’s metadata browser, you will find that the radial
velocity in cns5.main is called rv. With this, you can write

SELECT COUNT(*) FROM cns5.main WHERE rv IS NULL

This will yield just one row containing 4323. If you try the inverse, rv IS NOT NULL, you will see
that a mere 1586 objects do have a radial velocity; RVs are expensive.

Solution for Exercise 9

SELECT

ROUND(Jmag) AS bin,

COUNT(*) AS n,

AVG(SQRT(POWER(pmRA,2)+POWER(pmDE,2))) AS pmavg

FROM lspm.main

GROUP BY bin

ORDER BY bin

Solution for Exercise 10 The query would look something like

SELECT

COUNT(*) as n,

AVG(teff_k) AS mean_teff,

ivo_healpix_index(5, raj2000, dej2000) AS hpx

FROM rave.main

GROUP BY hpx

When plotting this, remember to do Layers → Add HEALPix Control , and select your table
in the Data tab. Also, you still need to manually set the HEALPix Data Level to 5, or the plot
will look really odd (and not mean a thing).
As to what the structures mean: The survey largely excluded the Galactic plane, presumably
to dodge blending. That there’s almost no data on the northern sky is because the RAVE
instrument is on the southern hemisphere.
The structures in the density plot. . . well, who knows what made the survey designers pick
their objects – I’m sure there is a paper discussing this. On the structures in the temperature
plot: I’d guess the hot patches in the galactic plane are open clusters. The “brighter” stripes
along the Galactic plane I would attribute to something happening in the pipeline by gut feel-
ing; but of course it could also represent the target selection (“thick disk sample”?).
Also, if you go to higher HEALPix indexes, remember to raise MAXREC, which on the GAVO
server defaults to 20’000 – less than the number of level 6-HEALPixes on the sky.

91

Solution for Exercise 11 The somewhat tricky part is to pull in the CNS columns into your
result, because you cannot say SELECT whatever, * in SQL . There is a workaround, like this:

SELECT

ivo_epoch_prop_pos(ra, dec, parallax,

pmra, pmdec, rv, epoch, 2150) AS np, cns.* from cns5.main as cns

WHERE ra IS NOT NULL

You did check the units of the columns going into ivo_epoch_prop_pos, did you?
The condition on ra is necessary because the UDF refuses to operate if only one column has a
NULL position; and the CNS contains the Sun, which does not have a usable position.
There are various ways to seek out Sirius in the transformed catalogue (e.g., by looking up its
position and clicking on a sky plot). A snobbish way is to use another UDF that the GAVO
server has: gavo_simbadpoint, which returns a point from Simbad’s idea of an object’s position.
This would look like this:

SELECT

ivo_epoch_prop_pos(ra, dec, parallax,

pmra, pmdec, rv, epoch, 2150) AS np, cns.* from cns5.main as cns

WHERE DISTANCE(POINT(ra, dec), gavo_simbadpoint('Sirius'))<0.01

This will give something like 101.26339444 for Sirius A’s RA. And the “A” also tells you why
this is going to be severely off: Sirius is a binary star, and its A component wobbles quite a bit.
I was too lazy to look for an orbit of Sirius, which one would need to make a better prediction.
If you are less lazy, feel free to write in. n.

Solution for Exercise 12

SELECT ah.vrad, r.rv, r.raveid, ah.hipno

FROM rave.main AS r

JOIN arihip.main AS ah ON (

1=CONTAINS(

POINT(r.raj2000, r.dej2000),

CIRCLE(ah.raj2000, ah.dej2000, 0.001)))

Solution for Exercise 13 The central difference is that the EXISTS query will have not more
than one row per RAVE object; that’s how SELECT works: either a row is in or it is not.
The JOIN however, my produce more than one row per RAVE object if there is more than one
ARIHIP object in the close vicinity of the RAVE object – and given there are many double stars
resolved already in the Hipparcos catalogues, that’s a fairly common thing.

Solution for Exercise 15 To find out which object is missing, do Joins → Pair Match in TOP-
CAT; thanks to the UCDs, TOPCAT fills out the dialogue just fine, except that in Join Type ,
you have to choose 1 not 2 .
This results in a single-row table for a star at 316.61589, 38.67332.
Given the way the table was produced, the only plausible explanation is that the star is fast and
has a fairly large epoch difference; indeed, if you look at a histogram of epoch in matchme.vot,
you will see that it is on the larger side. To see if that explanation is right, just re-run our

92

original query, uploading the new difference table, and raising the initial match radius (i.e.,
adapt tap_upload.tx to the index of the match result, and write, perhaps 0.2 instead of 0.1).
This will return to the object with the Gaia DR3 source id 1872046574983497216, and indeed
this has a massive proper motion of 5.2 arcsec/yr, which over the roughly 100 years of the
epoch difference is 0.13 degrees; so, it just escaped our initial wide cone. That we missed such
an extreme star is no reason to worry; there are not that many of those on the sky (and of course
I have crafted the original query to contain one of them).
See also the next exercise.

