
Using the Virtual Observatory

Markus Demleitner Hendrik Heinl Joachim Wambsganß

July 25, 2024

German Astrophysical Virtual Observatory

1

Introduction: What is the VO and

why should you care?

The VO is. . .

1. not a website (“platform”),

2. not a bunch of websites,

3. not a program that does all things astronomy.

Instead. . .

2

The VO is. . .

Standards for finding, accessing, using, and describing data

plus

∼ 50 data centers worldwide adhering to these standards

plus

a few volunteers operating some ± central infrastructure

plus

authors of client software, libraries, and web pages making these

resources available to astronomers and the public.

3

Numerically. . .

In numbers, the VO is:

1. ∼ 50 data centers in ∼ 20 countries

2. ∼ 3× 104 data collections

3. hundreds of millions of data sets (spectra, images,. . .)

4. hundreds of billions of table rows

4

How do I use it?

While certain parts of the VO can be consumed from web browsers,

you really want client software that can talk to our APIs.

• TOPCAT – does what you want with tables

• Aladin – interactive sky atlas

• pyVO – marrying the VO and astropy

5

https://www.star.bris.ac.uk/mbt/topcat/
https://aladin.cds.unistra.fr/aladin.gml
https://github.com/astropy/pyvo

Whetting your appetite: Demo time

Assume you want to look for candidates for gravitationally lensed

compact objects.

6

A first taste of VO-enabled Python

import pyvo

from astropy import table

TAP_URL = "http://dc.zah.uni-heidelberg.de/tap"

QUERY = """

SELECT

name, db.ra, db.dec, u, z,

photoz_z, petrads, petmags

FROM sdssdr16.main AS db

JOIN TAP_UPLOAD.t3 AS tc

ON 1=CONTAINS(POINT('ICRS', db.ra, db.dec),

CIRCLE('ICRS', tc.ra, tc.dec, 240./3600.))

WHERE u-z>6

"""

svc = pyvo.dal.TAPService(TAP_URL)

objs = svc.run_sync(QUERY,

uploads={"t3": table.Table.read("candclus.vot")}).to_table()

7

Simple Protocols and their clients

Simple VO protocols

The basic/simple VO-protocols are

• the Simple Cone Search (SCS)

• the Simple Image Access (SIA)

• the Simple Spectral Access (SSA)

• the Simple Application Messaging Protocol (SAMP)

Neither simple nor a protocol, but crucial and omnipresent:

• the VO Registry

8

Simple Cone Search (SCS)

The SCS provides a data selection on table data based on the

parameters of a position (RA, DEC) and a search radius (SR) in

degrees around it.

Clients: Topcat, STILTS, pyVO, and more.

9

Simple Image Access (SIA)

SIA services work similar to SCS services but for image access.

The resulting VOTables are lists of metadata on images on a

specific service matching the query parameters, thus enabling users

to make decisions on which images to download.

Clients: Aladin, pyVO, and more.

10

Simple Spectral Access Protocol (SSA)

SSA works very similar to SIA. The result of a SSA query is a

VOTable with spectra matching the query parameters. Users can

then select which spectra to actually download.

Clients: SPLAT-VO, CASSIS, and more.

11

Simple Application Messaging Protocol (SAMP)

SAMP is a bit of the magic in the VO. It is designed so that VO

clients can interopate and communicate whith each other. Thus

users really can select client software of their choice and make

them interact with their own scripts.

Clients: almost all of them.

12

TAP and ADQL

A First Query

To follow the examples, start TOPCAT and select TAP in the VO

menu.

At Keywords, type gavo. Wait until the results are filtered and

select the entry GAVO DC TAP. Then click Use Service.

In the query pane, enter:

SELECT TOP 1 1+1 AS result FROM ivoa.obscore

and then click “Ok”.

You can also use TAP from Python. A lot more on this later. If you

are curious now, see an ipython notebook explaining the basics.

13

{
 "cells": [
 {
 "cell_type": "markdown",
 "id": "compatible-thickness",
 "metadata": {},
 "source": [
 "This notebook briefly introduces you into doing TAP/ADQL queries interactively using the pyVO package (on Debian-derived systems, do ``apt install python3-pyvo``; otherwise, see http://pypi.org/project/pyvo).\n",
 "\n",
 "Note that for this sort of interactive use, most people prefer TOPCAT (Debian: topcat; otherwise http://www.star.bris.ac.uk/~mbt/topcat)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "inner-highway",
 "metadata": {},
 "outputs": [],
 "source": [
 "import pyvo\n",
 "# Also, shut up a few overzealous warnings\n",
 "import warnings\n",
 "warnings.filterwarnings('ignore', module=\"astropy.io.votable.*\")\n",
 "warnings.filterwarnings('ignore', module=\"pyvo.utils.xml.elements\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "intensive-performance",
 "metadata": {},
 "source": [
 "You typcially first have to discover a TAP service, perhaps based on names (blind discovery, finding tables by topic or coverage, is left as an exercise to the reader; see https://pyvo.readthedocs.io/en/latest/registry for inspration)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "demonstrated-groove",
 "metadata": {},
 "outputs": [],
 "source": [
 "svcs = pyvo.registry.search(servicetype=\"tap\", keywords=\"rave\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "floral-translator",
 "metadata": {},
 "source": [
 "You can now browse the various services matching your constraints."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "dynamic-solomon",
 "metadata": {},
 "outputs": [],
 "source": [
 "svcs.to_table().show_in_notebook()"
]
 },
 {
 "cell_type": "markdown",
 "id": "assigned-activation",
 "metadata": {},
 "source": [
 "Pick one of them by index of short name:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "tested-button",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc = svcs[\"GAVO DC TAP\"].get_service()"
]
 },
 {
 "cell_type": "markdown",
 "id": "convertible-training",
 "metadata": {},
 "source": [
 "Equivalently, if you have the TAP access URL right away, you can directly construct a TAP service like this:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "prompt-camera",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc = pyvo.dal.TAPService(\"http://dc.g-vo.org/tap\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "executive-button",
 "metadata": {},
 "source": [
 "Once you have such a service, you can see what tables are on it:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "adaptive-balloon",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc.tables.describe()"
]
 },
 {
 "cell_type": "markdown",
 "id": "expensive-skirt",
 "metadata": {},
 "source": [
 "...and then inspect the columns of each table:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "desperate-peninsula",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc.tables[\"rave.main\"].columns[:10]"
]
 },
 {
 "cell_type": "markdown",
 "id": "greatest-nature",
 "metadata": {},
 "source": [
 "Based on this, you can now run your queries:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "included-trading",
 "metadata": {},
 "outputs": [],
 "source": [
 "res = svc.run_sync(\"SELECT TOP 5 raveid, raj2000, dej2000, rv FROM rave.main\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "junior-purple",
 "metadata": {},
 "source": [
 "The results's to_table method returns a normal astropy table:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "decimal-soldier",
 "metadata": {},
 "outputs": [],
 "source": [
 "res.to_table().show_in_notebook()"
]
 },
 {
 "cell_type": "markdown",
 "id": "stylish-virgin",
 "metadata": {},
 "source": [
 "For longer-running jobs, you can also run async jobs:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "educational-light",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc.run_async(\"SELECT TOP 5 raveid, raj2000, dej2000, rv FROM rave.main\"\n",
 ").to_table().show_in_notebook()"
]
 },
 {
 "cell_type": "markdown",
 "id": "precious-rotation",
 "metadata": {},
 "source": [
 "Finally, the examples you see in TOPCAT are also available in pyVO, although for browsing you will probably want to go to the service's examples endpoint:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "affiliated-particle",
 "metadata": {},
 "outputs": [],
 "source": [
 "import webbrowser, pprint\n",
 "webbrowser.open(svc.baseurl+\"/examples\")\n",
 "pprint.pprint(svc.examples[:3])"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "dynamic-spice",
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.9.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

Why SQL?

The SELECT statement is written in ADQL, a dialect of SQL

(“sequel”). Such queries make up quite a bit of the science within

the VO.

SQL has been chosen as a base because

• Solid theory behind it (relational algebra)

• Lots of high-quality engines available

• Not Turing-complete, i.e., automated reasoning on

“programs” is not very hard

14

Relational Algebra

At the basis of relational data bases is the relational algebra, an

algebra on sets of tuples (“relations”) plus six operators:

• unary select

• unary project

• unary rename

• binary cartesian product

• binary union

• binary set difference

Good News: You don’t need to know any of this.

15

SELECT for real

ADQL defines only one statement, the SELECT statement, which

lets you write down expressions of relational algebra. Roughly, it

looks like this:

SELECT [TOP setLimit] selectList FROM fromClause

[WHERE conditions] [GROUP BY columns] [ORDER BY columns]

16

TOP

setLimit: an integer giving how many rows you want returned.

SELECT TOP 5 * FROM rave.main

SELECT TOP 10 * FROM rave.main

17

SELECT: ORDER BY

ORDER BY takes columns: a list of column names (or expressions),

and you can add ASC (the default) or DESC (descending order):

SELECT TOP 5 *

FROM rave.main

ORDER BY rv

SELECT TOP 5 *

FROM rave.main

ORDER BY rv DESC

SELECT TOP 5 *

FROM rave.main

ORDER BY fiber number, rv

Note that SELECT * (pulling all columns) is usually wasteful and you

should do better from the next slide on.

Also note that ordering is outside of the relational model.
18

SELECT: what?

The select list has column names or expressions involving columns.

SQL expressions are not very different from those of other

programming languages.

SELECT TOP 10

POWER(10, phot_g_mean_mag) AS rel_flux,

SQRT(POWER(ra_error, 2)+POWER(dec_error, 2)) AS errTot

FROM gaia.dr3lite

Use COUNT(*) to figure out how many items there are.

SELECT count(*) AS numEntries FROM rave.main

19

SELECT: WHERE clause

Behind the WHERE is a logical expression; these are similar to

other languages as well, with boolean operators AND, OR, and NOT.

To find bright stars (apparently) moving quickly towards or from

us:

SELECT raveid FROM rave.main

WHERE

jmag<10

AND ABS(rv)>100

20

Missing Data: NULLs

SQL has an explicit concept of missing data: The magic value

NULL. It has some interesting properties:

SELECT count(*) FROM tap_schema.tables WHERE NULL=NULL

returns 0. So does

SELECT count(*) FROM tap_schema.tables WHERE NULL!=NULL

All comparisons with NULLs are false.

To select rows for which a given piece of data is or is not NULL

use the special construct IS (NOT) NULL.

21

SELECT: Grouping

For histogram-like functionality, you can compute factor sets, i.e.,

subsets that have identical values for one or more columns, and

you can compute aggregate functions for them.

SELECT

COUNT(*) AS n,

ROUND(mv) AS bin,

AVG(color) AS colav

FROM dmubin.main

GROUP BY bin

ORDER BY bin

To just figure out the domain of columns, there is a shortcut:

DISTINCT.

22

SELECT: Grouping by HEALPix

If you want to characterise some property over the sky, HEALPixes

are your friend.

SELECT ivo_healpix_index(5, raj2000, dej2000) AS bin,

COUNT(*) AS n,

AVG(rv) AS meanrv,

MAX(rv)-avg(rv) AS updev,

AVG(rv)-min(rv) AS lowdev

FROM rave.main

WHERE e_rv<20

GROUP BY bin

HAVING COUNT(*)>5

23

ADQL User Defined Functions

ivo_healpix_index is an example of an ADQL extension

mechanism: Operators can add UDFs.

See TOPCAT’s ADQL TAP for the UDFs available on a service:

24

SELECT: JOIN USING

The brainiest point in ADQL is the FROM clause. So far, we had a

single table. Things get interesting when you add more tables:

JOIN.

SELECT TOP 10 lat, long, flux

FROM lightmeter.measurements

JOIN lightmeter.stations

USING (stationid)

25

JOINing is Selecting from the Cartesian Product

JOIN is a combination of

cartesian product and a select.

measurements JOIN stations

USING (stationid)

yields the cartesian product of

the measurement and stations

tables but only retains the rows

in which the stationid columns in

both tables agree.

A = {(a, 1), (b, 2), (b, 3)}
B = {(1, u), (2, v)}
A× B =

(a, 1, 1, u)

(a, 1, 2, v)

(b, 2, 1, u)

(b, 2, 2, v)

(b, 3, 1, u)

(b, 3, 2, v)

26

SELECT: JOIN ON

If your join criteria are more complex than simple equality, you can

join ON.

SELECT dateobs as lswdate, t min as appdate

FROM lsw.plates AS a

LEFT OUTER JOIN applause.main AS b

ON (dateobs BETWEEN t min AND t max)

WHERE dateobs BETWEEN 36050 and 36100

27

Flavours of JOIN

There are various kinds of joins, depending on what elements of

the cartesian product are being retained in the presence of missing

data (NULL).

• t1 INNER JOIN t2

• t1 LEFT OUTER JOIN t2

• t1 RIGHT OUTER JOIN t2

• t1 FULL OUTER JOIN t2

28

Geometries

The main extension of ADQL wrt SQL is addition of geometric

functions.

SELECT TOP 500 rv, e rv, p.radial velocity,

p.ra, p.dec, p.pmra, p.pmdec

FROM gaia.dr3lite AS p

JOIN rave.main AS rave

ON 1=CONTAINS(

POINT(p.ra, p.dec),

CIRCLE(rave.raj2000, rave.dej2000, 1.5/3600.))

There are more geometry functions defined in ADQL:

AREA, BOX, CENTROID, CIRCLE, CONTAINS, COORD1,

COORD2, COORDSYS, DISTANCE, INTERSECTS, POINT,

POLYGON

29

DISTANCE

ADQL has a DISTANCE function to compute the spherical distance

between two points:

DISTANCE(lon1, lat1, lon2, lat2)

The DISTANCE function can be used to make cone selections and is

the prefered way to perform crossmatches on sky positions in

ADQL 2.1.

SELECT TOP 1000

raj2000, dej2000, parallax

FROM arihip.main

WHERE

DISTANCE(raj2000, dej2000,

189.2, 62.21) < 10

30

Subqueries

One of the more powerful features of SQL is that you can have

subqueries instead of tables within FROM. Just put them in

parentheses and give them a name using AS. This is particularly

convenient when you first want to try some query on a subset of a

big table:

SELECT COUNT(*) AS n, ROUND((u-z)*2) AS bin

FROM (

SELECT TOP 4000 * FROM sdssdr16.main) AS q

GROUP BY bin ORDER BY bin

31

Common table expressions

WITH lets you name a subquery result for later use in your main

query.

WITH withrvs AS (SELECT TOP 200

ra, dec, source_id,

a.radial velocity, b.rv as raverv

FROM gaia.dr3lite AS a

JOIN rave.main AS b

ON (

DISTANCE(a.ra, a.dec,

b.raj2000, b.dej2000) < 1/3600.))

SELECT *

FROM gdr3spec.spectra

JOIN withrvs

USING (source id)

32

TAP: Uploads

TAP lets you upload your own tables into the server for the

duration of the query.

Example: Add proper motions to an object catalogue giving

positions reasonably close to ICRS; grab some table, falling back to

the attached ex.vot, load it into TOPCAT, go to the TAP

window and there say:

SELECT mine.*, refcat.pmra, refcat.pmde FROM

gaia.dr3lite AS refcat

JOIN tap upload.t1 AS mine

ON DISTANCE (

refcat.ra, refcat.dec,

mine.raj2000, mine.dej2000) < 0.001

33

 Query successful Right ascension (J2000) Declination (J2000) H selected default magnitude J selected default magnitude K selected default magnitude QHSXCsKb8WNASgpzgdfb9UF1jVBBgKn8QXIcrEB0lvDqGDcuQEoKYXwb2lFBVlHsQWGyLUFTEm9A
dJbyckMTe0BKCrf+CK77QXVHrkF/si1BdbItQHSWnVwxWT5ASgpLPD50sEFlmZpBbnrhQWIcrEB0
ln7sOXmeQEoKbH6uW8hBQ9LyQU+hy0E/521AdJa7yxzJZEBKCn1e0G/vQWybpkGCp/BBcD1xQHSW
t/FzdUNASgqcAiml7EFj3ztBgRiTQWKTdUB0lrx+az/qQEoKyN4qwyJBTT99QU+FH0FKuFJAdJat
/4Irv0BKCrNfPX05QVOVgUFaYk5BUhBiQHSW132VVxVASgq6Ymb9ZUF+RaJBglP4QXo5WEB0lspI
+W4WQEoLMJx//edBgHjVQYKRaEF2m6ZAdJbZ0Syt3kBKC1ZcLSeAQX1gQkGEtkZBhPGqQHSW74i5
d4VASgu+wkgOjUFjT99BaPXDQWIUe0B0lsxxkupTQEoLpV0cOslBcCj2QXCfvkFrysFAdJcqaw2V
FEBKCnJ9y926QXNHrkF5rhRBcedtQHSXK+vhZQpASgrIPsiSq0FeGJNBYx64QV5FokB0l0+KTB69
QEoKnZ00WM1Bd64UQYBiTkF32yNAdJdhFEy+H0BKCu3+dbxFQX8OVkGD0OVBffvnQHSXR1cMVlBA
Sgq/XXiBG0FisCFBaR64QWZaHUB0lxvddmg8QEoK8f3evZBBaNkXQW5iTkFko9dAdJc4H5aePUBK
Cu3c580DQXDItEF541RBc2BCQHSXFnqVyFRASgs9IPK+z0FpAgxBbp++QWXztkB0l0vwmVqvQEoL
VFx4pttBY6n8QWkvG0FhysFAdJdnA6+36UBKC7D/EOy3QWrZF0F164VBZ753QHSXa7iADq5ASgvP
gNwzckF47ZFBhAo9QXPrhUB0l4mnfl6rQEoMBmPHT7VBee+eQYPdL0F2wINAdJcPnB+F10BKC7Mg
U1yeQVS0OUFpCj1BUwYlQHSXB3FDOTtASgvAXVLBbkFflYFBf6HLQV564UB0lw5Lh73PQEoLz/6w
dKdBVR64QWpeNUFSl41AdJczru6VdEBKC5Mcp9ZzQXJFokF7tkZBcsi0QHSXKMJhOQBASgv/3nIQ
v0FBdLxBTMScQT5eNUB0lwLBsQ/YQEoL9R77bcpBc41QQXk/fUFvFodAdJZm3vx6OkBKCxuCPIXC
QWXnbUFrlYFBY9LyQHSWagqVhThASguKwY+B6UF2UexBfcKPQW+JN0B0loTxoZhsQEoLuv2Xb/RB
ekWiQYI5WEF2FHtAdJZsoUi6hEBKC7YkE9t/QVvS8kFecrBBWS8bQHSWiH2ys0ZASgwHHFPznUF+
FHtBgq4UQXTMzUB0lrBGhEjPQEoL655JK8NBeLxqQYI/fUF4euFAdJa7b+Lm60BKDCLdepn6QWL9
9EFm4UhBYS8bQHSWt47ihnJASgyfHxSYPUF51wpBgkm6QXD520B0llaQmu1XQEoNOcDr7fpBfFod
QYJwpEFyTdNAdJaV4X40uUBKDPykKu0UQX3XCkGEeuFBgVP4QHSWgarFOwhASg0r3Cbc5EGAnbJB
hRaHQYebpkB0lmce8wpOQEoNUKArhBJBczMzQXu+d0FyKPZAdJcMy8BdU0BKDH8jzI3jQWv3z0F1
64VBZrxqQHSXC/sVtXRASgywY+B6KUF3dLxBf+uFQXg5WEB0ltfhMrVfQEoMwX668QJBeBR7QYC0
OUF2i0RAdJbnlXA/LUBKDPiDM/yHQXZR7EGB989BdKPXQHSXC3solUpASg07IT4+KUFJ87ZBTi0O
QUel40B0l1eD3/PxQEoNMN+b3GpBelodQYEtDkF1gQZAdJc3b212JUBKDVPepGWlQXmZmkF/WBBB
co9cQHSXJnL7oB9ASg2hf0Eov0F8PXFBgzlYQYa6XkB0lwYR/ViGQEoNdWQwK0FBfhysQYKl40F1
++dAdJcwrUb1iEBKDei8FpwkQW45WEF2sCFBbsCDQHSWyylenhtASg3PX05EMUF87ZFBgsaoQYW6
XkB0luq+8Gs4QEoN1B+nZTRBdbItQX2VgUFzEm9AdJbZ1FH8TEBKDhGhEjPfQWw9cUFwUexBaaXj
QHSW46CDmKZASg4pnYg7o0Ftsi1BddsjQWjAg0B0ltXmvGIbQEoOPbwjMV1Bfu2RQYJDlkFui0RA
dJcfw7T2FkBKDoLgGbCrQWwUe0F1KwJBZ9cKQHSW8T8HfMxASg5NXYDkl0FMrAhBV3jVQUnO2UB0
lw1/DtPYQEoPDsMRYihBeeNUQYN0vEFjAgxAdJcWsA/9pEBKDyDh99c9QU0zM0FXaHNBST99QHSX
2bsniNtASgwYm9g4O0F1peNBgel5QXMm6UB0mAP07KaHQEoMhwEQoThBYPXDQWQYk0Ff87ZAdJf+
+/QBxUBKDTr/sE7oQXybpkGEP31BdqPXQHSXsmWt2cJASgy4e9zwMEFmHKxBcIcrQWTZF0B0l5lO
Gj9GQEoNAt4A0bdBTi0OQVWdskFMi0RAdJd9Dx9XtEBKDRR/EwWWQTQQYkE+7ZFBMedtQHSX2D+R
5kdASg2JHiFTN0F9DlZBhisCQXfS8kB0l6naWX1KQEoN3X7Lt/pBa753QXaPXEFpWBBAdJgrGipN
sUBKDLhisny/QX0/fUGD755BfpN1QHSYYREnb7FASg09IPK+z0FMo9dBWSbpQUhumEB0mDhjvuw5
QEoNQj2SMcZBcmJOQXzItEFwo9dAdJg5iVjZtkBKDYUeuFHsQXBumEF0crBBa+dtQHSYbxqfvndA
Sg1JQLux8kFkLQ5BaUvHQWOyLUB0mHVWjoIOQEoNuv2Xb/RBcXzuQXSDEkFo4UhAdJiLWI42j0BK
DcJ+lTFVQVuhy0FkWh1BWkGJQHSYgrtmcvxASg3I4lyBCkFqQYlBgBysQWyPXEB0mGmce8wpQEoO
Eh7mdRRBgNcKQYSNUEF/3ztAdJh+pfhMrUBKDjABT4tZQX1wpEGBtkZBfU/fQHSYGUnogV5ASg2Y
fGMn7kF+gxJBhHzuQXP3z0B0mAJeE7GOQEoN3+MqBmRBcQIMQXpJukFtDlZAdJgcTrVvuUBKDoP9
UCJXQQkvG0EZsi1BAqPXQHSYY77sOXpASg7N4Z/CqUF8+dtBgvGqQXfvnkB0mE065oXbQEoO8r7O
3UhBXwo9QWYUe0FdZFpAdJhg62fCh0BKDvze40/GQXfztkGDMzNBdYk3QHSYaa5PM0RASg8A3kxR
EUFznbJBfTMzQW/ztkB0l3AtWdVeQEoNm6GxlhBBeBiTQYCPXEFwIMVAdJeJw84gikBKDbihnJ1a
QSwYk0E1ztlBKt0vQHSXiI1tO21ASg5W3jMmnkF1DlZBezMzQXV41UB0l7Q9ic5KQEoOTj/+85FB
ZjU/QXDU/kFiCDFAdJfBYFJQL0BKDlNDc/MXQUuyLUFWyLRBSIcrQHSXv/WDpTxASg6kfs/puEF2
sCFBfw5WQXCLREB0l4oZydWiQEoOrsByS3dBbOVgQXDZF0Fq0OVAdJe1oxpL3EBKDzviLl3hQW6f
vkF4hytBbffPQHSXIc3l0YFASg8EHMUypUFyCDFBdjlYQXI9cUB0l1E5QxetQEoPTH80k4ZBf5ma
QYOn8EGBBBlAdJeMEzO5a0BKD04iosI3QXxWBEGDQYlBcTtkQHSXokJKJ2tASg9SwW3z+UF5aHNB
hCbpQXWl40B0l5ld1MdtQEoPg9/z8P5BfOVgQYNumEF2CDFAdJdyNXHR1EBKD2X9itq6QXGp/EF5
jVBBban8QHSXbPldTpBASg/Roh6jWUF6VgRBeOFIQXReNUB0l4DJU5uJQEoP9R77bcpBW7ItQWIY
k0FaNT9AdJfUJv5xi0BKDx0EHMUzQWMOVkFogxJBYfO2QHSXzjrAxi5ASg9K/VRUFUF4o9dBgLhS
QXFT+EB0mAsEq2BrQEoQAJ9iMHdBeZFoQYX1w0F8n75AdJfjNIK+jEBKD8rAgxJvQX+RaEGC/fRB
guNUQHSXsifQKKJASg/solUp/kFLP31BW7peQUXjVEB0l6EFnqVyQEoQQL/jsD5BfXS8QYP99EF2
CDFAdJfWo3rD60BKEFdC3PRiQVqn8EFjWBBBWPGqQHSYHbZezD5AShCs4ku6E0FQfvpBVkWiQU8a
oEB0l/Vx0dR0QEoQ2NvOyFBBV9cKQV60OUFWDEpAdJfsU7CBPUBKENrj5sTGQWrlYEF0Wh1Ba9sj
QHSUJS3solVASgie/Yao/EF0an9Bf8KPQXTpeUB0lDBeokzHQEoJmyPdVNpBZjEnQXFDlkFmm6ZA
dJRfzjFQ20BKCRbB42S/QWiDEkFwKPZBZS8bQHSUdh3JPqNASglX3g1m8UFym6ZBejU/QW8Wh0B0
lGP1ct5EQEoJaoMrmQtBRxqgQVPvnkFDvndAdJSZvDP4VUBKCY1gpjMFQUXbI0FSLQ5BQ1wpQHSU
hoEjgQ9ASgmbgCOmzkFocrBBbpumQWdcKUB0lFZdOZb7QEoJ8n/kvK5BakGJQXbhSEFom6ZAdJRr
sByS3kBKCch9srNGQXP3z0F9N0xBdgAAQHSUe54GD+RASgojQiRnvkFpxqhBdkWiQWXfO0B0lBXq
7iAEQEoJu4PPLPlBaVgQQW+hy0Fm+dtAdJQJSzgMt0BKCgjhUBGQQXPGqEGEVgRBcnbJQHST+hPC
VKRASgoHxBmf5EE2zM1BRYk3QTLEnEB0k+lN1yNoQEoKSoOx0MhBVyLRQWSXjUFTcKRAdJQZA6dU
bUBKCmZeAuqWQXCj10F5521BcDU/QHSUQx33YcxASgpg/keZHEFz2yNBfj1xQXQtDkB0lF3B55Z9
QEoKTmGM4tJBfbItQYPQ5UF1S8dAdJRr7O3UhEBKCo0ALiMpQUlDlkFL3ztBSHKwQHSUKoAGSp1A
SgsGX5WRzUFjHrhBbtDlQWAUe0B0lEYfnwG4QEoK6T4cm0FBeLQ5QYDQ5UFzYEJAdJS2g3974UBK
CdcjZ+QVQX5aHUGFO2RBdVwpQHSUuLvTgEVASgpGe+VTrEE7JulBSP30QTbxqkB0lKN2ki2VQEoK
UUO/cnFBdpN1QX8KPUFv64VAdJTXnhbW3EBKClq8DjioQVKDEkFfQ5ZBTvGqQHSU/9Hc1wZASgqD
wpe/pUE9WBBBQoMSQTyn8EB0lQ7+1jRVQEoKymALApNBfmZmQYQ9cUGGJulAdJTGNJe3QUBKCxh+
fAbiQWfCj0FtEm9BZYUfQHSU8an7521ASguHHmzSkUF93ztBgwYlQXX750B0lHFrEcbSQEoLAqNI
bwVBaT99QWy4UkFkXjVAdJSQw9JSSEBKCwL/jsD5QWtHrkFxfO5BZ8KPQHSUazmfXf9ASgt3IMjN
ZEFvhR9BebpeQW7Ag0B0lIvxpcoqQEoLaaCtihFBHR64QSZFokEbT99AdJSAood+5UBKC668QI2P
QXdgQkGES8dBcKfwQHSUieVcD8tASgupfhMrVkFx1wpBeFHsQXIYk0B0lMGu9vjwQEoLiF0xM39B
YSLRQW141UFhR65AdJTm+0w8GUBKC/Q8fV7QQXF87kF92yNBa6XjQHSUuzY287JASgu3vx6OYUE+
QYlBP4k3QT5FokB0lLCvX9R8QEoMAMDwH7hBTyLRQVtsi0FMan9AdJTXHzYmLUBKDEfDDTBqQW33
z0F6n75Bb9LyQHST4fjjrAxASgrqfOD8L0FttkZBdmJOQW+2RkB0k/vphWo4QEoKrT6SDAdBet0v
QX5++kF0QYlAdJQHObAk9kBKCsAeaKDTQWxqf0FwBBlBaMzNQHST+MAFPi1ASgtaQmu1W0F1gQZB
g52yQXEWh0B0lBGvwEyMQEoK7HyVfNRBcR64QX3jVEF4Wh1AdJQmYSg5BEBKC56+nIhhQXjU/kF8
OVhBb9cKQHST/BnBciZASgu74BV+7UFYdslBX9cKQVkzM0B0lAh0Qsf8QEoLzp5eJHlBfPGqQYSs
CEF85WBAdJQx6v7m+0BKC/igkC3gQXszM0GDDEpBdm6YQHSTt9MK1G9ASgu8AaNuL0FZgQZBYGJO
QVk/fUB0k8gB91EFQEoLsANoak1Bbn76QXcrAkFtmZpAdJPVOsT37EBKC9GAkLQYQVvnbUFh64VB
W/vnQHSTlXiiqQ1ASgvovBacJEF7ul5BgjlYQXNYEEB0k7Dbah6CQEoL+717IDJBf6XjQYSfvkF0
7ZFAdJO9v0h/zEBKDDx9XtBwQYBYEEGEEGJBez99QHSTzzVc2R9ASgw/3WWhRUF0AABBgA5WQXDx
qkB0k/KQq7ROQEoMMZxaPjpBbxqgQXgQYkFvBiVAdJPekHlfZ0BKDEC/47A+QWqwIUFyZmZBZhys
QHST+10DEFZASgxlQMx46kF+KPZBhP30QXnCj0B0k9Z8rqdIQEoM1b7j1f5BcszNQXblYEFogxJA
dJPtfXwsoUBKDO8CgbqAQXqTdUGB7ZFBcmJOQHST9If8uSRASg0e4kNWl0FgtDlBaFYEQWA5WEB0
lF2eQMhHQEoLpV0cOslBYRaHQW52yUFdgQZAdJRo9LYf4kBKC+8f3evZQXRN00GCnbJBg2hzQHSU
YCU5dW1ASgwZn+Q2dkFzoctBdu2RQW5FokB0lEb961LKQEoL8b70nPVBWeuFQWUi0UFVpeNAdJRQ
iA2AG0BKDBJiAlOXQXKXjUF4ZmZBb9cKQHSUYvalDWtASgxJXhfjTEE1MzNBN4EGQTSLREB0lI+F
DfFaQEoMz3yqdYpBZiDFQW7U/kFldLxAdJQwnYxtYUBKDL0jC53DQXA5WEF4hytBa0/fQHSUSAH3
UQVASgzronrpq0E1lYFBOUvHQTQtDkB0lF5Pdl/ZQEoM274BV+9BPbZGQUKXjUE81P5AdJQwW3z+
WEBKDRZ+x4Y8QX5mZkGBcKRBdEGJQHSUTjBEa2pASg2ig00m+kF8n75BgrItQXl41UB0lD0mMOwx
QEoNyd4FA3VBfdsjQYIYk0F6zM1AdJSLORkmQkBKDX8fms/6QXTlYEF/XClBdocrQHSUdj9XLeRA
Sg3rQgLZz0F8gxJBhHKwQWxumEB0lIoH9m6HQEoN3fyf+S9BUxJvQV33z0FQKPZAdJR5Ec81XUBK
DiFj/dZaQXeRaEF+IMVBcul5QHSVK2jO9nNASgtWQwK0D0F0j1xBgTtkQXeyLUB0lSuGKyfMQEoM
CEHt4RpBXdcKQWSPXEFdaHNAdJVvMKTjekBKC/xc3VCpQXibpkGBDlZBcggxQHSVUSElE7ZASgwt
nPE870FzhR9Be++eQXEaoEB0lV13dKukQEoMbkOqebxBh5FoQYPMzUF/nbJAdJVyCFsYVUBKDGDc
uanaQXOFH0F5jVBBcS8bQHSU8DfWMCNASgxAfMfRu0F7hR9BgGhzQXPfO0B0lRG+bmU4QEoMwV0t
AcFBOp++QUjdL0E3cKQ=

Almost real world

Suppose you have a catalogue giving alpha, delta, and an epoch of

observation sufficiently far away from the Gaia epoch. To match it,

you have to bring the reference catalogue on our side to the epoch

of your observation.

SELECT alpha, delta, parallax, pmra, pmdec, source_id

FROM (

SELECT

alpha, delta, parallax, pmra, pmdec, source_id,

ivo_epoch_prop_pos(ra, dec, parallax,

pmra, pmdec, radial_velocity, 2016, epoch) AS tpos

FROM tap_upload.t1

JOIN gaia.dr3lite

ON DISTANCE(alpha, delta, ra, dec)<0.1) AS q

WHERE DISTANCE(POINT(alpha, delta), tpos)<2/3600.

34

TAP: Async operation

TAP jobs can take hours or days. To support that, you can run

your TAP jobs asynchronously. This means you do not have to

keep a connection open all the time.

To go async in TOPCAT, change the Mode selector to

“Asynchronous”. After submitting the job, you can watch your job

go through “UWS phases”:

PENDING Job created, you can configure it

QUEUED Waiting for compute time

EXECUTING The job is running

COMPLETED Successful completion, fetch results

ERROR The Job has failed, fetch error message

35

Resuming async Jobs

You can quit your client with async and resume from somewhere

else.

To do that: In Running Jobs, select the URL and save it. Uncheck

Delete on Exit and leave TOPCAT.

Then restart TOPCAT, open the TAP window and paste the URL

back into the URL field. If the job has finished, you can retrieve

the result.

36

TAP: the TAP schema

TAP services try to be self-describing about what data they

contain. They provide information on what tables they contain in

special tables in TAP SCHEMA. Figure out what tables are in

there by querying TAP SCHEMA itself:

SELECT * FROM tap schema.tables

WHERE table name LIKE ’tap schema.%’

To see what columns there are in tap schema.columns, say:

SELECT * FROM tap schema.columns

WHERE table name=’tap schema.columns’

Of course, in normal operations, clients like TOPCAT do that

querying for you: it’s how they fill their metadata views.

37

Data Discovery 1: the Registry

The list of services in TOPCAT’s TAP window comes from the VO

Registry, an inventory of the services and data kept within the VO.

There are a few more ways to search the Registry, for instance in a

web browser using WIRR.

Use case: Find tables talking about quasars that have redshifts.

38

http://dc.zah.uni-heidelberg.de/wirr/q/ui/

Data Discovery 2: use ADQL

The relational registry standard says how to query this data set

using ADQL. All tables are in the rr schema and can be combined

through NATURAL JOIN. Our use case looks like this in ADQL:

SELECT ivoid, access_url, name,

ucd, column_description

FROM rr.capability

NATURAL JOIN rr.interface

NATURAL JOIN rr.table_column

NATURAL JOIN rr.res_table

WHERE standard_id LIKE ’ivo://ivoa.net/std/tap%’

AND 1=ivo_hasword(table_description, ’quasar’)

AND ucd=’src.redshift’

39

http://www.ivoa.net/documents/RegTAP/

Simbad

Simbad has a TAP interface; find it TOPCAT’s server selector and

inspect Simbad’s table metadata. Try queries like:

SELECT TOP 20 * FROM basic

SELECT TOP 1000

otype txt, tc.*

FROM basic AS db

JOIN TAP_UPLOAD.t7 AS tc

ON 1=CONTAINS(POINT(’ICRS’, db.ra, db.dec),

CIRCLE(’ICRS’, tc.ra, tc.dec, 2./3600.))

WHERE otype txt!=’star’

40

Onward

If you get stuck or a query runs forever, the operators are usually

happy to help you. To find out who could be there to help you,

check TOPCAT’s Service tab or use – the relational registry. If you

have the ivoid of the service, say

SELECT role_name, email, base_role

FROM rr.res_role

WHERE ivoid=’ivo://org.gavo.dc/tap’

– if all you have is the access URL, do a natural join with

interfaces.

If we have done a good job, you now know how. . .

41

Interlude: HEALPix, MOC, HiPS

What are HEALPixes?

Spherical geometry is hard. . It helps when you have numbered

pixels rather polar coordinates. HEALPix is a magic scheme for

that:

• Hierarchical – there are 12 pixels at level 0, and 12 · 4n pixels

at level n

• Equal Area – at a given level, each pixel has the same area

• isoLatitude – distinct latitudes of pixel centers go with O(n)

rather than O(n2) with the order

• Pixelization – mapping (α, δ) → [0, . . . ,N].

42

Take-away Concepts on HEALPix

The linear dimension of a HEALPix is ∼ 1◦ at order 6; it changes

by a factor of two on each level.

Extra trick: NEST numbering of the pixels lets you go between

levels by integer division or multiplication by 4.

43

HEALPix in ADQL

The VO’s query languge ADQL does not support HEALPix

natively.

But on many TAP services there are standard extensions (“UDFs”)

for dealing with them:

ivo_healpix_center(

hpxOrder INTEGER, hpxIndex BIGINT) -> POINT

and

ivo_healpix_index(order INTEGER,

ra DOUBLE PRECISION, dec DOUBLE PRECISION

) -> BIGINT

44

Application: HEALPix Maps

SELECT

MAX(parallax)/AVG(parallax) AS obs,

ivo_healpix_index(4, ra, dec) AS hpx

FROM hipparcos.main

GROUP BY hpx

45

In Gaia

To get the HEALPix of a Gaia object at level n, compute

hpx =
source id

412−n · 235
.

SELECT source_id/8796093022208 AS pix,

AVG(phot_bp_mean_mag-phot_rp_mean_mag) AS avgcol

FROM gaia.edr3lite

WHERE DISTANCE(ra, dec, 246.7, -24.5)<2

GROUP BY pix

46

Polygon union Polygon

Have you ever tried to compute the union or intersection of two

spherical polygons?

It’s a nightmare. Not to mention the result is not a polygon any

more:

MOCs to the rescue!

47

MOC?

You can represent arbitrary shapes to high precision (order 29 is

0.4mas) as lists of HEALPix indexes.

Alas, you need about 10 million such pixels for a shape of 1 deg2.

Solution: Abbreviate ranges and use lower-order indexes when the

pixels are full.

That’s a Multi Order Coverage map, or MOC in short.

48

MOC examples

select * from openngc.shapes

Such a shape may be written like

11/34094023 12/136376116-136376117

– all the shapes together are less than half an MB.

49

Math with MOCs

Most operations really become simple with MOCs. For instance,

the area on the sky within magnitude-dependent circles around

Hipparcos stars brighter than 4 mag:

SELECT SUM(MOC(8, CIRCLE(ra, dec, 0.5*(4-vmag)))) AS contaminated

FROM hipparcos.main

WHERE vmag<4

That’s one shape you can manipulate as such.

50

TMOCs, STMOCs

Recently, people have extended the scheme to time and correlated

space-time. That’s cool if you want to find data on fast-moving

objects:

51

Mapping HEALPix to Anything: HiPS

HEALPixes are also behind HiPS, the Hierarchical Progressive

Survey.

This is basically a set of maps

hpxn → Image, Catalogue, . . .

on a number of HEALPix orders n.

This is what lets you nicely zoom in and out of image surveys and

catalogues in Aladin.

You can make HiPSes yourself if you have data with high spatial

dynamics.