Solution for Exercise 16 We have the wisdom of all astronomy at our fingertips, so go back to
Select Service , type high proper motion into Keywords and see if you can find a good source
for a statistics on fast stars.
Careful with some of the VizieR results that you get back; the table descriptions often suggest
that something is a fairly comprehensive catalogue when it actually is not.
lspm.main at the GAVO data centre says something about completeness. It’s just for the north-
ern hemisphere, but for our statistical curiosity, that is good enough; high-PM stars are nearby,
and thus we expect them to be roughly isotropically distributed.
By the Table pane, there are more than 60’000 objects in this table. Let’s not pull them all but
instead do a server-side histogram, perhaps choosing 0.1 arcsec/yr as the bin size:

SELECT

COUNT(*) AS n,

ROUND(pm*3600*10)/10 AS bin

FROM lspm.main

GROUP BY bin

Looking at the histogram, you will see that there are less than five stars faster than our runaway
on the northern sky, and hence probably less then ten on the entire sky.
As I said: It’s no accident that this one appeared in our sample. Try SAMP and Aladin’s Simbad
pointer if you want to find out that object’s name.

Solution for Exercise 17 The table metadata tell you that both pmra and pmdec are indexed.
However, you cannot use these indexes to query against total proper motion, which is a com-
plex expression over these. Instead, you have to use the index to pick out stars with large PM
components and then do your computations on that far smaller set. Perhaps:

SELECT source_id, SQRT(POWER(pmra,2)+POWER(pmdec,2)) AS pmtot

FROM gaia.dr3lite

WHERE NOT pmra BETWEEN -1000 and 1000

`AND NOT pmdec BETWEEN -1000 and 1000

Sorting this by pmtot, you will find that our friend 1872046574983497216 holds rank 7 among
the 1.8 billion stars in Gaia DR3. What, may I quip again, are the chances for such a thing
turning up in my not-so-random sample?

93

Solution for Exercise 18 Sorry, this exercise was really intended just to make you watch UWS
phases and go through the motions of resuming. No astronomy here. But save the table, we
will later be doing something interesting with it.
If you could not resume, you probably forgot to uncheck Delete on Exit.
Oh, but you may want to plot the spectra you selected. To do that in TOPCAT, open a Plane
Plot and then do Layers → Add XYControl . In the Position tab, select your table; modern
TOPCATs will automatically know how to plot this as a spectrum.

Solution for Exercise 19 The queries are fairly straightforward, except perhaps for the UCD
thing, where you want to use an ILIKE operator that does case-insensitve matching because
(stupidly) UCDs are specified to be case-insenstive. But I have not told you about this, and so
you were not supposed to know that.

SELECT COUNT(*) FROM tap_schema.tables

SELECT COUNT(*) FROM tap_schema.columns

SELECT COUNT(*) FROM tap_schema.columns

WHERE ucd ILIKE 'phot.mag%'

The results change to often to include them here.

Solution for Exercise 20 Step one is to obtain positions for the stars, i.e., turn the source_id-s
into positions. As hinted, this takes an upload join with a Gaia source table, for instance:

SELECT source_id, ra, dec

FROM gaia.dr3lite

JOIN tap_upload.t1 USING (source_id)

(as usual, modulo the TOPCAT table index).
Pro tip: before uploading, open the column metadata for the table you are going to upload and
uncheck all columns you will not need in the query (in this case, flux). TOPCAT then will not
upload it, so things will be faster and less fragile on top.
The second step is as in the lecture: change to Simbad’s TAP server and, while having the
result of the last query selected, create an Upload Join from Examples . Perhaps reduce the
match radius a bit to get something like

SELECT TOP 1000

*

FROM basic AS db

JOIN TAP_UPLOAD.t3 AS tc

ON 1=CONTAINS(POINT('ICRS', db.ra, db.dec),

CIRCLE('ICRS', tc.ra, tc.dec, 1./3600.))

You will see that basically all of these stars are late M stars, whether classified as long-period
variables, carbon stars, Mira variables, or whatever; what you are seeing in the spectra is
presumably wide molecular absorption features.
By the way, you could have tried to turn your source_id-s into identifiers that Simbad supports
and that way avoid the resolution step. To do that, you first have to figure out Simbad’s syntax
for writing these identifiers. There is probably good documentation on that somwhere, but
lazy bum that I am I made a bold guess and tried:

94

SELECT TOP 20 * FROM ident WHERE id LIKE 'Gaia%'

What came back contained strings like “Gaia DR2 1853339484138990848”, which suggested I
ought to prepend “Gaia DR3” to my source_id-s. Trouble is: they are long integers, so ADQL’s
concatenation operator can’t really be expected to work. But ADQL is fairly weakly typed, so I
gave it a try:

SELECT * FROM

basic AS b JOIN ident AS i ON (b.oid=i.oidref)

JOIN tap_upload.t2

ON (id='Gaia DR3 ' || source_id)

Sure enough, Simbad’s database engine turned source_id into a string: Success by weak typing!
This yields (for my particular result of the TOP 500 from the XP spectra, so this might be different
for you) 436 rows versus 440 for the positional crossmatch. Simbad thus seems to be essentially
complete on Gaia ids.
Doing a TOPCAT pair match on main_id (with “1 not 2”) gives six objects missing from the id-
based match. Some of them seem genuine misses (they are long-period variables), some (like
a planet candidate) are definitely false positives on the positional match.
But since six are missing from the id match, the positional match must be missing two objects,
too. Matching with “2 not 1” shows these, and both of them are high-proper motion stars.
We missed them due to our restrictive match radius (and raising it would have increased the
false positive rate, so this is not a recommendation to make it larger) and the epoch difference
between Simbad and Gaia DR3.
Hence, in this particular case id-based matching would probably have given the “better” result;
but you can almost always do positional matching, and you don’t need to do guesses on the
form of the identifiers. Consider this little excursion another reminder that you always have
noise.

Solution for Exercise 21 The basic query is

SELECT SUM(MOC(8, s_region)) AS tot_cov FROM emi.main

The result is plottable with the usual Layers → Add Area Control .

Computing the area is a bit more complicated than it would need to be because at least at the
time of writing the server used the official grammar of area, and that does not admit aggregate
functions as arguments. Hence,

SELECT AREA(SUM(MOC(8, s_region))) FROM emi.main

is a syntax error even though it would make total sense. But you can work around it in this
way:

SELECT AREA(tot_cov) FROM (

SELECT SUM(MOC(8, s_region)) AS tot_cov FROM emi.main) AS q

You will then find something like 1.36 square degrees at level 8 and 0.288 at level 12. By the
way, in this particular case you can argue that

95

select sum(area(s_region)) from emi.main

(which works out to 0.0028 square degrees) gives a better idea of the total exposed area, be-
cause the individual frames do not (appreciatably) overlap and the rougher MOCs are seri-
ously misrepresenting the true coverage. On the other hand, that expression will count over-
laps twice, and hence will be massively overestimating coverage in more typical archives.

Solution for Exercise 22 I found an access URL by typing ROSAT survey pointed into a
freetext constraint in WIRR and adding a Service Type constraint of Image Access. This, at the
moment, only leaves one service, the SIA link of which I pasted into the program.
The resulting code is:

import pyvo

ACCESS_URL = "http://dc.zah.uni-heidelberg.de/rosat/q/im/siap.xml?"

svc = pyvo.sia.SIAService(ACCESS_URL)

images = svc.search((340.1,3.36), size=(0.1, 0.1))

image=images[0]

print(image.filesize, image.instr)

If you got an exception like

IndexError: index 0 is out of bounds for axis 0 with size 0

– this is an artefact of how we blindly fetch the first result. What this really means: there was
no match in the service. Depending on what part of the ROSAT results is published, it is totally
conceivable that they did not cover our location.

Solution for Exercise 23 To obtain the position of M51, I am using the SkyCoord snippet
from the pyVO documentation; the rest mainly is cleanup and a standard random hack:

import random

import sys

from astropy import coordinates

from astropy.time import Time

from pyvo.dal import sia

from pyvo import registry

POS = coordinates.SkyCoord.from_name('M51')

def search_one_resource(res_rec):

print("\nNow querying ", res_rec.res_title)

svc = res_rec.get_service("sia", lax=True)

images = svc.search(POS, size=0.5)

for match in images:

print(f"{match.title} Get? ", end=" ")

if input().strip().lower().startswith("y"):

match.cachedataset()

def main():

for res_rec in registry.search(servicetype="image"):

if random.random()<0.9:

96

continue

try:

search_one_service(res_rec)

except KeyboardInterrupt:

if input("\nQuit? ").strip().lower().startswith("y"):

sys.exit()

except:

import traceback

traceback.print_exc()

if __name__ == "__main__":

main()

If you are somewhat downtrodden by how much breakage you see and how weird some of the
images that you find look like: Relax, it’s science. There is actually a lot of art and knowledge
between the raw images and the pretty pictures you see in the newspaper.

Solution for Exercise 24 The source code in question is in pyvo/samp.py (at the time of writing;
it might be moved at some point).
The connection manager is right at the bottom of the file, and you see there that code like this
should connect you to the SAMP hub:

client = SAMPIntegratedClient(name="test", description="VO course problem solution")

client.connect()

At least in the astropy versions current while this was written, when the client object just
vanishes, it will not tell the hub the client is dead, and hence zombie clients will aggregate,
for instance in TOPCAT’s SAMP client line. Even if astropy were to get a bit smarter here,
objects are in a precarious state when the automatic garbage collection strikes. Doing explicit
connection management therefore is highly preferable in any case. In particular if it is as simple
as just using a context manager.
Incidentally, on Debian-derived systems an attractive alternative to feeding github behavioural
data would be to say apt-get source python3-pyvo.