52

pyVO Basics

Prerequisites

• python and astropy, of course

• TOPCAT for viewing and visualising tables

• Aladin to work with images

• pyVO. Get it from

• https://pypi.python.org/pypi/pyvo

• or try apt-get install python3-pyvo

• or try pip install pyvo

• or try conda install pyvo

53

http://www.star.bris.ac.uk/~mbt/topcat/
http://aladin.u-strasbg.fr/aladin.gml

Python Matters

In this course, we will use python scripts most of the time rather

than the jupyter notebooks you may be more familiar with.

This is partly personal preference, but for “production” scripts

have several important advantages:

• Meaningful version control

• Can use proper editors

• Files can work as modules

However, if you prefer notebooks, you can use pyVO from Python

notebooks, too.

tap-obscore.ipynb

To fit things on slides, I am PEP 8-relaxed.

54

{
 "cells": [
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "This notebook introduces a few VO techniques for use with python. You need astropy and pyvo installed to make this work. python3 is assumed. It is part of the pyvo course at http://docs.g-vo.org/pyvo, which probably will help a lot to understand what's going on here."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Our use case will be something like \"Find all time series of all bright AGB stars\", but the techniques introduced here have much wider applicability. Oh, and as of this writing, there are not too many time series in the VO, but we're working on this."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "While there are ways to do this with pre-made clients, scripting this gives you great flexibility as well as the analysis capabilities of python. So, let's interface python with the VO. The most complete module to do that is pyvo. See https://pyvo.readthedocs.io/en/latest for more documentation. If you don't have it, try pip3 install pyvo.\n",
 "\n",
 "You also want TOPCAT. If you don't have that yet, this is probably not something you'd like to try – get some less nerdy VO exposure first."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "%matplotlib inline\n",
 "import matplotlib.pyplot as plt\n",
 "import pyvo\n",
 "# the following calms down astropy's overzealous VOTable\n",
 "# parser\n",
 "import warnings\n",
 "warnings.filterwarnings('ignore', module=\"astropy.io.votable.*\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "The first step is: Find a list of bright Herbig-Haro objects. There are many ways to do that, but a good first step towards problems like this is typically to use SIMBAD. And we want powerful query modes (that perhaps we don't really need here, but they're definitely good to have), so we're looking for a TAP service."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Since it's so much faster to discover Simbad's TAP service using TOPCAT's TAP window or registry interfaces like http://dc.g-vo.org/WIRR, we do that and find out that the TAP access URL is http://simbad.u-strasbg/simbad/sim-tap. Keep the table browser in TOPCAT open, as you will want to use it for query construction (not that you couldn't introspect table metadata from pyVO, but that interface is built for machines, not for humans)."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "First create an object representing the Simbad TAP service:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "sim_tap = pyvo.dal.TAPService(\n",
 " \"http://simbad.u-strasbg.fr/simbad/sim-tap\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "There are analogous classes for other VO protocols (SIAP, SSA, SCS). They all have additional attributes allowing their manipulation and inspection. For a TAP service, your program might want to check table metadata. Here's an example looking for columns with magnitudes:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "for table_name, table in sim_tap.tables.items():\n",
 " for column in table.columns:\n",
 " if column.ucd and column.ucd.startswith(\"phot.mag\"):\n",
 " print(table_name, column.name)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Regrettably, this isn't useful in this case; the real magnitudes in Simbad are given in the allfluxes table, and tehy don't have UCDs there because... well, I simply don't know. Try asking them; a contact address in, for instance, in the Service tab in TOPCAT.\n",
 "\n",
 "Anyway, the TOPCAT table browser gets us on the right track (the allfluxes tables). Also, use the Reference URL from the Service tab to investigate the object types and what to write in otype. Once you have a query (and of course it's a good idea to prototype it in TOPCAT):"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "agbs = sim_tap.run_sync(\"\"\"\n",
 "select ra, dec, main_id\n",
 "from basic join allfluxes on (oidref=oid)\n",
 "where otype='AGB'\n",
 "and V<10\n",
 "\"\"\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "What's coming back can be turned into an astropy table using the to_table() method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "agbs.to_table()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Now let's see if there's any time series for these out there. You could do an all-VO query using SSAP (and that's a good exercise; use servicetype=\"SSA\" in the registry query) -- SSAP is currently being used to publish time series, too. But my bets for the future are on obscore, so let's use that. \n",
 "\n",
 "Let's first develop a query on a single server. And let's use my own, http://dc.g-vo.org/tap"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "What do we want to run? Well, check out the Obscore table structure; either in TOPCAT's table browser or even in the underlying standard (see http://ivoa.net/documents). You'll see we want to constrain dataproduct_type to timeseries, and we want to upload join s_ra and s_dec to the positions from Simbad. Let's try things first with one service; also note how table uploads work in pyVO:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "timeseries = pyvo.dal.TAPService(\"http://dc.g-vo.org/tap\"\n",
 ").run_sync(\"\"\"\n",
 " select\n",
 " obs_collection, access_url, access_estsize, \n",
 " t_min, t_max, em_min, em_max, \n",
 " h.*\n",
 " from tap_upload.agbs as h\n",
 " join ivoa.obscore\n",
 " on 1=contains(point('', h.ra, h.dec), \n",
 " circle('', s_ra, s_dec, 1/3600.))\n",
 " where dataproduct_type='timeseries'\n",
 " \"\"\",\n",
 " uploads= {'agbs': agbs})"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Mainly because of generalised confusion this query may run for some 10 seconds.\n",
 "\n",
 "In a few years, when everyone has TAP 1.1 and ADQL 2.1, you would certainly write what you can already write on this particular server for the join condition:\n",
 "\n",
 "```\n",
 "ON 1./3600>DISTANCE(s_ra, s_dec, h.ra, h.dec)\n",
 "```\n",
 "\n",
 "But alas, that wouldn't have worked on many ObsTAP servers yet (2018)."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Let's see what we have:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "timeseries.to_table()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "You can now load a time series and plot it, perhaps like this. I frankly don't know if there's a simple way to make astropy fetch a table from a remote URL, and I got tired looking for one, so I define a quick function to do that:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "from astropy import table\n",
 "from urllib.request import urlopen\n",
 "from io import BytesIO\n",
 "def load_remote_table(url):\n",
 " if isinstance(url, bytes):\n",
 " url = url.decode(\"utf-8\")\n",
 " f = urlopen(url)\n",
 " return table.Table.read(\n",
 " BytesIO(f.read()))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# If the following fails for you, don't worry -- you have an outdated\n",
 "# pyvo, that's all. Ignore it and happily continue.\n",
 "ts = load_remote_table(\n",
 " timeseries.to_table()[0][\"access_url\"])\n",
 "plt.plot(ts[\"obs_time\"], ts[\"flux\"])"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Or we send the access URLs we've discovered to TOPCAT. Again, astropy's SAMP interface is quite clunky as of version 3, so let's define a couple of functions to make this more palatable (you don't need to understand everything that's happening in the next cell)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import contextlib, os, tempfile\n",
 "from astropy.vo.samp import SAMPIntegratedClient, SAMPProxyError\n",
 "\n",
 "\n",
 "def find_client(conn, samp_name):\n",
 " \"\"\"returns the SAMP id of the client with samp.name samp_name.\n",
 "\n",
 " This will raise a KeyError if the client is not on the hub.\n",
 " \"\"\"\n",
 " for client_id in conn.get_registered_clients():\n",
 " if conn.get_metadata(client_id).get(\"samp.name\")==samp_name:\n",
 " return client_id\n",
 " raise KeyError(samp_name)\n",
 "\n",
 "\n",
 "@contextlib.contextmanager\n",
 "def samp_accessible(astropy_table):\n",
 " \"\"\"a context manager making astropy_table available under a (file)\n",
 " URL for the controlled section.\n",
 "\n",
 " This is useful with uploads.\n",
 " \"\"\"\n",
 " handle, f_name = tempfile.mkstemp(suffix=\".xml\")\n",
 " with os.fdopen(handle, \"w\") as f:\n",
 " astropy_table.write(output=f,\n",
 " format=\"votable\")\n",
 " try:\n",
 " yield \"file://\"+f_name\n",
 " finally:\n",
 " os.unlink(f_name)\n",
 " \n",
 " \n",
 "def send_product_to(conn, dest_client_id, data_url, mtype, name=\"data\"):\n",
 " \"\"\"sends SAMP messages to load data.\n",
 "\n",
 " This is a helper for send_spectrum_to and send_image_to, which work\n",
 " exactly analogous to each other, except that the mtypes are different.\n",
 "\n",
 " If dest_client_id, this is a broadcast (and we don't wait for any\n",
 " responses). If dest_client_id is given, we wait for acknowledgement\n",
 " by the receiver.\n",
 " \"\"\"\n",
 " message = {\n",
 " \"samp.mtype\": mtype,\n",
 " \"samp.params\": {\n",
 " \"url\": data_url,\n",
 " \"name\": name,\n",
 " }}\n",
 " if dest_client_id is None:\n",
 " conn.notify_all(message)\n",
 " else:\n",
 " conn.call_and_wait(dest_client_id, message, \"10\")\n",
 "\n",
 "\n",
 "@contextlib.contextmanager\n",
 "def SAMP_conn(\n",
 " client_name=\"pyvo client\", \n",
 " description=\"A generic PyVO client\",\n",
 " **kwargs):\n",
 " \"\"\"a context manager to give the controlled block a SAMP connection.\n",
 "\n",
 " The program will disconnect as the controlled block is exited.\n",
 " \"\"\"\n",
 " client = SAMPIntegratedClient(\n",
 " name=client_name,\n",
 " description=description,\n",
 " **kwargs)\n",
 " client.connect()\n",
 " try:\n",
 " yield client\n",
 " finally:\n",
 " client.disconnect()\n",
 "\n",
 "\n"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "I told you the interface was clunky. But the reward is that SAMP is now quite simple:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "with SAMP_conn() as conn:\n",
 " topcat_id = find_client(conn, 'topcat')\n",
 " for match in timeseries:\n",
 " send_product_to(conn, \n",
 " topcat_id, \n",
 " match[\"access_url\"].decode(\"utf-8\"),\n",
 " \"table.load.votable\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "You should now see the various time series popping up in TOPCAT, where you can investigate them as usual.\n",
 "\n",
 "Now it's your turn: Build a thing that does an all-VO obscore search for spectra – perhaps of these guys, or perhaps of something you are interested in.\n",
 "\n",
 "You'll need a few extra ingredients, though. First, here's how to discover the access URLs of all the TAP services out there that claim to support obscore (once you have those, you know how to query the services, right?):"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "for svc in pyvo.regsearch(datamodel='ObsCore'):\n",
 " print(svc.access_url)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "When querying lots of external resources, it pays to expect failures. Let's define a function that runs TAP queries, well, resiliently:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "def run_sync_resilient(svc, *sync_args, **sync_kw_args):\n",
 " try:\n",
 " return svc.run_sync(*sync_args, **sync_kw_args) \n",
 " except (\n",
 " pyvo.dal.DALServiceError, \n",
 " pyvo.dal.DALQueryError,\n",
 " requests.ConnectionError) as ex:\n",
 " print(\"{}:{}\".format(svc.baseurl, ex))\n",
 " return\n",
 " except KeyboardInterrupt: # Let the user abort slow queries\n",
 " return"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "One more think I should tell you to save you some poking around in documentation: How to merge the astropy tables coming back from different services. Here's a trivial example that should get you going:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "results = []\n",
 "for svc_url in [\n",
 " \"http://vao.stsci.edu/CAOMTAP/TapService.aspx\",\n",
 " \"http://dc.g-vo.org/tap\"]:\n",
 " svc = pyvo.dal.TAPService(svc_url)\n",
 " results.append(\n",
 " svc.run_sync(\n",
 " \"SELECT TOP 2 obs_collection, access_url FROM ivoa.obscore\"\n",
 ").to_table())\n",
 "merged = table.vstack(results)\n",
 "merged"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "What remains to do: Change the query above to your liking (at least add a TOP 10 or so lest you be flooded with results when someone puts up an AGB spectrum central), iterate over the services, and then merge the results. To investigate them (e.g., by wavelength and time range, etc), send the merged table to TOPCAT."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

What’s pyVO?

pyVO provides APIs for lots of VO protocols.

It is glue between astropy and python in general and the

astronomical data services in the VO.

It is a community project. You are most welcome to contribute at

https://github.com/astropy/pyvo.

55

https://github.com/astropy/pyvo

Running Simple Services

When querying “simple” remote services (image, spectral, cone

search; not directly TAP), pyVO has a consistent pattern:

<prot> is SIA, SSA, SCS, SLA...

import pyvo

construct a service object with a service's endpoint URL

service = pyvo.dal.<prot>Service(access_url)

#call the search method with the protocol's parameters

for result in service.search(<parameters>):

...work on dict-like object result...

You will soon learn how to find out the access URLs.

56

Query a Single Image Service

Example: SIAP, the VO’s protocol to access image servers.

Query a VO service for a list of images covering a small field on

the sky, and download one of these images:

svc = pyvo.sia.SIAService(ACCESS_URL)

images = svc.search((340.1,3.36), size=(0.1, 0.1))

image=images[0]

image.cachedataset()

basicsiap.py

For SIAP, pos (as a tuple of ra and dec) and size (in degrees,

either one radius or extent in ra and dec) are mandatory. More

parameters: in the pyvo docs.

Also: row.cachedataset saves the image to your local disk under

a name sensible for the metadata.
57

"""
A very basic example for how to operate a SIAP service from PyVO:
find images for a specific position.
"""

import pyvo

ACCESS_URL = "http://dc.g-vo.org/maidanak/res/rawframes/siap/siap.xml?"

Make Service Instance:
svc = pyvo.sia.SIAService(ACCESS_URL)

Query the Service and return the list metadata of datarecords matching the
criteria. Note: This does not download the actual data!
images = svc.search((340.1,3.36), size=(0.1, 0.1))

Select a specific image to download. Here usually much more
sophistacted code is used, e.g. user input. We focus on a very basic
selection
image=images[0]

Download the selected image.
image.cachedataset()

Now use your favourite FITS viewer (ds9? aladin?) to look at
what you have just downloaded.

http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIAService.html#pyvo.dal.SIAService.search

This is Python

The advantage of doing this in Python is that it is easy to add

your own logic:

svc = pyvo.sia.SIAService(ACCESS_URL)

for pos in [

(213.97, 11.50),

(230.44, 52.92)]:

images = svc.search(pos, size=(0.5, 0.5))

for row in images:

if not DATE_MIN<row.dateobs<DATE_MAX:

continue

row.cachedataset()

multisiap.py

58

"""
A trivial example for how to operate a SIAP service from PyVO:
find images from a list of positions and by date.

Get ACCESS_URL from, e.g., http://dc.g-vo.org/WIRR.
"""

from astropy.time import Time
import pyvo

ACCESS_URL = "http://dc.g-vo.org/maidanak/res/rawframes/siap/siap.xml?"
DATE_MIN = Time("2004-02-26", scale="tt")
DATE_MAX = Time("2004-03-01", scale="tt")

def main():
 svc = pyvo.sia.SIAService(ACCESS_URL)
 for pos in [
 (213.97, 11.50),
 (230.44, 52.92),
 (150.36, 55.90)]:
 images = svc.search(pos, size=(0.5, 0.5), verbosity=2)

 for row in images:

 if not DATE_MIN < row.dateobs < DATE_MAX:
 continue

 print("{} Get ({} bytes)?".format(
 row.title,
 row.filesize), end=" ")
 if input().strip().lower().startswith("y"):
 row.cachedataset()

if __name__ == "__main__":
 main()

Metadata in pyVO

You can access the metadata coming with the response VOTables

from pyVO, too, albeit somewhat obscurely:

>>> import pprint

>>> pprint.pprint(images.votable.infos)

[<INFO ID="legal" name="legal" value="The data from Maydanak observatory

>>> pprint(images.votable.resources[0].infos)

[<INFO ID="queryPars" name="queryPars" value="(%(siaarea0)s && c

<INFO ID="QUERY_STATUS" name="QUERY_STATUS" value="OK"/>,

<INFO ID="request" name="request" value="/maidanak/res/rawframes/siap/s

<INFO ID="standardID" name="standardID" value="ivo://ivoa.net/std/sia"/

<INFO ID="server_software" name="server_software" value="DaCHS/2.9.3 tw

<INFO ID="server" name="server" value="http://dc.zah.uni-heidelberg.de"

<INFO ID="citation" name="citation" ucd="" value="http://dc.zah.uni-hei

<INFO ID="citation" name="citation" ucd="" value="http://dc.zah.uni-hei

<INFO ID="ivoid" name="ivoid" ucd="meta.ref.ivoid" value="ivo://org.gav

59

Excursion: The Python Debugger

To inspect metadata like this from within a running program (as

opposed to a notebook), it is really convenient to use the python

debugger. To drop into it, call pdb.set_trace():

for pos in [

(150.36, 55.90)]:

images = svc.search(pos, size=(0.5, 0.5), verbosity=2)

import pdb;pdb.set_trace()

for row in images:

60

And now all-VO

The nice thing about standard services: Handle one, and you get

them all. So, let’s add a query to the Registry and run our query

all over the VO –

for svc in registry.search(servicetype="sia", waveband="optical"):

try:

search_one_service(svc.accessurl)

except Exception:

import traceback; traceback.print_exc()

globalsiap.py

Wisdom: In multi-service queries, expect at least one service to be

broken. Write your scripts to cope.

61

"""
A little script doing an all-VO SIAP query for some positions and a date
range.
"""

import random
import sys

from astropy.time import Time
from pyvo.dal import sia
from pyvo import registry

from astropy import coordinates

POS = coordinates.SkyCoord.from_name("M51")

def search_one_resource(res_rec):
 print("\nNow querying ", res_rec.res_title)
 svc = res_rec.get_service("sia", lax=True)
 images = svc.search(pos=POS, size=0.5)
 for match in images:

 if match.dateobs is None:
 # behave like a database: comparisons with NULL are always
 # False.
 continue

 print(f"{match.title} {match.filesize} Get? ", end=" ")
 if input().strip().lower().startswith("y"):
 match.cachedataset()

def main():
 for res_rec in registry.search(servicetype="image"):
 if random.random()<0.9:
 continue

 try:
 search_one_resource(res_rec)
 except KeyboardInterrupt:
 if input("\nQuit? ").strip().lower().startswith("y"):
 sys.exit()
 except:
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

Add SAMP Magic

SAMP lets you exchange data between VO clients. Your script is a

VO client, too. Let’s make it broadcast some of the found images:

with pyvo.samp.connection() as conn:

... (search) ...

pyvo.samp.send_image_to(conn, image.acref)

globalsiapsamp.py

Before running this, start Aladin (or some other SAMP-enabled

image client) so the images are displayed.

62

"""
A little script doing an all-VO SIAP query for some positions and a date
range; the results can be sent to SAMP clients.
"""

import sys

from astropy.time import Time
import pyvo

DATE_MIN = Time("1990-01-01", scale="tt")
DATE_MAX = Time("2005-12-31T23:59:59", scale="tt")

def search_one_resource(res_rec, conn):
 print("\nNow querying ", res_rec.res_title)
 svc = res_rec.get_service("sia", lax=True)

 for pos in [
 (213.97, 11.50)]:
 images = svc.search(pos, size=0.5)
 for match in images:

 if match.dateobs is None:
 # behave like a database: comparisons with NULL are always
 # false.
 continue
 if not DATE_MIN <= match.dateobs <= DATE_MAX:
 continue

 print(f"{match.title} Show? ", end="")
 if input().strip().lower().startswith("y"):
 pyvo.samp.send_image_to(
 conn, match.acref, name=match.suggest_dataset_basename())

def main():
 with pyvo.samp.connection() as conn:
 for res_rec in pyvo.registry.search(
 keywords=["quasars"],
 servicetype="image"):
 try:
 search_one_resource(res_rec, conn)
 except KeyboardInterrupt:
 if input("\nQuit? ").strip().lower().startswith("y"):
 sys.exit()
 except:
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

pyVO and TAP

Enter TAP

What we have seen so far does not scale when you are interested

in more regions.

Also, only fairly basic constraints are supported.

TAP is far more powerful.

Sample use case: Integrate photometry from different source

catalogues, do some local work on results, try to obtain spectra for

interesting candidates.