Solution for Exercise 25 You will find that send_image_to calls send_product_to, just filling in
the latter’s mtype argument. More on the MTypes later; consider them a function name.
Now, send_product_to basically fills a dictionary like this:

message = {

"samp.mtype": mtype,

"samp.params": {

"url": url,

"name": name,

},

}

This is basically like a function call with keyword arguments. That really is almost all the
magic; knowing this may come in useful if you want to send out more tailored SAMP messages
later.
To send the image to Aladin only, you can guess that you will want to use the client_name

argument (don’t worry about the implementation in that case). In TOPCAT’s SAMP status,
you can find that Aladin’s client name is a capitalised “Aladin”, so in sum, you would say:

97

pyvo.samp.send_image_to(

conn,

match.acref,

name=match.suggest_dataset_basename(),

client_name="Aladin")

Solution for Exercise 26

import pyvo

svc = pyvo.dal.TAPService("http://dc.g-vo.org/tap")

result = svc.run_sync("SELECT count(*) as ct FROM arihip.main")

print(result[0]["ct"])

Solution for Exercise 27 The error message will have looked a bit like this:

Field query: Could not parse your query: Expected end of text, found ’4’ (at char
64), (line:3, col:17)

This is admittedly not terribly helpful, but it is surprisingly hard to get parsers – programs that
turn sequences of characters into some structured representations – to spit out helpful error
messages. When you do not understand what some error means, first look at the position the
machine gave up at. In this case, this means showing the query that was actually executed; a
good print is perfectly fine in these cases, but my advice is to drop into the debugger, which
you can do with a line like this:

import pdb; pdb.set_trace()

You are then dropped into something you can interact with (try help at the prompt), e.g., by
evaluating python expressions:

-> print(QUERY.format(**locals()))

(Pdb) QUERY.format(**locals())

"select accref, imagetitle\nfrom maidanak.reduced\nwhere object=IC 4756"

(Pdb) cont

If you are fluent in ADQL, you will notice that at the error position reported by the server,
there is a naked number. And that is because of our extremely simple-minded templating: A
“good” templating engine should have turned the python string into an ADQL string literal.
But as I said, if you control both sides, it is fine to just adjust the template to:

QUERY = """select accref, imagetitle

from maidanak.reduced

where object='{object}'"""

98

Solution for Exercise 28 An adapted version of fetch3 would look like this:

import pyvo

QUERIES = [

("tgas", "http://dc.zah.uni-heidelberg.de/tap",

"""SELECT ra, dec, pmra, pmdec

FROM tgas.main

WHERE phot_g_mean_mag BETWEEN 8 AND 8.2"""),

("rave", "http://dc.zah.uni-heidelberg.de/tap",

"""SELECT raj2000, dej2000, rv, hmag

FROM rave.main

WHERE hmag BETWEEN 8 AND 8.2"""),]

def main():

with pyvo.samp.connection() as conn:

for short_name, access_url, query in QUERIES:

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(query.format(**locals()), maxrec=90000)

pyvo.samp.send_table_to(

conn,

result.to_table(),

client_name="Aladin",

name=short_name)

if __name__=="__main__":

main()

As hinted, the secret of attractive plots in Aladin are filters. For TGAS, you can use the pre-
defined “Draw proper motions of stars” filter and perhaps improve it a bit in the “Advanced
Mode”, e.g., by multiplying the two columns with 10.
For the radial velocity, perhaps a rainbow (blue and redshift) is appropriate? With a bit of
experimentation I have come up with

{ draw rainbow(${rv}, -100, 100) fillcircle(300)}

Solution for Exercise 29 The two workarounds are:

• work_around_vizast_bug – this used to be necessary because VizieR used to put arraysize="1"
into column declarations of their scalars, which made astropy make arrays from them.
This has long been fixed.

• work_around_sdss_ucd_bug – this used to be necessary because the UCDs on the SDSS table
were wrong and non-specific at the same time. If you drop the workaround, perhaps
by writing return ucd at the top of the function, you will see that the optical part of our
SEDs will be gone; the UCDs are still too unspecific for our purpose. Once you have
understood what happens in the workaround, you can also use TOPCAT’s table browser
to ascertain that the UCDs are still only phot.mag;em.opt.

Solution for Exercise 31 Here is how to write this:

import pyvo

QUERIES = {

"tgas": ("http://dc.zah.uni-heidelberg.de/tap",

"""SELECT *

99

FROM

tgas.main AS tg

JOIN TAP_UPLOAD.rave AS mine

ON DISTANCE(tg.ra, tg.dec, mine.raj2000, mine.dej2000)<1/3600.