63

Run Sync TAP Queries

Run queries via TAP:

access_url = "http://dc.g-vo.org/tap"

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(

"""SELECT raj2000, dej2000, jmag, hmag, kmag

FROM twomass.data

WHERE jmag<3""")

for row in result:

print(row["raj2000"], row["jmag"])

64

Step 1a: Multiple TAP Queries

Imagine more interesting queries here.

QUERIES = [

("twomass", "http://dc.zah.uni-heidelberg.de/tap",

"""SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag

...CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),

...}

with pyvo.samp.connection() as conn:

for short_name, access_url, query in QUERIES:

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(query.format(**locals()), maxrec=90000)

pyvo.samp.send_table_to(

conn,

result.to_table(),

client_name="topcat",

name=short_name)

fetch3.py
65

#!/usr/bin/python

This code is in the public domain.

Step 1: Query three VO services, broadcast the result via SAMP
(requires: pyvo).

Queries are configured as triples of short name, access url (as from a
registry query) query. You *could* use TAP_SCHEMA to automate query
generation, but that's left as an exercise to the reader

import sys
import pyvo

Note that it's of course silly to use TAP to do just cone searches.
Imagine more interesting queries here.
QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("allwise", "http://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("sdss", "https://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),]

def main():
 # arguments: ra, dec, and sr; fill in a known-good default
 if len(sys.argv) != 4:
 ra, dec, radius = 30, 10, 0.05
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 # make (and close when done) a SAMP connection so we can
 # talk to other clients
 with pyvo.samp.connection() as conn:
 # now run the three queries, sending the results via samp:
 for short_name, access_url, query in QUERIES:
 service = pyvo.dal.TAPService(access_url)
 # you could now figure out interesting things about the service,
 # e.g., its table schema and such, to potentially construct queries.
 result = service.run_sync(query.format(**locals()), maxrec=90000)
 pyvo.samp.send_table_to(
 conn,
 result.to_table(),
 client_name="topcat",
 name=short_name)

if __name__ == "__main__":
 main()

Step 2: Go Async

When doing a lot of queries or long-running queries, run them

asynchronously and in parallel.

jobs = set()

for short_name, access_url, query in QUERIES:

job = pyvo.dal.TAPService(access_url).submit_job(

query.format(**locals()), maxrec=9000000)

job.run()

jobs.add((short_name, job))

while jobs:

time.sleep(5)

for short_name, job in list(jobs):

if job.phase not in (’QUEUED’, ’EXECUTING’):

jobs.remove((short_name, job))

pyvo.samp.send_table_to(...)

job.delete()

fetch3-async.py
66

#!/usr/bin/python

This code is in the public domain.

Step 2: as fetch3.py (see there for comments what's going on)
but now we're querying async, in parallel

import sys
import time

import pyvo

QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 # limiting wise matches since both vizier and astropy's
 # VOTable parser are lame in some sense
 ("allwise", "https://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE w1mag<14 AND
 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("sdss", "https://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),]

def main():
 if len(sys.argv) != 4:
 ra, dec, radius = 30, 10, 0.20
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 jobs = set()
 for short_name, access_url, query in QUERIES:
 # in async, you first create a job:
 job = pyvo.dal.TAPService(access_url).submit_job(
 query.format(**locals()), maxrec=9000000)
 # then start it. This immediately returns.
 job.run()
 # we keep note of the jobs we started -- we'll watch them later.
 jobs.add((short_name, job))

 with pyvo.samp.connection() as conn:
 # now watch jobs until they return, then take them off the watch list
 # and send their result
 while jobs:
 # we do the list(.) so we can remove jobs with impunity
 for short_name, job in list(jobs):
 # async jobs are in phases; they're done (or failed) when
 # they're neither queued nor executing.
 print(short_name, job.phase)
 if job.phase not in ('QUEUED', 'EXECUTING'):
 jobs.remove((short_name, job))
 pyvo.samp.send_table_to(
 conn,
 # this is how you get the result from a finished job
 job.fetch_result().to_table(),
 client_name="topcat",
 name=short_name)
 # be a good citizen: clean up your job (it'll be cleaned up
 # eventually anyway, but that might take a while)
 job.delete()

 # wait a bit before doing the next round of polling
 time.sleep(0.5)

if __name__ == "__main__":
 main()

Lightweight async

If you can live without real-time monitoring, you can write more

concisely:

job.wait()

job.raise_if_error()

result = job.fetch_result()

With only a single job at a time, it is even simpler:

result = svc.run_async(query, ...)

67

Step 3a: UCDs build SEDs

Can we build SEDs from the results of the three services?

Not simply; photometry metadata in the VO is not quite sufficient

for that yet. However, UCDs let us do a workaround:

UCD_TO_WL = {

"phot.mag;em.opt.u": 3.5e-7,

"phot.mag;em.opt.b": 4.5e-7,

"phot.mag;em.opt.v": 5.5e-7,

"phot.mag;em.opt.r": 6.75e-7, ...}

for row in rows:

for index, col in enumerate(row):

ucd = row.columns[index].meta.get("ucd", "").lower())

if ucd.startswith("phot.mag"):

if ucd in UCD_TO_WL:

phots.append((UCD_TO_WL[ucd], col))

68

Step 3b: Aggregate Photometry

Construction of “clusters” is in vohelper.py and uses astropy’s

SkyCoords and match catalog to sky (asymmetric!).

For three catalogues, we must perform six sky matches to get

pairs, then walk the graph to gather the clusters.

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

2MASS SDSS WISE

Graph-based clustering

a
s
S
k
y

a
s
C
a
ta
lo
g
u
e

69

Combine with “your” Code

This is python: Add your own logic!

Here: Let’s display the approximate SEDs and let the user

interactively select “interesting” cases.

for pos, phots in seds:

to_plot = np.array(phots)

plt.semilogx(to_plot[:,0], to_plot[:,1], ’-’)

plt.show(block=False)

selection = input(

"s)elect SED, q)uit, enter for next? ")

if selection=="q":

break

if selection=="s":

selected.append(pos)

plt.cla()

return selected

fetch3-cluster.py
70

#!/usr/bin/python

This code is in the public domain.

Step 3: as Step 1, but this time cluster the points retrieved to
combine the different photometry, then show sketches of the SED
and let users select objects for closer inspection.

import pickle
import os
import sys

from astropy import coordinates
from astropy import units as u
from astropy import table
from matplotlib import pyplot as plt
import numpy as np
import pyvo

import vohelper

for rough SED: map filter UCDs to representative wavelengths
to do this better, we'd need more takeup of the photometry DM
UCD_TO_WL = {
 "phot.mag;em.opt.u": 3.5e-7,
 "phot.mag;em.opt.b": 4.5e-7,
 "phot.mag;em.opt.v": 5.5e-7,
 "phot.mag;em.opt.r": 6.75e-7,
 "phot.mag;em.opt.i": 8.75e-7,
 "phot.mag;em.ir.j": 1.25e-6,
 "phot.mag;em.ir.h": 1.75e-6,
 "phot.mag;em.ir.k": 2.2e-6,
 "phot.mag;em.ir.3-4um": 3.5e-6,
 "phot.mag;em.ir.4-8um": 6e-6,
 "phot.mag;em.ir.8-15um": 11.5e-6,
 "phot.mag;em.ir.15-30um": 22.5e-6,
}

QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 	AND Jmag<15"""),
 ("allwise", "https://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 AND w1mag<14"""),
 ("sdss", "https://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 AND i_mag<16"""),]

def work_around_vizast_bug(col):
 """fixes a non-interoperability problem between VizieR and astropy:
 arraysize=1 has not meant 1-array on Vizier-TAP.

 This function makes arrays of such 1-arrays arrays of scalars.
 """
 if not np.isscalar(col[0]) and col[0].shape == (1,):
 return col.__class__(
 data=col[:, 0],
 name=col.name,
 mask=col.mask[:, 0],
 unit=col.unit,
 meta=col.meta)
 else:
 return col

def work_around_sdss_ucd_bug(name, ucd):
 """guesses better UCDs for SDSS' botched ones.
 """
 if ucd == "phot.mag;em.opt":
 return {
 "u_mag": "phot.mag;em.opt.u",
 "g_mag": "phot.mag;em.opt.b",
 "r_mag": "phot.mag;em.opt.r",
 "i_mag": "phot.mag;em.opt.i",
 "z_mag": "phot.mag;em.opt.i",
 }[name]
 return ucd

def get_tables(ra, dec, radius):
 """returns pairs of (short_name, result) for the queries defined.

 For experimentation, we cache the results here; to clear the cache,
 delete the file cache.pickle.
 """
 if os.path.exists("cache.pickle"):
 with open("cache.pickle", "rb") as f:
 return pickle.load(f)

 results = []
 for short_name, access_url, query in QUERIES:
 service = pyvo.dal.TAPService(access_url)
 results.append(
 (short_name, service.run_sync(query.format(**locals())).to_table()))

 with open("cache.pickle", "wb") as f:
 pickle.dump(results, f)

 return results

def get_coordinates_for_table(table):
 """returns SkyCoord objects for an astropy table.

 This uses pos.eq.*; meta.main UCDs to know where to look.
 """
 ra_column = vohelper.get_name_for_ucd(
 "pos.eq.ra;meta.main", table)
 dec_column = vohelper.get_name_for_ucd(
 "pos.eq.dec;meta.main", table)

 # fix broken metadata (sigh)
 if table[ra_column].unit == "Angle[deg]":
 table[ra_column].unit = "deg"
 if table[dec_column].unit == "Angle[deg]":
 table[dec_column].unit = "deg"

 return coordinates.SkyCoord(
 # WORKAROUND!
 work_around_vizast_bug(table[ra_column]),
 work_around_vizast_bug(table[dec_column]))

def force_scalar(val):
 """returns val[0] if val is an array, val otherwise.

 Again, this is a workaround for a vizier-astropy battle.
 """
 if np.isscalar(val):
 return val
 else:
 return val[0]

def make_photo_cluster(rows):
 """makes a pair of (position, photopoint) from a list of database
 rows.
 """
 pos = [None, None]
 phots = []

 for row in rows:
 for index, col in enumerate(row):
 name = row.columns[index].name
WORKAROUND!
 ucd = work_around_sdss_ucd_bug(
 name,
 row.columns[index].meta.get("ucd", "").lower())

 if ucd.startswith("phot.mag"):
 col = force_scalar(col)
 if ucd in UCD_TO_WL:
 phots.append((UCD_TO_WL[ucd], col))
 elif ucd == "pos.eq.dec;meta.main":
 pos[1] = force_scalar(col)
 elif ucd == "pos.eq.ra;meta.main":
 pos[0] = force_scalar(col)

 return tuple(pos), sorted(phots)

def make_seds(tables, clusters):
 """returns a sequence of (position, photopoints) from database tables
 and the custer result.

 We select columns based on UCDs.
 """
 seds = []
 for cluster in clusters:
 seds.append(
 make_photo_cluster([tables[table_ind][1][row_ind]
 for table_ind, row_ind in cluster]))
 return seds

def select_seds(seds):
 selected = []

 for pos, phots in seds:
 to_plot = np.array(phots)
 plt.semilogx(to_plot[:, 0], to_plot[:, 1], '-')
 plt.ylim([min(to_plot[:, 1]), max(to_plot[:, 1])])
 plt.ylabel("Mag", fontsize=15)
 plt.xlabel("Wavelength", fontsize=15)
 plt.show(block=False)
 selection = input("s)elect SED, q)uit, enter for next? ")
 if selection == "q":
 break
 if selection == "s":
 selected.append(pos)
 plt.cla()

 return selected

def main():
 if len(sys.argv) != 4:
 ra, dec, radius = 130.8, 3.4, 0.3
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 tables = get_tables(ra, dec, radius)

 clusters = vohelper.compute_multi_join([
 get_coordinates_for_table(t) for name, t in tables],
 0.2*u.arcsec)

 seds = make_seds(tables, clusters)

 selected = np.array(select_seds(seds))

 if not len(selected):
 sys.exit("Nothing selected, nothing written.")

 t = table.Table()
 t.add_column(table.Column(
 name='ra',
 data=selected[:, 0],
 unit=u.degree,
 description="ICRS RA of a selected object",
 meta={"ucd": "pos.eq.ra;meta.main"}))
 t.add_column(table.Column(
 name='dec',
 data=selected[:, 1],
 unit=u.degree,
 description="ICRS Declination of a selected object",
 meta={"ucd": "pos.eq.dec;meta.main"}))
 with open("selected_positions.vot", "wb") as f:
 t.write(output=f, format="votable")

if __name__ == "__main__":
 main()

Write Tables in Style

Please furnish your tables with metadata. fetch3-cluster shows you

how to do it with astropy:

t = table.Table()

t.add_column(table.Column(

name='ra',

data=selected[:, 0],

unit=u.degree,

description="ICRS RA of a selected object",

meta={"ucd": "pos.eq.ra;meta.main"}))

71

Looking for Spectra

Suppose you have a couple of positions for “interesting” objects.

Can we find spectra for them?

Plan:

• Search for ObsTAP services

• Use TAP upload to search to collect spectra

• Send spectra to SPLAT

72

Obscore

The obscore “data model” consists of ∼ 40 columns; use a TAP

browser to look at them. Some highlights:

• dataproduct type – states image, timeseries, and the like.

• obs publisher did – a dataset identifier.

• access url – where to get the data from.

• s ra, s dec, s fov – centre and FoV of the observation

• s region – area covered by the dataset as an ADQL geometry.

73

Query the Registry

Iterate over all obscore services (here: see what data collections

they house):

for svc_rec in pyvo.registry.search(datamodel="obscore"):

print(f">>>>>> {svc_rec.short_name}...")

try:

svc = svc_rec.get_service("tap", lax=True)

result = svc.run_sync("SELECT DISTINCT obs_collection"

" FROM ivoa.obscore")

except (Exception, KeyboardInterrupt):

import traceback; traceback.print_exc()

continue

print("\n".join(r["obs_collection"] for r in result))

Do not run this script just for fun. It will hit quite a few services

and make them seqscan their obscore tables.

74

Query with Upload

For each ObsTAP service, we query against our object list

(assumed to be in an astropy Table in pois):

if not svc.upload_methods:

return

result = svc.run_sync(

"""SELECT TOP 2000 oc.obs_publisher_did, oc.access_url

FROM ivoa.obscore AS oc

JOIN TAP_UPLOAD.pois AS mine

ON 1=CONTAINS(

POINT(’ICRS’, oc.s_ra, oc.s_dec),

CIRCLE(’ICRS’, mine.ra, mine.dec, 0.01))

WHERE oc.dataproduct_type=’spectrum’

"""),

uploads = {"pois": pois})

75

Collect Spectra finished

The rest is almost standard SAMP fare to get the spectra retrieved

to SPLAT as they come in:

for ds_name, access_url in specs:

print("Opening ...".format(access_url))

try:

pyvo.samp.send_spectrum_to(

conn, access_url, client_name="splat", name=ds_name)

except KeyError as exc:

regrettably, astropy raises the unspecific KeyError

when there it does not find the client.

print(" ** Failed: is splat running?")

except Exception:

print(" *** Unexpected failure:")

import traceback; traceback.print_exc()

get-spectra.py

76

#!/usr/bin/python

This code is in the public domain.

do an all-VO obscore search for spectra around a list of points.

import sys

from astropy import table
import pyvo

import vohelper

def get_spectra_for_table(svc, pois, radius, samplesize):
 """yields pairs of (dataset name, access_url) for spectra within radius
 degrees of points in pois for and obscore service.
 """
 ra_column_name = vohelper.get_name_for_ucd(
 "pos.eq.ra;meta.main", pois)
 dec_column_name = vohelper.get_name_for_ucd(
 "pos.eq.dec;meta.main", pois)

 # the rstrip in the next line is a workaround for a botched registration of
 # VAO
 if not svc.upload_methods:
 # service doesn't support upload, can't use it
 return

 # you'd normally really match
 # CONTAINS(POINT(up.ra, up.dec), s_region); however, we need to fudge here
 # since there's still too little data in obscore.
 result = vohelper.run_sync_resilient(svc,
 """SELECT TOP {samplesize} oc.obs_publisher_did, oc.access_url
 FROM ivoa.obscore AS oc
 JOIN TAP_UPLOAD.pois AS mine
 ON 1=CONTAINS(
 POINT('ICRS', oc.s_ra, oc.s_dec),
 CIRCLE('ICRS',
 mine.{ra_column_name},
 mine.{dec_column_name},
 {radius}))
 WHERE oc.dataproduct_type='spectrum'
 """.format(**locals()),
 # add more constraints (spectral region, resolution... here)
 uploads={"pois": pois})

 if result is None:
 return

 for row in result.to_table():
 yield str(row[0]), str(row[1])

def main():
 args = sys.argv+["selected_positions.vot", "1000", "2"][len(sys.argv)-1:]

 with open(args[1], "rb") as f:
 pois = table.Table.read(f)
 radius = float(args[2])/3600
 n_samp = int(args[3])

 with pyvo.samp.connection() as conn:
 for res in pyvo.registry.search(datamodel="obscore"):
 sys.stdout.write("Querying {} ...".format(res.ivoid))
 sys.stdout.flush()

 try:
 specs = list(get_spectra_for_table(
 res.get_service("tap"), pois, radius, n_samp))
 except (Exception, KeyboardInterrupt) as ex:
 sys.stdout.write(f"broken ({ex}\n")
 continue
 sys.stdout.write(" done. ({})\n".format(len(specs)))

 for ds_name, access_url in specs:
 print("Opening {}...".format(access_url))
 try:
 pyvo.samp.send_spectrum_to(
 conn, access_url, client_name="splat", name=ds_name)
 except KeyError:
 # regrettably, astropy raises the unspecific KeyError
 # when there it does not find the client.
 print(" ** Failed: is splat running?")
 except Exception:
 print(" *** Unexpected failure:")
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

Higher SAMP Magic

Use Case: An Object Investigator

Let’s say you are debugging your pipeline and want to manually

inspect “weird” objects by querying a set of other catalogues have

on them.

Plan: Write a program that other clients

• can send tables to and then

• when a table row is selected, computes a new table with data

from other services

• that is then sent to Aladin for inspection.

77

SAMP: Listening to Messages

SAMP is based on messages; there are several message types

(MType-s), which are documented on the IVOA wiki.

Here is a program that prints sky coordinates of “things” the user

pointed to:

import pyvo

import vohelper

@vohelper.show_exception

def print_coord(privkey, sender_id, msg_id, mtype, params, extra):

print("{} {}".format(params["ra"], params["dec"]))

if msg_id is not None:

conn.reply(msg_id, {"samp.status": "samp.ok", "samp.result": {}})

with pyvo.samp.connection(addr="localhost") as conn:

conn.bind_receive_message("coord.pointAt.sky", print_coord)

input()

78

http://wiki.ivoa.net/twiki/bin/view/IVOA/SampMTypes

MTypes for the Vicinity Searcher

To make our program ready to receive tables via SAMP, we have

to listen to table.load.votable. Params for that as per the MTypes

wiki page:

url URL of the VOTable document to load

table-id local identifier for referencing

name human-readable name

To monitor whether a row in a table you received is selected, listen

to table.highlight.row. Params:

table-id the local identifier

row the row index

79

Python Classes: Why?

We have to keep quite a bit of state in our program, at least:

• the SAMP connection

• the table sent to us.

There is also quite a bit of behaviour:

• receive and store the remote table

• see when rows are selected

• do searches when that happens.

When you have state and behaviour linked together, in Python

think: “class”.

80

Python Classes: How?

class VicinitySearcher:

vicinity_size = 30

client_name = "Aladin"

def __init__(self, conn):

self.conn = conn

self.cur_table = self.cur_id = None

def load_VOTable(self,

private_key, sender_id, msg_id, mtype, params, extra):

...

def handle_selection(self,

private_key, sender_id, msg_id, mtype, params, extra):

...

Class name

Class variables

Constructor

Instance variables

Conventional self

Method definition
vicinitysearcher.py

81

"""
A quick example showing astropy and pyvo working hand in hand with the
rest of the VO

This program expects Aladin to run. It then waits for tables to be sent,
and when a row is selected, it will search some (SERVICE_META) cone
search services. The results are joined and sent to aladin with
positions, proper motions, and source.