"""),

"rave": ("http://dc.zah.uni-heidelberg.de/tap",

"""SELECT raj2000, dej2000, rv, hmag

FROM rave.main

WHERE hmag BETWEEN 8 AND 8.1"""),}

def main():

svc_url, query = QUERIES["rave"]

rave_svc = pyvo.dal.TAPService(svc_url)

job = rave_svc.submit_job(query, maxrec=90000)

try:

job.run()

job.wait()

job.raise_if_error()

svc_url, query = QUERIES["tgas"]

tgas_svc = pyvo.dal.TAPService(svc_url)

result = tgas_svc.run_sync(query,

uploads={

"rave": job.result_uri})

finally:

job.delete()

with pyvo.samp.connection() as conn:

pyvo.samp.send_table_to(

conn, result.to_table(), client_name="topcat", name="rave+tgas")

if __name__=="__main__":

main()

Note how this is much more logical than the first version with the individual photometric
cuts, since there is just one constraint on the magnitudes now (the one on the H-band in rave)
– when you send the resulting table to Aladin, you will see more matches in TGAS than you
had when you were comparing the two catalogue cuts manually.
And no, I would not normally have kept queries and access URLs in a dictionary in a situa-
tion like this; the two queries are different roles, and representing them next to each other is
misleading rather than helpful. I wrote it like this in order to keep the program structure as
parallel to the original rave-tgas solution as possible.
If you inlined the queries, you actually showed better taste.
By the way, you could take this even further and make the tgas query async as well. You could
then send a raw table.load.votable message to TOPCAT with the result URL as the table URL.
That way, pyVO would not touch the data at all. That is a small win here, but it might be a
useful technique in more demanding circumstances.
To do that, your send query would look like this:

svc = pyvo.dal.TAPService("http://dc.zah.uni-heidelberg.de/tap")

job2 = svc.submit_job("""

SELECT *

FROM tgas.main AS db

JOIN TAP_UPLOAD.t1 AS tc

ON DISTANCE(db.ra, db.dec, tc.raj2000, tc.dej2000) < 5./3600.

""",

uploads={"t1": job.result_uri})

100

job2.run()

job2.wait()

message = {

"samp.mtype": "table.load.votable",

"samp.params": {

"url": job2.result_uri,

"name": "tgas+rave-from-server",

},

}

client_id = samp.find_client_id(conn, "topcat")

conn.call_and_wait(client_id, message, "10")

The main complication over the code above is that we send_table_to cannot deal with remote
URIs and we have to essentially copy its implementation. But this is still relatively compact, I
would say.

Solution for Exercise 32 Just add a AND em_res_power>10000 to the query in the program.
And it is totally conceivable that you will not find anything for the objects you chose. Spectra
of this sort are expensive to get and have only been obtained for relatively few stars

Solution for Exercise 33 You would probably replace the service creation in the constructor’s
class with

self.sia_service = pyvo.dal.SIAService(

"http://dc.g-vo.org/lswscans/res/positions/siap/siap.xml")

With that, make_response_table would be as simple as:

ra = self.cur_table[self.ra_name][table_index]

dec = self.cur_table[self.dec_name][table_index]

return self.sia_service.search(pos=(ra, dec), size=0.05).to_table()

Solution for Exercise 34

import pyvo

from astropy.coordinates import SkyCoord

from astropy import units as u

import vohelper

class Odometer:

def __init__(self, conn):

self.conn = conn

self.total_travelled = 0*u.deg

self.last_position = None

conn.bind_receive_message("coord.pointAt.sky", self.record_movement)

@vohelper.show_exception

def record_movement(self, privkey, sender_id, msg_id, mtype, params, extra):

new_coord = SkyCoord(

float(params["ra"])*u.deg,

float(params["dec"])*u.deg)

if self.last_position is not None:

self.total_travelled += new_coord.separation(self.last_position)

101

self.last_position = new_coord

print(self.total_travelled)

def main():

with pyvo.samp.connection(addr="localhost") as conn:

odometer = Odometer(conn)

input()

print("Total travelled", odometer.total_travelled)

if __name__=="__main__":

main()

Solution for Exercise 35 To answer this, you could of course read the documentation and
figure out what’s the name of the respective properties of the TAPService object. In fact, you
should set aside an hour or two to at least browse the documentation of pyVO if you use it
regularly (as you should with any other library that you regularly use). However, in this case
discovery with command line completion in (i)python is legal; for instance,

In [3]: svc = pyvo.dal.tap.TAPService("http://dc.g-vo.org/tap")

In [4]: svc.<tab>

svc.availability svc.create_query svc.run_async svc.tables

svc.available svc.describe svc.run_sync svc.up_since

svc.baseurl svc.hardlimit svc.search svc.upload_methods

svc.capabilities svc.maxrec svc.submit_job

It is a reasonable guess that maxrec and hardlimit are what you are looking for in this case.
A program doing what is asked for in the exercise would look somewhat like this:

from pyvo import registry

for res_rec in registry.search(keywords="tgas", servicetype="tap"):

svc = res_rec.get_service("tap")

print(svc.baseurl, svc.maxrec, svc.hardlimit)

Solution for Exercise 36

>>> from pyvo import registry

>>> rscs = registry.search(keywords="exoplanet merged catalogue")

>>> rscs.get_summary()

(we got it, short name ExoMerCat)

>>> svc = rscs["ExoMerCat"].get_service("tap")

>>> list(svc.tables.keys())

['exomercat.exomercat', ...