Sample use:

(1) start TOPCAT, aladin, then python vicinitysearcher.py
(2) in TOPCAT, open VO/Cone Search, look for "transitional YSOs"
(3) select the Magnier+ 1999 service, make RA and DEC 0, SR 180, "ok"
(4) broadcast table
(5) in Aladin, pan and zoom until you have a catalog object in a FoV of
 an arcminute or so
(6) hover over the object to pull in the potential matches
(7) select the items to see the catalog entries.
"""

import vohelper

from astropy import table
import pyvo

SERVICE_META = [
 ("PPMXL", "http://dc.zah.uni-heidelberg.de/ppmxl/q/cone/scs.xml?"),
 ("2MASS", "http://dc.zah.uni-heidelberg.de/2mass/res/2mass/q/scs.xml?"),
 ("UCAC4", "http://dc.zah.uni-heidelberg.de/ucac4/q/s/scs.xml?")]

class VicinitySearcher:
 """The SAMP handling class.

 This is where the action takes place: receiving VOTables, handling
 notifications of selected rows, querying the remote services.

 True, in a less one-off program this should be less god-like, and
 at least make_response_table shouln't be part of this.
 """
 vicinity_size = 30 # arcsec
 client_name = "Aladin" # samp.name of the client for the match table

 def __init__(self, conn):
 self.conn = conn
 self.cur_table = self.cur_id = None

 self.services = []
 for short_name, access_url in SERVICE_META:
 self.services.append(pyvo.dal.scs.SCSService(access_url))
 self.services[-1].my_tag = short_name

 self.conn.bind_receive_call(
 "table.load.votable", self.load_VOTable)
 self.conn.bind_receive_message("table.highlight.row",
 self.handle_selection)

 @vohelper.show_exception
 def load_VOTable(self, private_key, sender_id, msg_id, mtype,
 params, extra):
 """the SAMP handler to load VOTables.

 (binding is done in the constructor)
 """
 self.cur_table = table.Table.read(params['url'])
 self.ra_name = vohelper.get_name_for_ucd(
 "POS_EQ_RA_MAIN", self.cur_table)
 self.dec_name = vohelper.get_name_for_ucd(
 "POS_EQ_DEC_MAIN", self.cur_table)
 self.cur_id = params["table-id"]

 self.conn.reply(msg_id,
 {"samp.status": "samp.ok", "samp.result": {}})

 @vohelper.show_exception
 def handle_selection(self, private_key, sender_id, msg_id, mtype,
 params, extra):
 """the SAMP handler for a row selection in our current table.
 """
 print("incoming: ", params)
 if msg_id:
 self.conn.reply(msg_id,
 {"samp.status": "samp.ok", "samp.result": {}})

 if params["table-id"] == self.cur_id:
 table_index = int(params["row"])
 print("Row selected:", table_index)
 response = self.make_response_table(table_index)

 if response is not None:
 pyvo.samp.send_table_to(
 self.conn, response,
 client_name=self.client_name, name="vicinity")

 def make_response_table(self, table_index):
 """returns an astropy table (or None) for the row table_index.

 This is essentially the "user code" that reacts on the incoming
 messages.
 """
 ra = self.cur_table[self.ra_name][table_index]
 dec = self.cur_table[self.dec_name][table_index]
 pm_unit = "deg/yr"

 ras, decs, pmras, pmdecs, svcs = [], [], [], [], []
 for service in self.services:
 print("Querying ", service.my_tag)
 cone_result = service.search((ra, dec),
 self.vicinity_size/3600.).to_table()
 nrecs = len(cone_result)

 ras.extend(cone_result[
 vohelper.get_name_for_ucd("POS_EQ_RA_MAIN", cone_result)])
 decs.extend(cone_result[
 vohelper.get_name_for_ucd("POS_EQ_DEC_MAIN", cone_result)])

 try:
 pmra_name = vohelper.get_name_for_ucd(
 "pos.pm;pos.eq.ra", cone_result)
 pmras.extend(
 cone_result.columns[pmra_name].to(pm_unit).value)
 except KeyError:
 pmras.extend([None]*nrecs)

 try:
 pmdec_name = vohelper.get_name_for_ucd(
 "pos.pm;pos.eq.dec", cone_result)
 pmdecs.extend(
 cone_result.columns[pmdec_name].to(pm_unit).value)
 except KeyError:
 pmdecs.extend([None]*nrecs)

 svcs.extend([service.my_tag]*nrecs)

 if not ras:
 return None
 else:
 print("Found {} matches".format(len(ras)))

 res = table.Table([
 table.Column(name="ra",
 data=ras,
 description="Right Ascension from upstream",
 unit="deg",
 meta={"ucd": "pos.eq.ra;meta.main"}),
 table.Column(name="dec",
 data=decs,
 description="Declination from upstream",
 unit="deg",
 meta={"ucd": "pos.eq.dec;meta.main"}),
 table.Column(name="pmra",
 data=pmras,
 description="Proper motion in Right Ascension from upstream",
 unit=pm_unit,
 meta={"ucd": "pos.pm;pos.eq.ra"}),
 table.Column(name="pmdec",
 data=pmdecs,
 description="Proper motion in declination from upstream",
 unit=pm_unit,
 meta={"ucd": "pos.pm;pos.eq.dec"}),
 table.Column(name="service",
 data=svcs,
 description="Source of the data",
 meta={"ucd": "meta.id"}),])

 return res

def main():
 with pyvo.samp.connection(
 client_name="Vicinity Searcher",
 description="An edifying example for a SAMP service",
 addr="127.0.0.1") as conn:
 _ = VicinitySearcher(conn)
 print("Listening. Send me a table, hit return to exit.")
 input()

if __name__ == "__main__":
 main()

vim:sta:et:sw=2

Handling table.load.votable

class VicinitySearcher:

def __init__(self, conn):

[...]

self.conn.bind_receive_call(

"table.load.votable", self.load_VOTable)

def load_VOTable(self,

private_key, sender_id, msg_id, mtype, params, extra):

self.cur_table = Table.read(params['url'])

self.cur_id = params["table-id"]

self.conn.reply(msg_id,

{"samp.status": "samp.ok", "samp.result": {}})

82

Handling table.highlight.row

@vohelper.show_exception

def handle_selection(self,

private_key, sender_id, msg_id, mtype, params, extra):

if params["table-id"]!=self.cur_id:

return

table_index = int(params["row"])

print("Row selected:", table_index)

response = self.make_response_table(table_index)

if response is not None:

vohelper.send_table_to(self.conn, self.dest_client, response)

83

Try It Out

Start TOPCAT, Aladin, and the vicinity searcher.

Look for openngc SCS and pull some 40 degree cone.

Send the resulting table to the vicinity searcher, have Send row

index as an activation action.

Click on table rows or plot points.

84

pyVO and the Registry

A Closer Look at registry.search

We have seen registry.search already in some places.

To go more deeply, you need to understand a bit more of the

Registry data model:

Resource

TAP cap SCS capability
Tableset

TAP intf SCS v1 SCS v2

85

Principles of RegistryResource

What you get back from registry.search is a sequence of

RegistryResource instances.

It has attributes for metadata (res_title, res_description. . .), and

important methods:

• describe() – return a summary of what pyVO knows about

the resource.

• access_modes() – short identifiers for the capabilities of the

resource

• get_service(type, lax, keyword) – return a service object to

query the resource

• get_tables() – return a sequence of table-like objects with

what tables you can query

86

Interactive Use of the PyVO Registry API

Finally: A jupyter notebook!

data-discovery-demo.ipynb

87

{
 "cells": [
 {
 "cell_type": "markdown",
 "id": "considered-spanking",
 "metadata": {},
 "source": [
 "# Data Discovery in using pyVO"
]
 },
 {
 "cell_type": "markdown",
 "id": "registered-mirror",
 "metadata": {},
 "source": [
 "This notebook is an introduction to using the Virtual Observatory Registry interactively from within pyVO. It belongs to the lecture on using the Virtual Observatory. See \n",
 "https://codeberg.org/msdemlei/pyvo-course for more information on this course and in particular for what the VO Registry is and what it is there for."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "published-fountain",
 "metadata": {},
 "outputs": [],
 "source": [
 "# set up things; we're also ignoring over-zealous\n",
 "# astropy warnings against bleeding-edge VOTable.\n",
 "from pyvo import registry, dal\n",
 "import warnings\n",
 "warnings.filterwarnings('ignore', module=\"astropy.io.votable.*\")\n",
 "warnings.filterwarnings('ignore', module=\"pyvo.io.vosi.vodataservice\")\n",
 "import pyvo"
]
 },
 {
 "cell_type": "markdown",
 "id": "modified-mitchell",
 "metadata": {},
 "source": [
 "The most general way to run registry queries is by passing registry.search Constraints. It is quite a bit more flexible than the alternative keyword-based interface, but admittedly somewhat more verbose.\n",
 "\n",
 "For instance, to find data giving redshifts on quasars, you could say:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "beginning-explanation",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs = registry.search(\n",
 " registry.Freetext(\"quasar\"),\n",
 " registry.UCD(\"src.redshift\"))"
]
 },
 {
 "cell_type": "markdown",
 "id": "smooth-electric",
 "metadata": {},
 "source": [
 "As said above, in simple cases (such as this one) you can use an interface based on keyword arguments as well, like this:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "mineral-national",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs = registry.search(keywords=\"quasar\", \n",
 " ucd=\"src.redshift\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "substantial-emission",
 "metadata": {},
 "source": [
 "The list of constraints available (and explanations what they do) is found in the pyVO documentation at https://pyvo.readthedocs.io/en/latest/registry/.\n",
 "\n",
 "What ``registry.search`` returns here is a collection (works as a sequence, but technically it is a ``RegistryResults`` instance) of resource records. Conceptually, you can thing of one item in there, represented as ``RegistryResource`` instances, as a data collection: A catalogue, the archive of an instrument, a collection of spectra reduced in a common way, etc. The simplest way to have a look at the result as a while is through the ``get_summary`` method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "rotary-brain",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs.get_summary()"
]
 },
 {
 "cell_type": "markdown",
 "id": "skilled-carter",
 "metadata": {},
 "source": [
 "While this particular list is perhaps a bit unwieldy, this lets you relatively quickly browse what is available. In particular, the last column tells you how, i.e., using which protocols, you can talk to a service serving the data.\n",
 "\n",
 "Once you have found data you are interested in, you can pick it out of the list using the numeric index (which, however, is unstable between sessions and thus we don't do it here), using the short name (for which there *could* be clashes, though they should be rare) or through the ivoid (which is globally unique, but somewhat lengthy). In this example, we are using the short name.\n",
 "\n",
 "Let's say we want to work with the resource III/175, “Gaia DR3 Part 2. Extra-galactic”. By the last column, there is a cone search, TAP, and web service that provides access to it.\n",
 "\n",
 "The most immediate way to get to the data usually is the cone search, which gives something like a dump of a catalogue around a position (using 0,0,180 will give you the full catalogue most of the time). To see a relatively concise representation of what a service is about, use the ``describe`` method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "bdf88aff",
 "metadata": {},
 "outputs": [],
 "source": [
 "short_name = \"I/356\"\n",
 "rec = rscs[short_name]\n",
 "rec.describe()"
]
 },
 {
 "cell_type": "markdown",
 "id": "6a20fd58",
 "metadata": {},
 "source": [
 "To interact with the resource, there is ``get_service``. Pass it an identifier of a service type as per the last column of the overview table or whatever the ``access_modes`` method returns:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "touched-ratio",
 "metadata": {},
 "outputs": [],
 "source": [
 "print(rscs[short_name].access_modes())\n",
 "svc = rscs[short_name].get_service(service_type=\"conesearch\", lax=True)\n",
 "svc.search((126, -20), radius=0.2).to_table()"
]
 },
 {
 "cell_type": "markdown",
 "id": "responsible-bradley",
 "metadata": {},
 "source": [
 "The lax=True here is a bit of an uglyness: VizieR often has multiple sub-services on their resources, perhaps one per major table in a publication. See the list of interfaces in the ``describe`` output above, and then pick the interface you actually want a ``keyword`` parameter. ``lax=True`` basically means “leave the choice to VizieR”, which *may* to what you want (it will, for instance, with the TAP capabilities, because they all point to the same service) but may be entirely random, too.\n",
 "\n",
 "We are trying to improve this admittedly unfortunate situation."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "809f2eef",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_service(\"scs\", keyword='QSO' \n",
 ").search((126, -20), radius=0.2)"
]
 },
 {
 "cell_type": "markdown",
 "id": "d748e429",
 "metadata": {},
 "source": [
 "A more powerful interface is TAP, which lets you send database queries to the service (forget about the “#aux” in the interface name for now). To do something sensible in TAP, you need to know the name(s) of the table(s) making up the resource. You can figure these out using the registry record's get_tables method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "brave-biotechnology",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_tables()"
]
 },
 {
 "cell_type": "markdown",
 "id": "comprehensive-consolidation",
 "metadata": {},
 "source": [
 "Let's have a look at what columns one of these tables has – this is a normal astropy table:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "young-hundred",
 "metadata": {},
 "outputs": [],
 "source": [
 "td = rscs[short_name].get_tables()['I/356/qsocand']\n",
 "td.columns"
]
 },
 {
 "cell_type": "markdown",
 "id": "olympic-second",
 "metadata": {},
 "source": [
 "From here, you could inspect the various BaseParams for units, descriptions, and the like, but for this level of interactivity, you may want to use TOPCAT. Just paste the service's access URL in its TAP window:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "sudden-jerusalem",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_service(service_type=\"tap\", lax=True).baseurl"
]
 },
 {
 "cell_type": "markdown",
 "id": "mounted-indianapolis",
 "metadata": {},
 "source": [
 "While I was preparing the first version of this notebook, the metadata of this resource still had a bug, which showed itself as warnings of the type\n",
 "\n",
 "```\n",
 "WARNING: W02: ?:?:?: W02: '' is not a valid datatype according to the VOSI spec [pyvo.io.vosi.vodataservice]\n",
 "```\n",
 "\n",
 "While you might ignore warnings, at least with errors it is usually a good idea to notify the operators. To see who to talk to, use the ``get_contact`` method of the record:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "floral-mountain",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_contact()"
]
 },
 {
 "cell_type": "markdown",
 "id": "disabled-compilation",
 "metadata": {},
 "source": [
 "To actually run queries, get a TAP service and do queries based on the columns that you found. Let's use VizieR's III/175, “Optical Spectroscopy of Radio Sources“, for that:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "a4293846",
 "metadata": {},
 "outputs": [],
 "source": [
 "short_name = \"III/175\"\n",
 "rscs[short_name].describe()"
]
 },
 {
 "cell_type": "markdown",
 "id": "55e9a00c",
 "metadata": {},
 "source": [
 "Phewy, just one capability and one table; no problems with lax or keyword. What tables are there?"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "31e332a3",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_tables()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "c22bde31",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_tables()['III/175/table1'].columns"
]
 },
 {
 "cell_type": "markdown",
 "id": "f95a1c82",
 "metadata": {},
 "source": [
 "Let us see what object types this table lists:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "transsexual-firmware",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc = rscs[short_name].get_service(\"tap\")\n",
 "svc.run_sync('SELECT DISTINCT type FROM \"III/175/table1\"').to_table()"
]
 },
 {
 "cell_type": "markdown",
 "id": "structural-residence",
 "metadata": {},
 "source": [
 "To figure out the correlation between the 5 GHz flux and the optical magnitude for Quasars, you could do:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "ranking-today",
 "metadata": {},
 "outputs": [],
 "source": [
 "flux_and_mag = svc.run_sync(\"SELECT m, S5Ghz FROM \\\"III/175/table1\\\" where type='QSO'\").to_table()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "inner-award",
 "metadata": {},
 "outputs": [],
 "source": [
 "from scipy import stats\n",
 "stats.pearsonr(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"])"
]
 },
 {
 "cell_type": "markdown",
 "id": "62942982",
 "metadata": {},
 "source": [
 "That there's an anticorrelation (the first value returned) is not surprising (magnitudes grow as flux decreases). Judging from the p-value (the second value), you could even convince a medicine journal that that is a real thing. How does all this look like anyway?"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "8ac35b46",
 "metadata": {},
 "outputs": [],
 "source": [
 "from matplotlib import pyplot\n",
 "_ = pyplot.scatter(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"])"
]
 },
 {
 "cell_type": "markdown",
 "id": "demographic-employee",
 "metadata": {},
 "source": [
 "Let's quickly see how the same thing looks like for Blazars:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "8684a466",
 "metadata": {},
 "outputs": [],
 "source": [
 "flux_and_mag = svc.run_sync(\"SELECT m, S5Ghz FROM \\\"III/175/table1\\\" where type in ('BL/QSO')\").to_table()\n",
 "print(stats.pearsonr(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"]))\n",
 "_ = pyplot.scatter(flux_and_mag[\"m\"], flux_and_mag[\"S5GHz\"])"
]
 },
 {
 "cell_type": "markdown",
 "id": "1c0d5a59",
 "metadata": {},
 "source": [
 "We have not looked at web-typed interfaces yet.\n",
 "They correspond to something you can operate with your web browser, and hence there's just one thing pyVO can do: Open a browser. That happens when you call that fake service's search method:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "speaking-latest",
 "metadata": {},
 "outputs": [],
 "source": [
 "rscs[short_name].get_service(\"web\").search()"
]
 },
 {
 "cell_type": "markdown",
 "id": "trying-bubble",
 "metadata": {},
 "source": [
 "By the way, this is *not* the way to look for a webpage *on* the service. The URL of a documentation-type web page is available (provided the publishers did their homework) in a resources' reference_url attribute. To get there, you could do: "
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "nonprofit-record",
 "metadata": {},
 "outputs": [],
 "source": [
 "import webbrowser\n",
 "webbrowser.open(rscs[\"III/175\"].reference_url, 1)"
]
 },
 {
 "cell_type": "markdown",
 "id": "challenging-discount",
 "metadata": {},
 "source": [
 "There are more constraints available than just free text and UCD.\n",
 "A particularly interesting one is the spatial coverage. For instance, you could look for data on flare stars around the Orion nebula like this:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "circular-express",
 "metadata": {},
 "outputs": [],
 "source": [
 "from astropy.coordinates import SkyCoord\n",
 "flrscs = registry.search(\n",
 " registry.Freetext(\"flare\"),\n",
 " registry.Spatial((SkyCoord.from_name(\"M42\"), 2)))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "binding-brook",
 "metadata": {},
 "outputs": [],
 "source": [
 "flrscs.get_summary().show_in_notebook(display_length=60)"
]
 },
 {
 "cell_type": "markdown",
 "id": "hydraulic-rating",
 "metadata": {},
 "source": [
 "The services here a bit more diverse than with our first example. For instance, there are image services, as you will see when you skim the last column:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "sunrise-tournament",
 "metadata": {},
 "outputs": [],
 "source": [
 "matches = flrscs[\"flare_survey.dat\"].get_service(service_type=\"sia\").search(\n",
 " pos=SkyCoord.from_name(\"M42\"),\n",
 " size=2)\n",
 "matches"
]
 },
 {
 "cell_type": "markdown",
 "id": "applicable-inspection",
 "metadata": {},
 "source": [
 "In order to have at least a few images in this notebook, let's use datalink to fetch a few previews of our matches (this datalink trick does not work on all services; if it does not for a service you care about, complain to its operators, demanding datalink support – see the thing with get_contact above)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "realistic-evans",
 "metadata": {},
 "outputs": [],
 "source": [
 "from IPython.display import Image, display\n",
 "for dl in matches.iter_datalinks():\n",
 " for row in dl.bysemantics(\"#preview\"):\n",
 " display(Image(url=row[\"access_url\"], width=200,\n",
 " embed=True, format=\"jpeg\"))"
]
 },
 {
 "cell_type": "markdown",
 "id": "committed-wheel",
 "metadata": {},
 "source": [
 "There are similar constraints for the Spectral and Time axes. For instance, to look for resources talking about spectra and the Balmer break, you could say:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "substantial-nightmare",
 "metadata": {},
 "outputs": [],
 "source": [
 "from astropy import units as u\n",
 "registry.search(\n",
 " registry.Freetext(\"spectra\"),\n",
 " registry.Spectral(364*u.nm)).get_summary()"
]
 },
 {
 "cell_type": "markdown",
 "id": "renewable-single",
 "metadata": {},
 "source": [
 "Note that in particular for time and spectral coverage, as of 2023 many data providers in the VO have not updated their resource records to provide such information; hence, you will have to expect missing resources. For spectral coverage, see also the ``Waveband`` constraint, which is older and therefore better supported."
]
 },
 {
 "cell_type": "markdown",
 "id": "continuous-telephone",
 "metadata": {},
 "source": [
 "Behind the scenes, all this just does ADQL queries via TAP. So, whenever the pre-canned queries from the Registry module are not enough (e.g., because you want to do table uploads or need exotic constraints), you can simply switch to using TAP directly. To help you with that, you can use the ``build_regtap_query`` function to get an ADQL query to start with. For instance:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "worth-catch",
 "metadata": {},
 "outputs": [],
 "source": [
 "print(registry.get_RegTAP_query(\n",
 " registry.Spatial((30, 40)),\n",
 " registry.Servicetype('tap'),\n",
 " registry.Datamodel(\"obscore\")))"
]
 },
 {
 "cell_type": "markdown",
 "id": "southwest-highway",
 "metadata": {},
 "source": [
 "This is not overly pretty, but once you have had a look at the RegTAP documentation at https://ivoa.net/documents/RegTAP/, it should start to make sense. By cutting and pasting, you could create a registry query using an uploaded object list, perhaps a bit like this (ignore the next code cells if you've not played with TAP uploads yet and/or feel uncomfortable near to large amounts of ADQL). Anyway, we get a few random positions and then see what Obscore services declare they cover our sample."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "dedicated-snowboard",
 "metadata": {},
 "outputs": [],
 "source": [
 "objects = dal.TAPService(\"http://dc.g-vo.org/tap\").run_sync(\n",
 " \"SELECT source_id, ra, dec FROM gaia.dr3lite TABLESAMPLE(0.00005)\"\n",
 ").to_table()\n",
 "objects"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "musical-council",
 "metadata": {},
 "outputs": [],
 "source": [
 "from pyvo.registry import regtap\n",
 "\n",
 "rt_query = \"\"\"\n",
 "SELECT DISTINCT\n",
 "ivoid, res_title, \n",
 "res_description, access_url FROM\n",
 "rr.resource\n",
 "NATURAL LEFT OUTER JOIN rr.capability\n",
 "NATURAL LEFT OUTER JOIN rr.interface\n",
 "NATURAL LEFT OUTER JOIN rr.res_detail\n",
 "NATURAL LEFT OUTER JOIN rr.stc_spatial\n",
 "JOIN TAP_UPLOAD.t1\n",
 "ON\n",
 " (1 = CONTAINS(MOC(6, POINT(TAP_UPLOAD.t1.ra, TAP_UPLOAD.t1.dec)), coverage))\n",
 "WHERE\n",
 " (detail_xpath = '/capability/dataModel/@ivo-id' AND 1 = ivo_nocasematch(detail_value, 'ivo://ivoa.net/std/obscore%'))\n",
 " AND (standard_id IN ('ivo://ivoa.net/std/tap'))\n",
 "\"\"\"\n",
 "ocrscs = regtap.get_RegTAP_service(\n",
 ").run_sync(rt_query, uploads={\"t1\": objects}).to_table()\n",
 "ocrscs"
]
 },
 {
 "cell_type": "markdown",
 "id": "interim-entry",
 "metadata": {},
 "source": [
 "Note, however, that in particular Obscore services are notoriously bad at properly defining their physical coverage, so this sort of query is probably more appropriate for TAP tables and perhaps image or spectral services."
]
 },
 {
 "cell_type": "markdown",
 "id": "complete-lebanon",
 "metadata": {},
 "source": [
 "Finally, “classic” Registry queries did what's now called “service discovery”, where you are looking for all, say, image services. This, if I am very frank, is still the way you have to do searches by product type (“look for spectra”) – although we are working on rectifying that, because it does not work very well.\n",
 "\n",
 "You can do service discovery in pyvo by constraining the service type. For instance, you will find services returning X-ray images somewhat in this way – and you can probably get away with calling a method called ``get_service()``, because your service objects will usually only have one associated service of a given type (but note that there exceptions to that):"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "cordless-george",
 "metadata": {},
 "outputs": [],
 "source": [
 "total_matches = 0\n",
 "for res in registry.search(\n",
 " keywords=\"rosat\", waveband=\"X-Ray\", servicetype=\"image\"):\n",
 " try:\n",
 " print(f\"Querying {res.short_name}...\")\n",
 " mats = res.get_service().search(pos=(30, 20), size=0.3)\n",
 " print(f\"...yielded {len(mats)}\")\n",
 " total_matches += len(mats)\n",
 " except Exception as msg:\n",
 " print(f\"Service {res.short_name} failed: {msg}\")\n",
 "print(f\"Total found: {total_matches}\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "corresponding-pharmacy",
 "metadata": {},
 "source": [
 "Comments, questions and ideas for improvement are very welcome. Contact:\n",
 "msdemlei@ari.uni-heidelberg.de (PGP key: 0x555FA86CC57AE128)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "welsh-fifth",
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

Resolving Ivoids

IVOA identifiers are the primary keys in the VO Registry.

When keeping notes like “which service did I use”, the ivoid

(rather than a DOI) still is the better choice in the VO.

To resolve an ivoid:

svc = pyvo.registry.search(ivoid='ivo://org.gavo.dc/tap')[0]

88

Write Your Own Constraint

registry.search uses constraint classes to build queries.

You can extend the set of constraint classes yourself by inheriting

from registry.SubqueriedConstraint.

Say you want to use the experimental UAT extension to RegTAP,

i.e., rr.uat_concept:

class UATConcept(pyvo.registry.SubqueriedConstraint):

_keyword = "uat"

_subquery_table = "rr.subject_uat"

def __init__(self, uat_id):

self._condition = "uat_concept={uat_id}"

self._fillers = {"uat_id": uat_id}

new-constraint.py

89

import pyvo

class ForSource(pyvo.registry.SubqueriedConstraint):
 _keyword = "subject"
 _subquery_table = "rr.subject_uat"

 def __init__(self, uat_id):
 self._condition = "uat_concept={uat_id}"
 self._fillers = {"uat_id": uat_id}

if __name__=="__main__":
 print(pyvo.registry.search(
 ForSource("exoplanet-astronomy")).get_summary())

Datalink

Datalink: Getting Related Artefacts

Datalink is a standard for “linking” files to datasets. Think

calibration data, previews, extracted objects, alternative formats,

etc.

https://dc.g-vo.org/static/datalinks.shtml is a showcase of various

applications of datalink.

This is really machine-readable data; load any of these links into

TOPCAT to inspect it as a VOTable:

90

https://dc.g-vo.org/static/datalinks.shtml

Datalink in a Cartoon

2 3 4 5

1ID access url semantics content type

ivo://example/s?1 http://iv.oa/full-image.fits #this image/fits

ivo://example/s?1 http://iv.oa/scaled4.fits #coderived image/fits

ivo://example/s?1 http://iv.oa/foto.jpg #preview-image image/jpeg

ivo://example/s?1 http://iv.oa/wedge.jpg #calibration image/png

ivo://example/s?1 http://iv.oa/preview.jpg #preview image/jpeg

ivo://example/s?1 http://iv.oa/sources.vot 8 #derivation application/x-votable+xml

ivo://example/s?1 #servicedef #access NULL
10 ivo://example/s?2 http://iv.oa/spect.vot #this application/x-votable+xml

ivo://example/s?2 http://iv.oa/spect.fits #this application/fits

ivo://example/s?2 http://iv.oa/spect-preview.vot #preview-plot image/png

ivo://example/s?2 http://iv.oa/split-order/dl #progenitor 13 app/vot?content=datalink

6

7

11 12

9

14semantics content type

#this application/x-votable+xml

#derivation app/vot;content=datalink

#access NULL

15 16 17

91

Datalink in PyVO

In pyVO, datalink is (primarily) exposed in search results.

On datalink-enabled services, you can iterate over

iter_datalinks(), which iterates over DatalinkResults instances.

On these, you can pull links using bysemantics:

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")

matches = svc.search(SkyCoord.from_name("EI Eri"), 0.001)

for links in matches.iter_datalinks():

for link in links.bysemantics("#preview"):

print(link["access_url"])

Or just iterate over links to see all links available.

92

Use Case: Overview With Previews

Let’s say you want to spot bad or weird spectra without actually

retrieving or plotting the spectra themselves.

Just download the previews and merge them into one image:

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")

matches = svc.search(SkyCoord.from_name("EI Eri"), 0.001)

previews = []

for dl in matches.iter_datalinks():

prev_url = next(dl.bysemantics("#preview"))["access_url"]

im = Image.open(io.BytesIO(requests.get(prev_url).content))

previews.append(im)

datalink-previews.py

93

import io
import requests
import pyvo
from astropy.coordinates import SkyCoord
from PIL import Image, ImageDraw

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")
matches = svc.search(
 SkyCoord.from_name("EI Eri"),
 radius=0.001,
 maxrec=30,
 format="votable")

previews = []
for dl in matches.iter_datalinks():
 rec = next(dl.bysemantics("#preview"))
 im = Image.open(
 io.BytesIO(
 requests.get(rec["access_url"]).content))
 previews.append((rec["ID"], im))

xsz, ysz = previews[0][1].size

we jam together the previews to save space, but we need to make white
transparent to do that.
montage = Image.new("L",
 (xsz, ysz*len(previews)),
 color=240)

for index, (id, preview) in enumerate(previews):
 frame = preview.convert('L')
 ctx = ImageDraw.Draw(frame)
 ctx.text((0, 0), id.split("?")[-1], fill=0)
 montage.paste(frame, (0, index*ysz))
montage.save("previews.png")

Datalink: Remote Processing on Datalink Documents

Datalink also lets you declare processing services. The SODA

standard defines a special set of parameters applicable to

astronomical images (CIRCLE, POLYGON, TIME, BAND,. . .).

Save a lot of time by only downloading cutouts of the object you

are interested in:

roi = SkyCoord.from_name('Mira')

for rec in svc.run_sync(

"SELECT access_url, access_format FROM ivoa.obscore"

" WHERE obs_collection='HDAP'"

"AND 1=CONTAINS(CIRCLE('ICRS', {}, {}, 0.05),"

"s_region)".format(roi.ra.deg, roi.dec.deg)):

processed = rec.processed(

circle=(roi.ra.deg, roi.dec.deg, 0.05))

datalink-soda.py

94

import math, io
from PIL import Image
import pyvo
from astropy.coordinates import SkyCoord
from astropy.io import fits

svc = pyvo.dal.tap.TAPService("http://dc.g-vo.org/tap")
roi = SkyCoord.from_name('Mira')

cutouts = []
for rec in svc.run_sync(
 "SELECT access_url, access_format FROM ivoa.obscore"
 " WHERE obs_collection='HDAP'"
 "AND 1=CONTAINS(CIRCLE('ICRS', {}, {}, 0.05),"
 "s_region)".format(roi.ra.deg, roi.dec.deg)
):
 processed = rec.processed(
 circle=(roi.ra.deg, roi.dec.deg, 0.05))

 pixels = fits.open(io.BytesIO(processed.read()))[0].data

 cutouts.append(
 Image.fromarray(((pixels/float(pixels.max()))*255).astype('uint8'))
)

 per_line = int(math.ceil(math.sqrt(len(cutouts))))
 dest_size, stamp_size = 1600, 1600//per_line

 montage = Image.new("L", (dest_size, dest_size))

 for index, img in enumerate(cutouts):
 montage.paste(
 img.resize((stamp_size, stamp_size)),
 (index//per_line*stamp_size, index%per_line*stamp_size)
)

 montage.save("cutouts.jpg")

Datalink: Remote Processing on Non-Datalink Documents

Use case: Hα maps of Sd galaxies from CALIFA.

Doing the cutouts by calling processed on the link for the data

itself (#this):

matches = svc.run_sync(

"SELECT califaid, obs_publisher_did, mime, em_min, em_max, redshift"

" FROM califadr3.cubes"

" JOIN califadr3.objects USING (califaid)"

" WHERE setup=’COMB’ AND hubtyp=’S d’")

for dl in matches.iter_datalinks():

lobs = ???

map = next(dl.bysemantics("#this")).processed(band=(lobs, lobs))

Trouble: How do I find the redshift (i.e., lobs) for my dl?

95

Datalink: Simultaneous Links and Metadata

matches = svc.run_sync(

"SELECT califaid, obs_publisher_did, mime, em_min, em_max, redshift"

" FROM califadr3.cubes"

" JOIN califadr3.objects USING (califaid)"

" WHERE setup=’COMB’ AND hubtyp=’S d’")

result_rows = matches.to_table()

result_rows.add_index("obs_publisher_did")

for dl in matches.iter_datalinks():

rec = result_rows.loc["obs_publisher_did", dl["ID"][0]]

califaid = rec["califaid"]

lobs = l0*(1+rec["redshift"])

processed = next(dl.bysemantics("#this")

).processed(band=(lobs, lobs))

soda-with-rows.py

96

import pyvo

l0 = 6.5625e-7
svc = pyvo.dal.tap.TAPService("http://dc.g-vo.org/tap")

matches = svc.run_sync(
 "SELECT califaid, obs_publisher_did, mime, em_min, em_max, redshift"
 " FROM califadr3.cubes"
 " JOIN califadr3.objects USING (califaid)"
 " WHERE setup='COMB' AND hubtyp='S d'")
result_rows = matches.to_table()
result_rows.add_index("obs_publisher_did")

for dl in matches.iter_datalinks():
 rec = result_rows.loc["obs_publisher_did", dl["ID"][0]]
 califaid = rec["califaid"]
 lobs = l0*(1+rec["redshift"])
 if not rec["em_min"]<=lobs<=rec["em_max"]:
 continue

 processed = next(dl.bysemantics("#this")
).processed(band=(lobs, lobs))
 with open(str(califaid)+".fits", "wb") as f:
 f.write(processed.read())

At the Limit: VO-Wide TAP

Queries

VO-Wide TAP Queries

People often say: “I want everything in the VO on object X”.

This is far too hard.

What is marginally possible: “Give me all measurements of a

certain sort of UCD in a certain vicinity.”

However, this is surprisingly involved, mostly for stupid reasons.

Follow me along for proper motions (pos.pm).

Note: This is probably not something realistic for research within

the next few years. But it is a nice exercise in how far you can take

pyVO and TAP.

97

A RegTAP Query for Tables and TAP Services

For “where can I find data with UCD X?”, there is

pyvo.registry.UCD.

But we need to know which table has a column with our UCD.

PyVO can’t do that yet; hence, use a direct RegTAP query:

SELECT DISTINCT access_url, table_name

FROM rr.interface

NATURAL JOIN rr.capability

NATURAL JOIN rr.res_table

NATURAL JOIN rr.table_column

NATURAL JOIN rr.stc_spatial

WHERE

standard_id LIKE 'ivo://ivoa.net/std/tap%'

AND ucd LIKE 'pos.pm%'

AND 1=INTERSECTS(POINT({RA}, {DEC}, {SR}), coverage)

AND (table_type!='output' OR table_type IS NULL)

98

Running the RegTAP Query

Running RegTAP queries just means picking a suitable TAP

service and calling run_sync:

reg_svc = pyvo.registry.regtap.get_RegTAP_service()

result = reg_svc.run_sync(regtap_query)

svcs = {}

for row in result.to_table():

svcs.setdefault(row["access_url"], []).append(row["table_name"])

return svcs.items()

99

Query Generation I: Defining the Schema

We want to build queries that let us fill a table defined like this:

col-name, UCD, Unit, type-to-cast-to

RESULT_SCHEMA = [

('cat_id', "meta.id;meta.main", None, "CHAR(*)"),

('ra', "pos.eq.ra;meta.main", "deg", None),

('dec', "pos.eq.dec;meta.main","deg", None),

('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),

('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

100

Query Generation II: From Clause And a Template

Given a TAP service svc, a table_name, our result schema, and the

region of interest in RA, DEC, and SR, make a query to produce

rows for our result schema:

db_table, select_clause = svc.tables[table_name], []

for dest_name, ucd, unit, type in RESULT_SCHEMA:

select_clause.append("{} AS {}".format(

fieldname_with_ucd(ucd, db_table),

dest_name))

select_clause.append(f"'{table}' AS table_name")

select_clause.append(f"'{svc.baseurl}' AS svc_url")

return ("SELECT {select_serialised} FROM {srctable}"

" WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"

" CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(

select_serialiased=", ".join(select_clause),

srctable=table_name,...)

101

Query Generation III: Delimited Identifier Workaround

Regrettably, the code immediately fails.

$ python3 multitap-broken1.py

[...]

pyvo.dal.exceptions.DALQueryError:

Incorrect ADQL query:

Encountered "/". Was expecting one of: <EOF> "." "," ";" "AS"

"WHERE" "GROUP" "HAVING" "ORDER" "\""

<REGULAR_IDENTIFIER_CANDIDATE> "NATURAL" "INNER" "LEFT"

"RIGHT" "FULL" "JOIN"

multitap-broken1.py

102

import pyvo

RA, DEC, SR = 12, 13, 0.1

RESULT_SCHEMA = [
 ('cat_id', "meta.id;meta.main", None, "CHAR(*)"),
 ('ra', "pos.eq.ra;meta.main", "deg", None),
 ('dec', "pos.eq.dec;meta.main", "deg", None),
 ('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),
 ('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

def fieldname_with_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 We need this function here because astropy tables do not have
 something like the DALResults.fieldname_with_ucd method.
 """
 ucd = ucd.lower()

 for col in table.columns:
 if col.ucd and col.ucd.lower()==ucd:
 return col.name
 raise KeyError(ucd)

svc = pyvo.dal.TAPService("http://tapvizier.cds.unistra.fr/TAPVizieR/tap")
table_name = "I/256/veronc81"

db_table, select_clause = svc.tables[table_name], []
for dest_name, ucd, unit, type in RESULT_SCHEMA:
 select_clause.append("{} AS {}".format(
 fieldname_with_ucd(ucd, db_table),
 dest_name))
select_clause.append(f"'{table_name}' AS table_name")
select_clause.append(f"'{svc.baseurl}' AS svc_url")

query = ("SELECT {selclause} FROM {srctable}"
 " WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"
 " CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(
 selclause=", ".join(select_clause),
 srctable=table_name,
 racol=fieldname_with_ucd("pos.eq.ra;meta.main", db_table),
 deccol=fieldname_with_ucd("pos.eq.dec;meta.main", db_table),
 ra=RA, dec=DEC, sr=SR)
print(query)
svc.run_sync(query)

Running Queries I: Feature Detection

On a service like VizieR with our pos.pm criterion, we will have to

query a lot of tables and stack the results on the client side.

Can we take a union of the results on the server side?

Perhaps. We need the ADQL UNION operator for that.

Regrettably, it is optional.

Does a service support union?

knows_union = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

103

Running Queries II: Adapting to Server Capabilities

svc = pyvo.dal.TAPService(access_url)

knows_union = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

queries = [get_query(svc, table_name)) for table_name in tables]

result_rows = []

def feed_rows(astropy_table):

for row in astropy_table:

result_rows.append(dict(zip(row.colnames, row.as_void())))

if knows_union:

feed_rows(svc.run_sync(

" UNION ".join(queries)).to_table())

else:

for query in queries:

feed_rows(svc.run_sync(query).to_table())

104

Query Generation IV: Casting

Even this ends with an obscure error. Try multitap-broken2.py

multitap-broken2.py

pyvo.dal.exceptions.DALQueryError: Field query: UNION types integer

and text cannot be matched LINE 1: ...S(12), RADIANS(13)), RADIANS(0.1))))

UNION SELECT localid AS...

The reason? Idenifier columns are sometimes integers and

sometimes texts.

The solution? Cast them all to string.

But: CAST is optional. Oh no!