>>> svc.tables["exomercat.exomercat"].columns

[... <BaseParam name="ra_off"/>, <BaseParam name="dec_off"/>, <BaseParam

name="mass"/>...]

>>> res = svc.run_sync("select top 1 ra_off, dec_off from exomercat.exomercat order by mass asc")

>>> res[0]

(277.6981916666667, -10.991083333333332)

>>> cres = registry.search("constellation polygons")

>>> cres.get_summary()

<Table length=1>

102

index short_name ... interfaces

int32 str9 ... str24

----- ---------- ... ------------------------

0 cstl cone ... conesearch, tap#aux, web

>>> csvc = cres[0].get_service("tap")

>>> csvc.tables["cstl.geo"].columns

[..., <BaseParam name="name"/>, <BaseParam name="p"/>, <BaseParam name="ra"/>, ...]

>>> csvc.run_sync("select name from cstl.geo as db join tap_upload.pt as mine"

... " on 1=contains(point(mine.ra_off, mine.dec_off), p)",

... uploads={"pt": res.to_table()}).to_table()

<Table length=1>

name

object

Scutum

So: with sufficient instrumentation and a clear horizon, you could see its host star from here
(as in: Heidelberg). Scutum is just a bit south of the celestial equator, visible between Atair
and Antares in summer nights.
Note that, of course, this is exactly not the nice blind (i.e., without prior knowledge of concrete
resources) discovery we would like to have in the VO. But bear with us: It’s much easier to
write problems assuming prior knowledge.

Solution for Exercise 37 For server-side-expansion, change the condition to use the gavo_vocmatch

UDF mentioned in the side track, like this:

def __init__(self, uat_id, expand=False):

if expand:

self._condition = "1=gavo_vocmatch('uat', {uat_id}, uat_concept)"

else:

self._condition = "{uat_id} = uat_concept"

self._fillers = {"uat_id": uat_id}

If you try it, you will notice that you get back massively more services.
When doing things locally, there is a complication because the naive templating engine cannot
cope with sets. If it could, you would be done with just pulling the vocabulary (in a class
attribute so we don’t parse the vocabulary each time we are called) and then using a different
operator:

class ForSource(pyvo.registry.SubqueriedConstraint):

_keyword = "subject"

_subquery_table = "rr.subject_uat"

uat_voc = pyvo.utils.vocabularies.get_vocabulary("uat")

def __init__(self, uat_id, expand=False):

if expand:

uat_ids = {uat_id} | set(self.uat_voc["terms"][uat_id]["narrower"])

else:

uat_ids = {uat_id}

self._condition = "uat_concept in ({uat_ids})".

self._fillers = {"uat_ids": uat_ids}

As things are, this will lead to an error, because the templating engine has no idea what to do
with your set. Hence, you will have to manually do your formatting. But note that this sort of
hack will make you vulnerable to SQL injection, so never create SQL like this when processing
untrusted content:

103

uat_ids = {uat_id} | set(self.uat_voc["terms"][uat_id]["narrower"])

self._condition = "uat_concept in ({})".format(

", ".join(f"'{id}'" for id in uat_ids))

Solution for Exercise 38

def get_available_semantics(dl):

res = set()

for link in dl:

res.add(link["semantics"])

return res

Solution for Exercise 39 The first hurdle to the solution regrettably is: how will that service
spell the identifier “IC 1151”? Using TOPCAT’s or pyVO’s table browsers, you will find the
target_name column, and using something plausible like

select target_name from califadr3.cubes where target_name like '%1151%'

you will find they have skipped the blank (oh, for interoperable object designations!), and
hence you will have to match IC1151.
For the matter with the setup, you can guess that it’s what the setup column says and you
would end up constraining setup to COMB (which in this case says that you are using a clever
combination of the results of a higher and a lower resultion setup).
With these preparations, you can do the SODA calls; because, at the time for writing, pyVO
does not pick up the processing service sitting on the dataset (rather than result set) level, we
need to do the extra complication handled in the get_cutout_frame function given in the problem
statement.
Taking everything together:

import io

import pyvo

import numpy

from astropy import units as u

from astropy.io import fits

from PIL import Image

def _normalize_for_image(pixels):

pixels = numpy.flipud(pixels)

pixMax, pixMin = numpy.max(pixels), numpy.min(pixels)

pixels = (pixels-pixMin)/(pixMax-pixMin)*255

return numpy.asarray(pixels, numpy.uint8)

def get_cutout_frame(datalink, wavelength):

proc = datalink.get_first_proc()

fits_stream = proc.processed(band=(wavelength, wavelength))

return fits.open(io.BytesIO(fits_stream.read()))[0].data[0]

svc = pyvo.dal.TAPService("http://dc.g-vo.org/tap")

res = svc.run_sync(

"""SELECT * FROM califadr3.cubes

WHERE target_name='IC1151' AND setup='COMB'""")

datalink = next(res.iter_datalinks())