105

import re
import sys

from astropy import table
import pyvo

For lazyness, we define our search criterion globally:
RA, DEC, SR = 12, 13, 0.1

the data items you're interested in, expressed through UCDs
that's pairs of (ucd, name, unit); implied is src, src_table
RESULT_SCHEMA = [
 ('cat_id', "meta.id;meta.main", None, "CHAR(*)"),
 ('ra', "pos.eq.ra;meta.main", "deg", None),
 ('dec', "pos.eq.dec;meta.main", "deg", None),
 ('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),
 ('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

def get_services_and_tables():
 """returns a sequence of (service, [table-names]) pairs for a
 hardwired RegTAP query.

 regtap_query must (at least) have access_url and table_name in
 the select clause.
 """
 regtap_query = f"""
 SELECT DISTINCT access_url, table_name
 FROM rr.interface
 NATURAL JOIN rr.capability
 NATURAL JOIN rr.res_table
 NATURAL JOIN rr.table_column
 NATURAL JOIN rr.stc_spatial
 WHERE
 standard_id LIKE 'ivo://ivoa.net/std/tap%'
 AND ucd LIKE 'pos.pm%'
 AND 1=CONTAINS(CIRCLE({RA}, {DEC}, {SR}), coverage)
 AND (table_type!='output' OR table_type IS NULL)
 AND access_url='http://dc.zah.uni-heidelberg.de/tap'
 """

 reg_svc = pyvo.registry.regtap.get_RegTAP_service()
 result = reg_svc.run_sync(regtap_query)

 svcs = {}
 for row in result.to_table():
 svcs.setdefault(row["access_url"], []).append(row["table_name"])
 return svcs.items()

def fieldname_with_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 We need this function here because astropy tables do not have
 something like the DALResults.fieldname_with_ucd method.
 """
 ucd = ucd.lower()

 for col in table.columns:
 if col.ucd and col.ucd.lower()==ucd:
 return col.name
 raise KeyError(ucd)

def perhaps_quote(table_name):
 """adds double quotes around table_name if it's not a plain SQL
 identifier.

 This is a workaround for broken services that do not pre-quote in
 VODataService tableset.
 """
 parts = table_name.split(".")
 for index, part in enumerate(parts):
 if not re.match("[A-Za-z0-9][A-Za-z0-9_]*$", part):
 parts[index] = '"{}"'.format(part.replace('"', '""'))
 return ".".join(parts)

def get_query(svc, table_name):
 """returns a query producing RESULT_SCHEMA for table in svc.

 svc is a pyvo.dal.TAPService, table a name from its schema.
 """
 db_table = svc.tables[table_name]
 select_clause = []
 for dest_name, ucd, unit, type in RESULT_SCHEMA:
 select_clause.append("{} AS {}".format(
 perhaps_quote(fieldname_with_ucd(ucd, db_table)),
 dest_name))

 select_clause.append(f"'{table_name}' AS table_name")
 select_clause.append(f"'{svc.baseurl}' AS svc_url")

 return ("SELECT {selclause} FROM {srctable}"
 " WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"
 " CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(
 selclause=", ".join(select_clause),
 srctable=perhaps_quote(table_name),
 racol=fieldname_with_ucd("pos.eq.ra;meta.main", db_table),
 deccol=fieldname_with_ucd("pos.eq.dec;meta.main", db_table),
 ra=RA,
 dec=DEC,
 sr=SR)

def get_rows_for_svc(access_url, tables):
 """returns rows in RESULT_SCHEMA for tables in the service at access_url.
 """
 svc = pyvo.dal.TAPService(access_url)
 sys.stderr.write(f">>>>> {access_url} ({len(tables)})\n")

 knows_union = svc.get_tap_capability().get_adql().get_feature(
 "ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

 if len(tables)>30:
 sys.stderr.write(" (cropping to 30 tables for handleability)\n")
 tables = tables[:30]

 queries = []
 for table_name in tables:
 try:
 queries.append(get_query(svc, table_name))
 except KeyError as msg:
 sys.stderr.write(f" Skipping {table_name} ({msg} missing)\n")

 result_rows = []
 def feed_rows(astropy_table):
 for row in astropy_table:
 # TODO: Fix units here
 result_rows.append(dict(zip(row.colnames, row.as_void())))

 if knows_union:
 sys.stderr.write("> querying all\n")
 feed_rows(svc.run_sync(
 " UNION ".join(queries)).to_table())

 else:
 sys.stderr.write(f"> querying {table_name}\n")
 # Server has no union, we need to query individual tables
 for query in queries:
 print(query)
 feed_rows(svc.run_sync(query).to_table())

 return result_rows

def make_result_table(recs):
 """returns an astropy table for RESULT_SCHEMA plus src, src_table.
 """
 res = table.Table()
 res.add_column(table.Column(name='src',
 description="Source service",
 data=[r["svc_url"] for r in recs]))
 res.add_column(table.Column(name='src_table',
 description="Source table",
 data=[r["table_name"] for r in recs]))

 for name, ucd, unit, adqltype in RESULT_SCHEMA:
 res.add_column(table.Column(name=name,
 data=[r[name] for r in recs],
 meta={"ucd": ucd})),

 return res

def main():
 recs = []
 svcs_and_tables = get_services_and_tables()
 for svc_url, tables in svcs_and_tables:
 try:
 recs.extend(get_rows_for_svc(svc_url, tables))
 except Exception as msg:
 import traceback; traceback.print_exc()
 sys.stderr.write(f"{svc_url} broken (skipped): {msg}\n")

 res_table = make_result_table(recs)
 res_table.write("all-pms.vot", format="votable", overwrite=True)
 with pyvo.samp.connection() as conn:
 pyvo.samp.send_table_to(conn, res_table,
 name="all-pms", client_name="topcat")

if __name__=="__main__":
 main()

Query Generation V: Still Casting

knows_cast = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-type", "CAST")

for dest_name, ucd, unit, type in RESULT_SCHEMA:

if type and knows_cast:

select_clause.append("CAST({} AS {}) AS {}".format(

perhaps_quote(fieldname_with_ucd(ucd, db_table)),

type,

dest_name))

else:

Don't cast and hope for the best

select_clause.append("{} AS {}".format(

perhaps_quote(fieldname_with_ucd(ucd, db_table)),

dest_name))

106

Bringing it all together

After all this preparation, the actual program is trivial except for

our usual error handling:

multitap.py

recs = []

svcs_and_tables = get_services_and_tables()

for svc_url, tables in svcs_and_tables:

try:

recs.extend(get_rows_for_svc(svc_url, tables))

except Exception as msg:

import traceback; traceback.print_exc()

sys.stderr.write(f"{svc_url} broken (skipped): {msg}\n")

res_table = make_result_table(recs)

res_table.write("all-pms.vot", format="votable", overwrite=True)

with pyvo.samp.connection() as conn:

pyvo.samp.send_table_to(conn, res_table,

name="all-pms", client_name="topcat")

107

import re
import sys

from astropy import table
import pyvo

For lazyness, we define our search criterion globally:
RA, DEC, SR = 12, 13, 0.25

the data items you're interested in, expressed through UCDs
that's pairs of (ucd, name, unit); implied is src, src_table
RESULT_SCHEMA = [
 ('cat_id', "meta.id;meta.main", None, "CHAR(*)"),
 ('ra', "pos.eq.ra;meta.main", "deg", None),
 ('dec', "pos.eq.dec;meta.main", "deg", None),
 ('pmra', "pos.pm;pos.eq.ra", "mas/yr", None),
 ('pmde', "pos.pm;pos.eq.dec", "mas/yr", None),]

def get_services_and_tables():
 """returns a sequence of (service, [table-names]) pairs for a
 hardwired RegTAP query.

 regtap_query must (at least) have access_url and table_name in
 the select clause.
 """
 regtap_query = f"""
 SELECT DISTINCT access_url, table_name
 FROM rr.interface
 NATURAL JOIN rr.capability
 NATURAL JOIN rr.res_table
 NATURAL JOIN rr.table_column
 NATURAL JOIN rr.stc_spatial
 WHERE
 standard_id LIKE 'ivo://ivoa.net/std/tap%'
 AND ucd LIKE 'pos.pm%'
 AND 1=INTERSECTS(CIRCLE({RA}, {DEC}, {SR}), coverage)
 AND (table_type!='output' OR table_type IS NULL)
 """

 reg_svc = pyvo.registry.regtap.get_RegTAP_service()
 result = reg_svc.run_sync(regtap_query)

 svcs = {}
 for row in result.to_table():
 svcs.setdefault(row["access_url"], []).append(row["table_name"])
 return svcs.items()

def fieldname_with_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.

 We need this function here because astropy tables do not have
 something like the DALResults.fieldname_with_ucd method.
 """
 ucd = ucd.lower()

 for col in table.columns:
 if col.ucd and col.ucd.lower()==ucd:
 return col.name
 raise KeyError(ucd)

def perhaps_quote(table_name):
 """adds double quotes around table_name if it's not a plain SQL
 identifier.

 This is a workaround for broken services that do not pre-quote in
 VODataService tableset.
 """
 parts = table_name.split(".")
 for index, part in enumerate(parts):
 if not re.match("[A-Za-z0-9][A-Za-z0-9_]*$", part):
 parts[index] = '"{}"'.format(part.replace('"', '""'))
 return ".".join(parts)

def get_query(svc, table_name):
 """returns a query producing RESULT_SCHEMA for table in svc.

 svc is a pyvo.dal.TAPService, table a name from its schema.
 """
 knows_cast = svc.get_tap_capability().get_adql().get_feature(
 "ivo://ivoa.net/std/TAPRegExt#features-adql-type", "CAST")
 db_table = svc.tables[table_name]
 select_clause = []
 for dest_name, ucd, unit, type in RESULT_SCHEMA:
 if type and knows_cast:
 select_clause.append("CAST({} AS {}) AS {}".format(
 perhaps_quote(fieldname_with_ucd(ucd, db_table)),
 type,
 dest_name))

 else:
 # Don't cast and hope for the best
 select_clause.append("{} AS {}".format(
 perhaps_quote(fieldname_with_ucd(ucd, db_table)),
 dest_name))

 select_clause.append(f"'{table_name}' AS table_name")
 select_clause.append(f"'{svc.baseurl}' AS svc_url")

 # There's a TOP 10 in the following because we want a wide code
 # in order to get results from sparse catalogues but we don't
 # want to be swamped by deep surveys. Of course, you want to
 # remove that in science use.
 return ("SELECT TOP 10 {selclause} FROM {srctable}"
 " WHERE 1=CONTAINS(POINT('ICRS', {racol}, {deccol}),"
 " CIRCLE('ICRS', {ra}, {dec}, {sr}))").format(
 selclause=", ".join(select_clause),
 srctable=perhaps_quote(table_name),
 racol=fieldname_with_ucd("pos.eq.ra;meta.main", db_table),
 deccol=fieldname_with_ucd("pos.eq.dec;meta.main", db_table),
 ra=RA,
 dec=DEC,
 sr=SR)

def get_rows_for_svc(access_url, tables):
 """returns rows in RESULT_SCHEMA for tables in the service at access_url.
 """
 svc = pyvo.dal.TAPService(access_url)
 sys.stderr.write(f">>>>> {access_url} ({len(tables)})\n")

 knows_union = svc.get_tap_capability().get_adql().get_feature(
 "ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

 if len(tables)>30:
 sys.stderr.write(" (cropping to 30 tables for handleability)\n")
 tables = tables[:30]

 queries = []
 for table_name in tables:
 try:
 queries.append(get_query(svc, table_name))
 except KeyError as msg:
 sys.stderr.write(f" Skipping {table_name} ({msg} missing)\n")

 result_rows = []
 def feed_rows(astropy_table):
 for row in astropy_table:
 # TODO: Fix units here
 result_rows.append(dict(zip(row.colnames, row.as_void())))

 if knows_union:
 sys.stderr.write("> querying all\n")
 feed_rows(svc.run_sync(
 " UNION ".join(queries)).to_table())

 else:
 sys.stderr.write(f"> querying {table_name}\n")
 # Server has no union, we need to query individual tables
 for query in queries:
 feed_rows(svc.run_sync(query).to_table())

 return result_rows

def make_result_table(recs):
 """returns an astropy table for RESULT_SCHEMA plus src, src_table.
 """
 res = table.Table()
 res.add_column(table.Column(name='src',
 description="Source service",
 data=[r["svc_url"] for r in recs]))
 res.add_column(table.Column(name='src_table',
 description="Source table",
 data=[r["table_name"] for r in recs]))

 for name, ucd, unit, adqltype in RESULT_SCHEMA:
 res.add_column(table.Column(name=name,
 data=[r[name] for r in recs],
 meta={"ucd": ucd})),

 return res

def main():
 recs = []
 svcs_and_tables = get_services_and_tables()
 for svc_url, tables in svcs_and_tables:
 try:
 recs.extend(get_rows_for_svc(svc_url, tables))
 except Exception as msg:
 import traceback; traceback.print_exc()
 sys.stderr.write(f"{svc_url} broken (skipped): {msg}\n")

 res_table = make_result_table(recs)
 res_table.write("all-pms.vot", format="votable", overwrite=True)
 with pyvo.samp.connection() as conn:
 pyvo.samp.send_table_to(conn, res_table,
 name="all-pms", client_name="topcat")

if __name__=="__main__":
 main()

Odds and Ends

EPN-TAP 1

EPN-TAP is like obscore, just for solar system data. Columns of

note include:

• granule_uid – an identifier for the dataset

• target_name – what was observed?

• time_min, time_max – when was it observed?

• c<n>_min, c<n>_max – where is it?

• dataproduct_type – the sort of observation.

• instrument_host_name – the probe or laboratory that produced

the data.

• instrument_name – the instrument that produced the data.

108

EPN-TAP 2: Hashlists

Many EPN-TAP fields are “hash lists”: they are actually

multivalued, and to still keep everything in one table, multiple

values are concatenated by hashes (#), as in an instrument name

like

Visible Infrared Thermal Imaging Spectrometer#VIRTIS

To match such columns, use the ivo_hashlist_has(hashlist, item)

UDF.

109

EPN-TAP 3: Global Discovery

Global EPN-TAP discovery means: query all epncore tables. To

find these, you have to:

• look for resources containing epncore tables at all and then

• find the tables implementing epncore in them.

def iter_epncore_tables(*args, **kwargs):

for resrec in pyvo.registry.search(datamodel="epntap", *args, **kwargs):

if not 'tap#aux' in resrec.access_modes():

continue

for tab in resrec.get_tables().values():

utype = tab.utype or ""

if (utype=='ivo://vopdc.obspm/std/epncore#schema-2.0'

or utype.startswith('ivo://ivoa.net/std/epntap#table-2.')):

yield resrec, tab

epnquery.py

110

import pyvo

def iter_epncore_tables(*args, **kwargs):
 for resrec in pyvo.registry.search(datamodel="epntap", *args, **kwargs):
 if not 'tap#aux' in resrec.access_modes():
 continue

 for tab in resrec.get_tables().values():
 utype = tab.utype or ""
 if (utype=='ivo://vopdc.obspm/std/epncore#schema-2.0'
 or utype.startswith('ivo://ivoa.net/std/epntap#table-2.')):
 yield resrec, tab

def global_query():
 for resrec, tab in iter_epncore_tables():
 svc = resrec.get_service("tap", lax=True)
 print(f"{resrec.ivoid}, {tab.name}")
 res = svc.run_sync(
 f"SELECT TOP 30 * FROM {tab.name}"
 " WHERE 1=ivo_hashlist_has(instrument_host_name, 'Juno')")
 if res:
 yield resrec.short_name, res.to_table()

if __name__=="__main__":
 with pyvo.samp.connection() as conn:
 for short_name, table in global_query():
 pyvo.samp.send_table_to(
 conn, table, name=short_name, client_name="topcat")

Custom Parameters: Discovery

SIAP only has very few standard parameters (e.g., no time

constraints), and even SSAP’s rich parameter set is insufficient for,

e.g., theoretical spectra.

SIAP and SSAP services can define custom parameters. Discover

them using a FORMAT=METADATA URL parameter.

pyVO does not yet have some API that would properly hide this

(not terribly pretty) implementation detail.

python viewparams.py "http://dc.g-vo.org/bgds/q/sia/siap.xml?"

viewparams.py

111

"""
A program to dump the extra parameters accepted by SIAP and SSAP services.

It takes an access URL as its parameter; example:
http://dc.g-vo.org/bgds/q/sia/siap.xml?
"""

import requests
PyVO convenience functions don't let us access the RESOURCE that we
need here.
from astropy.io.votable import parse as vot_parse

def get_parameter_description(access_url):
	"""returns tuples of name, unit, ucd, type, description, values for
	the (custom) parameters of the service at access_url.
	"""
	if not "?" in access_url:
		# is a standards violation, but it's a cheap mitigation:
		access_url = access_url+'?'

	vot = vot_parse(
		requests.get(
			access_url, {"REQUEST": "doQuery", "FORMAT": "Metadata"}, stream=True
).raw.read)
	for param in vot.resources[0].params:
		if param.name.lower().startswith("input:"):
			type_desc = param.datatype
			if param.arraysize:
				type_desc = "{}[{}]".format(type_desc, param.arraysize)
			yield (
				param.name[6:],
				param.unit or "",
				param.ucd or "",
				type_desc,
				param.description,
				param.values)

def print_parameter_description(access_url):
	for param_desc in get_parameter_description(access_url):
		print("\n{0} [{1}] {3} -- {2}\n{4}".format(*param_desc))
		values = param_desc[5]
		if values.min and values.max:
			print("{} .. {}".format(values.min, values.max))
		if values.options:
			print("|".join(o[1] for o in values.options))

def parse_command_line():
	import argparse
	parser = argparse.ArgumentParser(
		description="Print a VO service's custom parameters")
	parser.add_argument("access_url", type=str,
		help="The service's access URL")
	return parser.parse_args()

if __name__=="__main__":
	print_parameter_description(
		parse_command_line().access_url)

Custom Parameters: Usage

Pass custom parameters as keyword arguments to search:

svc.search((107, -10), (0.05, 0.05),

dateObs="57050/58050",

bandpassId="SDSS i'")

siapextra.py

112

"""
Use extra (non-protocol) parameters in SIAP. To see what a service supports,
look at ACCESS_URL?FORMAT=METADATA (the INPUT: PARAMs); in the pyvo
course, there's viewparams.py.

This example: Use the custom dateObs parameter to fetch a few
SODA cutouts from a survey of the galactic plane.
"""

from pyvo.dal import sia

ACCESS_URL = "http://dc.g-vo.org/bgds/q/sia/siap.xml?"

svc = sia.SIAService(ACCESS_URL)

for index, match in enumerate(svc.search((107, -10), (0.1, 0.1),
 dateObs="57050/57150",
 bandpassId="SDSS i'").iter_datalinks()):
 with open(f"cutout-{index:03d}.fits", "wb") as f:
 f.write(
 match.get_first_proc()
 .processed(circle=(107, -10, 0.1)).read())

Custom Parameters: Syntax Trouble

We often have to pass intervals. You need some syntax to write

upper/lower limits.

Old-style VO services (most of them) have intervals declared as

char[*] or double) and expect min/max.

Others have two simple float parameters with _MIN and _MAX.

New-style (SIAv2, datalink...) services have interval xtypes and

type double[2]. These intervals are written with a blank.

113

Efficient Uploads: The Problem

TAP uploads are powerful, but they do have limits. In general, you

cannot upload billion-row tables and expecte services to go along.

To make things fast and save the server’s resources, you should

only upload enough to select the relevant data. So, avoid:

first_result = svc1.run_sync(...).to_table()

second_result = svc2.run_sync(

"SELECT * FROM local.t JOIN TAP_UPLOAD.up as b USING (foo, bar)",

uploads={"up": first_result})

– this will upload all of first_result and download it right again;

transferring data you already have, ingesting it into the remote

database in between is just a waste of resources.

114

Efficient Uploads: The Pattern

Instead, if you want to join on first result’s columns foo and bar,

make a new local table containing just those plus a unique local

identifier (add a record number if no such identifier exists),

somewhat like this:

first_result = svc1.run_sync(...).to_table()

remote_match = svc2.run_sync(

"SELECT * FROM local.t JOIN TAP_UPLOAD.up as b USING (foo, bar)",

uploads={"up": table.Table([

first_result["main_id"],

first_result["foo"],

first_result["bar"])})

full_result = table.join(

first_result,

remote_match.to_table(),

keys="main_id")

115

Efficient Uploads: Slicing

If you still run into resource limits, you process your data in

batches. Use case: retrieve quality measures for Gaia DR3 data by

matching on Gaia’s source_id.

def iter_slices(total_length, batch_size):

limits = list(range(0, total_length, batch_size))+[batch_size]

for lower, upper in zip(limits[:-1], limits[1:]):

if lower < upper:

yield slice(lower, upper)

def remote_match(svc, source_table, remote_table, batch_size, match_column):

matched_records = []

match_on = source_table[match_column]

only match the match_column (for a positional crossmatch, use

an id column (create one if necessary) and the positions).

for slice in iter_slices(len(source_table), batch_size):

result = svc.run_sync(

f"""SELECT a.* FROM

{remote_table} AS a JOIN

TAP_UPLOAD.mine AS b

USING ({match_column})"""),

uploads={"mine": table.Table([match_on[slice]])})

matched_records.append(result.to_table())

joined_match = table.vstack(matched_records)

return table.join(source_table, joined_match, keys=match_column)

smart-tap-upload.py

116

#!/usr/bin/env python
"""
A little and artificial example to show how to properly and efficiently
do cross-server upload joins.

get_basic_data is of course a silly function.

remote_match, on the other hand, probably is a good starting point for a
more general functionality.

In real life, you'd have a much larger batch_size (1e7 ought to be possible
depending on several details), and you probably need to use run_async
rather than run_sync, but that's about it.

This assumes there's enough RAM for the full match; if that assumption is
not true, you either need to get a computer manufactured in this millenium
or re-think your problem.
"""

from astropy import table
import pyvo

def iter_slices(total_length, batch_size):
 """iterates over slices of up to batch_size filling 0 to total_length.
 """
 limits = list(range(0, total_length, batch_size))+[batch_size]
 for lower, upper in zip(limits[:-1], limits[1:]):
 if lower < upper:
 yield slice(lower, upper)

def remote_match(svc, source_table, remote_table, batch_size, match_column):
 """adds records from remote_table on svc to source_table.
 """
 matched_records = []
 match_on = source_table[match_column]

 # only match the match_column (for a positional crossmatch, use
 # an id column (create one if necessary) and the positions).
 for slice in iter_slices(len(source_table), batch_size):
 result = svc.run_sync(f"""SELECT a.* FROM
 {remote_table} AS a JOIN
 TAP_UPLOAD.mine AS b
 USING ({match_column})""",
 # the next line is where most of the magic is.
 uploads={"mine": table.Table([match_on[slice]])})
 matched_records.append(result.to_table())

 joined_match = table.vstack(matched_records)
 del matched_records

 # now fiddle back what we've pulled from the server into the source_table.
 return table.join(source_table, joined_match, keys=match_column)

def get_basic_data(svc):
 """returns some test data from svc.

 Here, that's a some subset of upstream Gaia data.
 """
 result = svc.run_sync("""
 SELECT TOP 400
 source_id, ra, dec, ra_error, dec_error, ruwe, parallax,
 phot_g_mean_mag
 FROM gaiadr3.gaia_source
 WHERE
 source_id BETWEEN 4657847914607935488 AND 4657988652096290815
 """)
 return result.to_table()

def main():
 my_gaia_part = get_basic_data(
 pyvo.dal.TAPService("https://gea.esac.esa.int/tap-server/tap"))
 with_remote_data = remote_match(
 pyvo.dal.TAPService("http://dc.g-vo.org/tap"),
 source_table=my_gaia_part,
 remote_table="gedr3spur.main",
 batch_size=100,
 match_column="source_id")

 with open("matched_stuff.vot", "wb") as f:
 with_remote_data.write(output=f, format="votable")

if __name__ == "__main__":
 main()

Troubleshooting and FAQ

Side Track: Terminology

Terminology: Client-Server

Server A machine that runs services

Service A program listening to network requests, processing

and answering them according to some standard

protocol

Client A program talking to a Service using some standard

protocol; perhaps a library, perhaps some polished

application, perhaps a bit of cobbled-together curl

Terminology: Data

Dataset An image, spectrum, time series, etc. Ah: Is a

catalogue or a catalogue row as dataset?

Data Collection A somehow coherent collection of Datasets

(e.g., instrument archive, uniformly reduced data,

thematic collections)

Metadata Data “about data” (who created it when, why, and

how, what’s inside,. . .). Note: one problem’s data is

another problem’s metadata.

Side Track: Architecture

Decentralised and Federated

The Virtual Observatory is

decentralised – there is no central node, and everyone can run

any sort of service – and

federated – each client can talk to all services, and all services

can be discovered uniformly.

Why no Platform?

We couldn’t do a platform if we wanted to.

But more importantly: With multiple

interoperable

providers the VO can

grow from the edges:

Users control

their end of processing, operators can adapt services to their needs

and

evolve the standards.

No single part can dictate what happens.

In a slogan

Protocols, not Platforms

. . . and you will not have to fear Elon Musk and his ilk.

Federation in practice: the VO Registry

The VO Registry is what

holds everything together:

It’s what your client asks

when you look for, say, “a

TAP service with proper

motions for stars fainter

than 23 mag”.

It is a fairly complex

system; but it’s also an

excellent example for what

“federation” means.

Publishing Registry 1

Publishing Registry 2

Publishing Registry 3

Registry of

Registries

Searchable Registry a

Searchable Registry b

Client Applications

pull harvest

pull list of publishing registries

discovery queries

Side Track: Standards

Data Access Without Standards

If you want to N clients (programs, say) to communicate with M

servers (archives, say), there are N ·M things that can go wrong:

TOPCAT

astroquery

C library

Aladin

Shell script

SDSS

GAVO DC

CADC

CDS

ESAC

IPAC

ESO Archives

Data Access With Standards

With a standards there’s just one thing to get right for each client

and server (i.e., N +M sources of brokenness):

TOPCAT

pyVO

C library

Aladin

Shell script

Standard

Interface
SDSS

GAVO DC

CADC

CDS

ESAC

IPAC

ESO Archives

IVOA Standards

Alas, one standard does not do it. Of course there’s TCP/IP,

HTTP, SSL, XML etc. behind the VO start with.

And there are ∼ 50 standards on https://ivoa.net.

As a consumer, you hopefully will not have to read any of that.

But things break or folks want to be smart. Then it’s good to

know where to look.

Hitch-Hiker’s Guide to the IVOA: DAL

The IVOA Data Access Layer Working Group talks about how to

locate data sets and how to access them in hopefully smart ways:

Searching for data Images (SIAP), spectra (SSAP), objects

(SCS), spectral lines (SLAP), generic datasets

(ObsCore).

Remote manipulation SODA lets you do cutouts, rescaling, etc.,

to avoid pulling data you don’t need.

Interacting with databases Access using TAP, common query

language ADQL.

Hitch-Hiker’s Guide to the IVOA: Apps

The applications working group talks about things relevant on the

client side:

Formats Table exchange using VOTable, complex spherical

geometries with MOC, multiscale images with HiPS.

SAMP Assembling complex environments from simple

building blocks.

Hitch-Hiker’s Guide to the IVOA: Others

Registry Registry Interfaces for the architecture, VOResource,

VODataService, TAPRegExt, SimpleDALRegExt for

the metadata format, RegTAP for how to search it.

Semantics Light semantics of physical quantities (UCD), Unit

syntax, Vocabulary maintenance.

Grid and Web Services All kinds of invisible support stuff

(Authentication, Authorisation, server-side

metadata. . .).

Contributing

If you want to contribute, the IVOA is very open.

• Subscribe to mailing lists: https://www.ivoa.net/members/

• File bugs against standards: https://github.com/ivoa-std

• Improve our vocabularies: https://www.ivoa.net/rdf/

• Come to one of our semiannual meetings, the IVOA Interops.

https://www.ivoa.net/members/
https://github.com/ivoa-std
https://www.ivoa.net/rdf/

Side Track: UCDs

UCDs?

Different catalogues have different names for roughly the same

thing. For instance, I found 848 column names containing V-band

magnitudes:
magc, apass vmag, vmaglan, v74, hip mag, v55, john-

son mag v, vmag, mv, vmagapass, vap2, . . .

UCDs, Unified Content Descriptors, let a machine figure out that

all of these correspond to roughly the same physical concept.

UCDs Have a Grammar

There is a large number of concepts represented in our tables. A

single label hence is not enough.

The list of UCDs therefore only defines a hierarchy of atoms that

you can then combine according to some (simple) syntax rules. For

instance:

• phot.mag is a “Photometric magnitude”

• em.opt.V is the “Optical band between 500 and 600 nm”

• phot.mag;em.opt.V is something like a visual magnitude

UCDs in Data Discovery

You can discover VO resources offering certain sorts of data using,

for instance, WIRR, http://dc.g-vo.org/WIRR:

(try Blind Discovery → Column UCD)

Finding UCDs

Probably the best way to find UCDs publishers actually have used

for things you are interested in is via the RegTAP table

rr.table_column, which has a column description in which you can

to free-text search:

SELECT DISTINCT ucd, column_description

FROM rr.table_column

WHERE 1=ivo_hasword(column_description, 'effective temperature')

This of course has many false positives – which is exactly why you

should try to assign useful UCDs to your own columns when you

publish data.

Side Track: Vocabularies

Why Vocabularies?

In many cases, interoperable data publication requires common

labels for “things”, perhaps even hierarchically organised:

• Subject keywords (as in journals)

• Reference frames (ICRS, etc), time scales, and the like

• Sorts of data products (“I need a spectrum”)

• Parts of the spectrum (“Near Infrared”?)

• Object types (“AGN” or “Active Galactic Nucleus”?)

• Relations between resources (Cites, Replaces, . . .)

These must be machine-readable, and people need to be able to

extend and evolve them without too much strife.

In the VO

In the VO, a standard called “Vocabularies in the VO” says how

we are doing it:

• You can get vocabularies at http://www.ivoa.net/rdf

• Full identifiers continue with <vocname>#<concept-id>

• e.g., http://www.ivoa.net/rdf/uat#astronomy-education,

which resolves in your browser

• Vocabularies are retrievable in various RDF formats, and

• desise, dead simple semantics

• Develop vocabularies in a community process using VEPs

http://www.ivoa.net/rdf
http://www.ivoa.net/rdf/uat#astronomy-education

In Instance Documents

While in mainstream RDF, you mostly have full URIs, in the VO,

we usually only use identifiers, e.g.,

• datalink/core: #progenitor in the semantics column of

datalink documents

• refframe: <COOSYS system="ICRS"/> in VOTable

• product-type: image in Obscore’s dataproduct_type column

• relationship type: IsServedBy in VOResource’s relationship

• uat: abundance-ratios in RegTAP’s res_subject column.

Machine Readable

IVOA vocabularies can be consumed in a trivial JSON format. Just

request the vocabulary URI asking for the

application/x-desise+json media type:

$ curl -LH "accept: application/x-desise+json" \

http://www.ivoa.net/rdf/timescale

{

"uri": "http://www.ivoa.net/rdf/timescale",

"flavour": "RDF Class",

"terms": {

"TAI": {

"label": "International Atomic Time TAI",

"description": " atomic time standard, TT-TAI = 32.184 s.",

"wider": [],

"narrower": []

},

"TT": {

...

In pyVO

In PyVO, use get_vocabulary; this will let you easily find out

whether terms are in the vocabulary, their labels and descriptions,

and narrower and wider terms:

>>> v = pyvo.utils.vocabularies.get_vocabulary("datalink/core")

>>> "preview" in v["terms"]

True

>>> "rearview" in v["terms"]

False

>>> v["terms"]["documentation"]["description"]

'Structured or unstructured metadata helping to understand, interp...

>>> v["terms"]["calibration"]["narrower"]

['bias', 'dark', 'flat']

In ADQL

Some TAP services have the gavo_vocmatch(voc, term_id, col)

UDF built in. For instance, to look for everything roughly

image-like in an obscore table, you can do:

SELECT dataproduct_type, access_url

FROM ivoa.obscore

WHERE DISTANCE(s_ra, s_dec, 10, 10)<1

AND 1=gavo_vocmatch('product-type',

'spatially-resolved-dataset', dataproduct_type)

Side Track: VOTable

The VO’s Native Table Format: VOTable

<VOTABLE xmlns="http://www.ivoa.net/xml/VOTable/v1.3" version="1.4">

<DESCRIPTION> The catalogue ARIHIP has been constructed by selecting the ’best

[...]</DESCRIPTION>

<RESOURCE type="results">

<INFO name="QUERY_STATUS" value="OK"/>

<INFO name="request" value="/arihip/q/cone/scs.xml?RA=333&DEC=43&SR=2"/>

<INFO name="standardID"

value="ivo://ivoa.net/std/ConeSearch">DaCHS 2.9.2 SCSRenderer</INFO>[...]

<COOSYS ID="system" epoch="J2000.0" system="ICRS"/>

<TABLE name="result">

</FIELD>

<FIELD ID="hipno" arraysize="*" datatype="char" name="hipno" ucd="ID_MAIN">

<DESCRIPTION>Number of the star in the HIPPARCOS Catalogue (ESA 1997).</DESCRIPTION>

</FIELD>

<FIELD ID="raj2000" datatype="double" name="raj2000" ref="system"

ucd="pos.eq.ra;meta.main" unit="deg">

<DESCRIPTION>Right ascension from a single-star solution</DESCRIPTION>

</FIELD>

<DATA>

<BINARY>

<STREAM encoding="base64">P8ZMQ7q5V6gAAAAGMTA5[...]</STREAM>

</BINARY></DATA>

</TABLE>

</RESOURCE>

</VOTABLE>

VOTable: Top-Level Declarations

<VOTABLE xmlns="http://www.ivoa.net/xml/VOTable/v1.3" version="1.4">

<DESCRIPTION>The catalogue ARIHIP has been constructed by selecting

the 'best data' for a given star from combinations of HIPPARCOS data

with Boss' GC and/or the Tycho-2 catalogue as well as the FK6. It

provides 'best data' for 90 842 stars with a typical mean error of

0.89 mas/year (about a factor of 1.3 better than Hipparcos for this

sample of stars).</DESCRIPTION>

• Anything within <...> in XML is called a tag. A tag has a

name and perhaps attributes.

• An opening tag, some content, and a closing tag make up an

XML element.

• Elements within another element are called its children.

VOTable: result Resources

<RESOURCE type="results">

<INFO name="QUERY_STATUS" value="OK"/>

• A VOTable consists of RESOURCE-s.

• All current DAL protocols return a RESOURCE of type results

with the main table.

• The INFO with the name QUERY_STATUS is a DAL-mandated

machine-readable success indicator.

VOTable: Light Provenance

<INFO name="request"

value="/arihip/q/cone/scs.xml?RA=333&DEC=43&SR=2"/>

<INFO name="standardID" value="ivo://ivoa.net/std/ConeSearch"

>DaCHS 2.9.2 SCSRenderer</INFO> [...]

<INFO name="publication_id" value="2001VeARI..40....1W"

>A bibliographic source citable for (parts of) this data</INFO>

<INFO name="contact" value="gavo@ari.uni-heidelberg.de"

>Contact option</INFO>

Provenance is information on how some artefact came to be.

In TOPCAT, see Views/Table Parameters :

FIELDs of a Table

<FIELD ID="hipno" arraysize="*" datatype="char" name="hipno"

ucd="meta.id;meta.main">

<DESCRIPTION>Number of the star in the HIPPARCOS Catalogue (ESA 1997).

</DESCRIPTION>

<VALUES><MIN value="1"/><MAX value="120404"/></VALUES>

</FIELD>

<FIELD ID="parallax" datatype="float" name="parallax" ucd="pos.parallax"

unit="deg">

<DESCRIPTION>Parallax used in deriving the data of the star in the

catalogue selected for the ARIHIP. This is either the HIPPARCOS

parallax or a photometric/spectroscopic parallax (see

Kp).</DESCRIPTION>

<VALUES><MIN value="-8.216667e-06"/><MAX value="0.00015250278"/></VALUES>

</FIELD>

The main table metadata in VOTable is in FIELD elements. They

give names, types, units, UCDs, value ranges.

FIELDs in TOPCAT

In TOPCAT, use Views/Column Info to inspect the metadata

from the FIELDs.

Note that you can sort by all the various columns, which is

particularly nifty for UCDs:

VOTable: The STC Drama

Regrettably, the annotation of space-time coordinate metadata in

VOTables is still woefully inadequate:

<COOSYS ID="system" epoch="J2000.0" system="ICRS"/>

<COOSYS ID="system-02" epoch="J2000.0" system="ICRS"/>

<FIELD ID="raj2000" datatype="double" name="raj2000" ref="system"

ucd="pos.eq.ra;meta.main" unit="deg">

<DESCRIPTION>Right ascension from a single-star solution</DESCRIPTION>

</FIELD>

<FIELD ID="dej2000" datatype="double" name="dej2000" ref="system"

ucd="pos.eq.ra;meta.main" unit="deg"/>

<FIELD ID="pmra" datatype="float" name="pmra" ref="system"

ucd="pos.pm;pos.eq.ra" unit="deg/yr"/>

<FIELD ID="pmde" datatype="float" name="pmde" ref="system"

ucd="pos.pm;pos.eq.dec" unit="deg/yr"/>

<FIELD ID="raLTP" datatype="double" name="raLTP" ref="system-02"

ucd="pos.eq.ra" unit="deg"/>

VOTable: The Data

<DATA>

<BINARY>

<STREAM encoding="base64">P8ZMQ7q5V6gAAAAGMTA5NTExQHT...

VOTable can encode tabular data in different ways. Most

importantly:

• TABLEDATA – more or less human-readable values in TD and

TR elements. Nice, for instance, to format using XSLT.

• BINARY – FITS-like binary data made XML-clean using

base64.

• BINARY2 – the successor to BINARY, mainly fixing the

representation of missing values.

Here, the service has chosen to return BINARY data.

Side Track: IVOA Identifiers

Ivoids as URIs

The primary identifier for resources in the VO is the IVOA identifier

or ivoid; it is also what you always implicitly join on in RegTAP.

They are URIs with an ivo scheme:

ivo://<authority>[/<local-part>][?<query-part>][#<fragment>]

Ivoids regrettably must be compared case-insensitively; the best

thing to do is to lowercase them as soon as you get them.

Resolving Ivoids

Ivoids can be resolved to registry records.

One way to do so is to prepend http://dc.g-vo.org/I/ to them.

Ivoids without local parts point to authorities:

http://dc.g-vo.org/I/ivo://cds.vizier.

Ivoids with local parts mostly point to services:

http://dc.g-vo.org/I/ivo://org.gavo.dc/bgds/l/ssa.

http://dc.g-vo.org/I/
http://dc.g-vo.org/I/ivo://cds.vizier
http://dc.g-vo.org/I/ivo://org.gavo.dc/bgds/l/ssa

Special IVOIDs

Publisher DIDs: These are hopefully globally unique identifiers for

datasets as used in datalink or obscore.

They should have the form

<ivoid-of-service-resolving-them>?<dataset-key>

If they are built like that, http://dc.g-vo.org/glopidir can resolve a

PubDID to the dataset.

Standard IDs Fragment identifiers are supposed to be resolved

into standard keys, and these, in turn, are used to define some

standard features in the VO. Example:

ivo://ivoa.net/std/tapregext#upload-inline

http://dc.g-vo.org/glopidir

	Introduction: What is the VO and why should you care?
	Simple Protocols and their clients
	HTTP and clients of your choice

	TAP and ADQL
	Interlude: HEALPix, MOC, HiPS
	pyVO Basics
	pyVO and TAP
	Higher SAMP Magic
	pyVO and the Registry
	Datalink
	At the Limit: VO-Wide TAP Queries
	Odds and Ends
	EPN-TAP
	Custom Parameters to Simple Services
	TAP Uploads: The right way

	Troubleshooting and FAQ
	TOPCAT and Aladin are unreadably small on HiDPI screens?
	TOPCAT TAP example stays gray?

	Appendix
	Side Track: Terminology
	Side Track: Architecture
	Side Track: Standards
	Side Track: UCDs
	Side Track: Vocabularies
	Side Track: VOTable
	Side Track: IVOA Identifiers