104

pixels = numpy.array([

_normalize_for_image(get_cutout_frame(datalink, 700*u.nm)),

_normalize_for_image(get_cutout_frame(datalink, 550*u.nm)),

_normalize_for_image(get_cutout_frame(datalink, 400*u.nm))])

pixels = pixels.transpose(1,2,0)

Image.fromarray(pixels, mode="RGB"

).save("IC1151.jpeg", format="jpeg")

if you cannot get enough: It is not hard to extend this so for each band, a few spectral frames
are averaged rather than just exactly one frame (which we pick out here with our relatively
stupid .data[0].

Solution for Exercise 44

import pyvo

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/theossa/q/ssa/ssap.xml?")

with pyvo.samp.connection() as conn:

for ct, result in enumerate(

svc.search(pos=None, diameter=None, t_eff="70000/100000",

log_g="4.5/5.5", w_N="0.015/+Inf",

FORMAT="VOTable")):

pyvo.samp.send_spectrum_to(conn, result.getdataurl(), client_name="splat")

if ct==2:

break

Solution for Exercise 45

import pyvo

from astropy import table

gavo_svc = pyvo.dal.TAPService("http://dc.g-vo.org/tap")

hd_subset = gavo_svc.run_sync("SELECT TOP 500 mv_meas, spectral,"

" source_id3 as source_id FROM hdgaia.main").to_table()

esac_svc = pyvo.dal.TAPService("https://gea.esac.esa.int/tap-server/tap")

gaia_meta = esac_svc.run_sync(

"""SELECT *

FROM gaiadr3.gaia_source as g

JOIN tap_upload.mine as m

USING (source_id)""",

uploads={"mine": table.Table(

[hd_subset["source_id"]])})

full_result = table.join(

hd_subset,

gaia_meta.to_table(),

keys="source_id")

with pyvo.samp.connection() as conn:

pyvo.samp.send_table_to(conn, full_result, client_name="topcat")

Solution for Exercise 46 This one you can easily look up in the UCD list cited above; a quick
text search will give your phys.angsize. Or use the WIRR trick and type “angular size” in
Blind Discovery → Column UCD , and then Pick one. And of course this would work equally
well with the RegTAP ADQL.

105

Solution for Exercise 47 This one is tricky on two accounts; first, you will probably have to
look for “color” to find anything going in the right direction. That’s the astronomy part of this
problem.
Once you look for UCDs with descriptions containing “color”, you will find UCDs of the form
phot.color;em.opt.b;em.opt.v. You could read up on that particular UCD form in the standards,
but you are entirely forgiven for just guessing that it is fine replacing the two band identifiers
there with those for the u and r bands.
You should probably look up the definitions in the UCD list. But failing that, you can also
see what other people have used to annotate SDSS u or r using WIRR or RegTAP. Looking for
SDSS u yields phot.mag;em.opt.u immediately, and similarly SDSS r yields phot.mag;em.opt.r.
Note that the band identifiers from UCDs are indeed not precise identifiers for concrete filters
but qualitative indicators where in the spectrum one is.
So: phot.color;em.opt.u;em.opt.r looks like a good guess. And it’s actually correct.

Solution for Exercise 48 Using pyVO, finding the set of concept identifiers narrower than or
equal to spatially-resolved-dataset looks like this:

import pyvo

voc = pyvo.utils.vocabularies.get_vocabulary("product-type")

print(set(voc["terms"]["spatially-resolved-dataset"]["narrower"])

| {'spatially-resolved-dataset'})

Over writing the resulting ADQL expression

dataproduct IN ('cube', 'time-cube', 'polarization-cube',

'spatially-resolved-dataset', 'image', 'slit-spectrum',

'spectral-cube', 'spatial-profile')

(which is what the program above yielded in mid-2024), the advantage of using the UDF is that
your query remains up to date even when more spatially resolved product types are added to
the product-type vocabulary.

References

Campillo, J. J. and Demleitner, M. (2023), ‘Catalogue of ADQL User Defined Functions Ver-
sion 1.1’, IVOA Endorsed Note 17 November 2023. https://ui.adsabs.harvard.edu/abs/
2023ivoa.spec.1117C.

Cecconi, B., Louys, M., Preite Martinez, A., Derrière, S., Ochsenbein, F., Erard, S. and Demleit-
ner, M. (2023), ‘UCD1+ controlled vocabulary - Updated List of Terms Version 1.5 Version
1.5’, IVOA Endorsed Note 25 January 2023. https://ui.adsabs.harvard.edu/abs/2023ivoa.
spec.0125C.

Demleitner, M., Dowler, P., Plante, R., Rixon, G. and Taylor, M. (2012), ‘TAPRegExt: a
VOResource Schema Extension for Describing TAP Services Version 1.0’, IVOA Recom-
mendation 27 August 2012, arXiv:1402.4742. doi:10.5479/ADS/bib/2012ivoa.spec.0827D,
https://ui.adsabs.harvard.edu/abs/2012ivoa.spec.0827D.

106

https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1117C
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1117C
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.0125C
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.0125C
https://doi.org/10.5479/ADS/bib/2012ivoa.spec.0827D
https://ui.adsabs.harvard.edu/abs/2012ivoa.spec.0827D

Demleitner, M., Gray, N. and Taylor, M. (2023), ‘Vocabularies in the VO Version 2.1’, IVOA Rec-
ommendation 06 February 2023. https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.0206D.

Demleitner, M., Harrison, P., Molinaro, M., Greene, G., Dower, T. and Perdikeas, M. (2019),
‘IVOA Registry Relational Schema Version 1.1’, IVOA Recommendation 11 October 2019.
doi:10.5479/ADS/bib/2019ivoa.spec.1011D, https://ui.adsabs.harvard.edu/abs/2019ivoa.
spec.1011D.

Erard, S., Cecconi, B., Le Sidaner, P., Demleitner, M. and Taylor, M. (2022), ‘EPN-TAP: Publish-
ing Solar System Data to the Virtual Observatory Version 2.0’, IVOA Recommendation 22
August 2022. https://ui.adsabs.harvard.edu/abs/2022ivoa.spec.0822E.

Gray, N., Cecconi, B., Demleitner, M., Derrière, S., Gray, N., Louys, M. and Ochsenbein, F.
(2023), ‘Units in the VO Version 1.1’, IVOA Recommendation 15 December 2023. https:
//ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215G.

Harrison, P., Demleitner, M., Major, B. and Dowler, P. (2018), ‘XML Schema Versioning Poli-
cies Version 1.0’, IVOA Endorsed Note 29 May 2018. doi:10.5479/ADS/bib/2018ivoa.spec.
0529H, https://ui.adsabs.harvard.edu/abs/2018ivoa.spec.0529H.

Landais, G., Muench, A., Demleitner, M. and Savalle, R. (2024), ‘Data origin in the VO version
1.1’, IVOA Note 26 January 2024. http://ivoa.net/documents/DataOrigin/.

Mantelet, G., Morris, D., Demleitner, M., Dowler, P., Lusted, J., Nieto-Santisteban, M. A.,
Ohishi, M., O’Mullane, W., Ortiz, I., Osuna, P., Shirasaki, Y. and Szalay, A. (2023), ‘As-
tronomical Data Query Language Version 2.1’, IVOA Recommendation 15 December 2023.
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215M.

This document’s DOI is 10.21938/avVAxDlGOiu0Byv7NOZCsQ.

107

https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.0206D
https://doi.org/10.5479/ADS/bib/2019ivoa.spec.1011D
https://ui.adsabs.harvard.edu/abs/2019ivoa.spec.1011D
https://ui.adsabs.harvard.edu/abs/2019ivoa.spec.1011D
https://ui.adsabs.harvard.edu/abs/2022ivoa.spec.0822E
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215G
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215G
https://doi.org/10.5479/ADS/bib/2018ivoa.spec.0529H
https://doi.org/10.5479/ADS/bib/2018ivoa.spec.0529H
https://ui.adsabs.harvard.edu/abs/2018ivoa.spec.0529H
http://ivoa.net/documents/DataOrigin/
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215M
http://doi.org/10.21938/avVAxDlGOiu0Byv7NOZCsQ

	1 Introduction: What is the VO and why should you care?
	2 Simple Protocols and their clients
	3 TAP and ADQL
	4 Interlude: HEALPix, MOC, HiPS
	5 pyVO Basics
	6 pyVO and TAP
	7 Higher SAMP Magic
	8 pyVO and the Registry
	9 Datalink
	10 At the Limit: VO-Wide TAP Queries
	11 Odds and Ends
	11.1 EPN-TAP
	11.2 Custom Parameters to Simple Services
	11.3 TAP Uploads: The right way

	12 Troubleshooting and FAQ
	12.1 TOPCAT and Aladin are unreadably small on HiDPI screens?
	12.2 TOPCAT TAP example stays gray?

	A Side Track: Terminology
	B Side Track: Architecture
	C Side Track: Standards
	D Side Track: UCDs
	E Side Track: Vocabularies
	F Side Track: VOTable
	G Side Track: IVOA Identifiers
	H Solutions for Most of the Exercises

